Nothing Special   »   [go: up one dir, main page]

CN112391300B - Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof - Google Patents

Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof Download PDF

Info

Publication number
CN112391300B
CN112391300B CN202011213885.5A CN202011213885A CN112391300B CN 112391300 B CN112391300 B CN 112391300B CN 202011213885 A CN202011213885 A CN 202011213885A CN 112391300 B CN112391300 B CN 112391300B
Authority
CN
China
Prior art keywords
leu
flavone
ala
hydroxylase
eriodictyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011213885.5A
Other languages
Chinese (zh)
Other versions
CN112391300A (en
Inventor
周景文
陈坚
高松
曾伟主
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011213885.5A priority Critical patent/CN112391300B/en
Publication of CN112391300A publication Critical patent/CN112391300A/en
Application granted granted Critical
Publication of CN112391300B publication Critical patent/CN112391300B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13021Flavonoid 3'-monooxygenase (1.14.13.21)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses flavone 3 beta-hydroxylase derived from silybum marianum and application of coenzyme thereof, belonging to the field of genetic and metabolic engineering. SmF 3'H and SmCPR with flavone 3' -hydroxylase function are obtained and verified from silybum marianum, and have the capacity of catalyzing naringenin to synthesize eriodictyol. The SmF 3'H and the SmCPR used in the invention, more commonly used GhF 3' H and CrCPR, can improve the yield of eriodictyol generated by converting naringenin by 17.0 percent under the same culture condition. On the basis, promoters with different strengths are used for regulating SmF 3' H and SmCPR, so that the yield of eriodictyol is further improved, the yield of the eriodictyol can reach 805.6mg/L in a 250mL shake flask, and is increased by 302.8% compared with the reported highest yield of 200 mg/L. The silybum marianum-derived flavone 3 beta-hydroxylase and the coenzyme thereof have good performance of converting naringenin into eriodictyol, so that the silybum marianum-derived flavone 3 beta-hydroxylase has wide application prospect.

Description

Silybum marianum-derived flavone 3 beta-hydroxylase and application of coenzyme thereof
Technical Field
The invention relates to flavone 3 beta-hydroxylase derived from silybum marianum and application of coenzyme thereof, belonging to the field of gene and metabolic engineering.
Background
Eriodictyol is a natural flavanone compound widely existing in vegetables, fruits and traditional Chinese medicines, has various pharmacological activities such as oxidation resistance, inflammation resistance, tumor resistance, neuroprotection and the like, is commonly used for treating diseases such as asthma, allergic rhinitis, rheumatism and the like, has very high medicinal value, is also a precursor substance of taxifolin, anthocyanin, silybum marianum, chaulmoogra and the like, and has wide application value. Currently, eriodictyol is mainly extracted from plants directly, but in the extraction process, a large amount of energy is consumed to maintain high temperature, a large amount of chemical reagents are added, and the production efficiency is low, so that the ecological environment is greatly influenced.
At present, biological extraction, particularly microbial transformation, is reported, and although the method is safer and more environment-friendly than plant extraction, the method also has the problems of low yield and low transformation efficiency. The current main microbial transformation method is to catalyze naringenin by flavone 3 beta-hydroxylase F3' H under the combined action of coenzyme CPR to obtain the naringenin. A related study reported that F3 'H catalyzes naringenin to obtain the highest yield of eriodictyol of only 200mg/L (Amor, I.L., et al, Biotransformation of naringenin to eriodicine by Saccharomyces cerevisiae functional expressing flavone 3' hydroxyylase. nat Prod Commun,2010.5(12): p.1893-1898.). The yields of synthetic eriodictyol in E.coli are only 107mg/L at the highest (Zhu, S., et al., effective synthesis of eriodic from L-tyrosine in Escherichia coli. appl. Environ. Microbiol,2014.80(10): p.3072-3080.). This is because F3 'H and CPR need to anchor to the endoplasmic reticulum to transfer electrons efficiently (fig. 1), and therefore most of F3' H and CPR are poorly or even not active in prokaryotic microorganisms.
Therefore, the lack of efficient production of F3' H and CPR still causes the production of eriodictyol to be extremely limited, and the microbiological method cannot be well applied to industrial production.
Disclosure of Invention
For genes involved in a particular metabolic pathway, the expression level of each gene is often not optimal, and promoters of different strengths can be used to initiate each gene in the expression pathway and combined, followed by screening for high producing strains and sequencing of the high producing strains, i.e., the genotype for the optimal promoter combination can be obtained. Therefore, it is very important to find efficient F3 'H/CPR and adjust the expression level of F3' H/CPR by replacing the promoter, so as to obtain the genotype with the optimal expression ratio and the eriodictyol-producing strain thereof.
In order to obtain efficient F3 'H/CPR, the invention provides a pair of high activity F3' H derived from Silybum marianum (Silybum marianum) and coenzyme CPR thereof.
The invention provides a microbial cell expressing flavone 3 beta-hydroxylase and/or flavone 3 beta-hydroxylase coenzyme, wherein the amino acid sequence of the flavone 3 beta-hydroxylase is shown as SEQ ID NO. 2; the amino acid sequence of the flavone 3 beta-hydroxylase coenzyme is shown in SEQ ID NO. 4.
In one embodiment of the invention, the nucleotide sequence encoding said flavone 3 β -hydroxylase is shown in SEQ ID No. 1.
In one embodiment of the invention, the nucleotide sequence encoding the flavone 3 β -hydroxylase coenzyme is shown in SEQ ID No. 3.
In one embodiment of the invention, the promoter P is used INO1 、P SED1 、P TPI1 、P MET6 、P FAS2 、P GAL1 、P LEU2 、P ZWF1 、P ARO7 And P GLN1 Promoting the expression of flavone 3 beta-hydroxylase.
In one embodiment of the invention, the promoter P INO1 、P SED1 、P TPI1 、P MET6 、P FAS2 、P GAL1 、P LEU2 、P ZWF1 、P ARO7 And P GLN1 The nucleotide sequence of (A) is shown in SEQ ID NO.5-SEQ ID NO. 14.
In one embodiment of the invention, the promoter P is used TDH1 、P PGK1 、P TDH3 、P ERG20 、P ADH6 、P GAL10 、P ADE2 、P PMA1 、P ADE6 And P FAD1 Promoting the expression of the coenzyme of the flavone 3 beta-hydroxylase.
In one embodiment of the invention, the promoter P TDH1 、P PGK1 、P TDH3 、P ERG20 、P ADH6 、P GAL10 、P ADE2 、P PMA1 、P ADE6 And P FAD1 The nucleotide sequence of (A) is shown in SEQ ID NO.15-SEQ ID NO. 24.
In one embodiment of the invention, the promoter P is used INO1 Promoting expression of flavone 3 beta-hydroxylase by using promoter P TDH1 Promoting the expression of the coenzyme of the flavone 3 beta-hydroxylase.
In one embodiment of the invention, the promoter P is used SED1 Promoting expression of flavone 3 beta-hydroxylase by using promoter P TDH1 Initiating flavone 3 beta-hydroxyExpression of the coenzyme of the chemolase.
In one embodiment of the invention, the microbial cell is a prokaryotic or eukaryotic host.
In one embodiment of the invention, the microbial cell is saccharomyces cerevisiae strain C800.
The invention provides application of microbial cells in eriodictyol production, wherein naringenin is used as a substrate.
In one embodiment of the present invention, the microbial cells are added to the reaction system.
The invention provides a method for producing eriodictyol by whole-cell catalysis, which is characterized in that microbial cells are added into a reaction system.
In one embodiment of the present invention, the seed medium obtained by culturing at 25-35 ℃ and 200-250rpm for 16-18h is added to the reaction system in an amount of 1-5mL/100 mL.
The invention provides application of a method for producing eriodictyol by whole-cell catalysis in the production of eriodictyol or products taking eriodictyol as a raw material.
The invention has the beneficial effects that: SmF 3'H and SmCPR with flavone 3' -hydroxylase function are obtained from silybum marianum, and the SmF 3'H and SmCPR used in the invention, which are more commonly used as GhF 3' H and CrCPR, can improve the yield of eriodictyol generated by converting naringenin by 17.0 percent under the same culture condition. On the basis, promoters with different strengths are used for regulating SmF 3' H and SmCPR, so that the yield of eriodictyol is further improved, the yield of the eriodictyol can reach 805.6mg/L in a 250mL shake flask, and is increased by 302.8% compared with the reported highest yield of 200 mg/L. The acquisition of the high-eriodictyol-producing strain is of great significance for promoting the application of the high-eriodictyol in industry.
Drawings
FIG. 1 is a schematic diagram showing catalytic production of eriodictyol from naringenin by SmF 3' H/SmCPR.
FIG. 2 is a schematic diagram of promoter-optimized SmF 3' H/SmCPR.
FIG. 3 is a diagram of functional identification and catalytic capability verification of Silybum marianum source SmF 3' H/SmCPR.
FIG. 4 is a graph showing the yields of the 10 strains with the highest yield, the corresponding promoter genotypes and the promoter expression intensities after the promoter optimization.
Detailed Description
YNB medium: 0.72g/L yeast nitrogen source basic culture medium, 20g/L glucose, 50mg/L leucine, 50mg/L tryptophan and 50mg/L histidine.
YPD medium: 10g/L yeast powder, 20g/L peptone and 20g/L glucose.
2g/L agar powder is added into the solid culture medium.
Saccharomyces cerevisiae C800: the construction is described in Gao, S., et al, product-library-based scheduling for efficacy (2S) -naringenin production from p-homologous acid in Saccharomyces cerevisiae, 2020.68(25): p.6884-6891.
Example 1: amplification and identification of SmF 3' H and SmCPR
Extracting total RNA from silybum marianum pistil according to the kit instruction, and performing reverse transcription to obtain cDNA. Contig37917(SmF 3'H using primers SmF 3' H-F and SmF3 'H-R) and Contig668(SmCPR using primers SmCPR-F and SmCP-R) were each amplified from cDNA using primers to give PCR products, and the resulting PCR products were cloned into pMD19T-simple to give pMD-T-SmCPR and pMD-T-SmF 3' H, respectively.
Because the original plasmid pY26-TEF-GPD has a PmlI restriction site, the original plasmid pY26-TEF-GPF is amplified circularly by using primers mut-F and mut-R, caaggtttataa is obtained by self-ligation, a new restriction site PmlI is introduced into the plasmid pY26-TEF-GPD-mut, and pY26-TEF-GPD-mut is constructed and used for subsequently constructing a plasmid.
The reported genes GhF 3'H (GenBank ID: ABA64468.1) and CrCPR (GenBank ID: KM111538.1) were chemically synthesized, ligated to T vectors, and stored, respectively, as pUC57-GhF 3' H and pUC 57-CrCPR. pMD-T-SmF 3' H and pY26-TEF-GPD-mut are respectively cut by BamHI and PmlI endonucleases, and the cut fragments are respectively recovered and are connected to obtain pY 26-GR. pMD-T-SmCPR and pY26-GR are digested with NotI and PacI endonucleases respectively, and the digested fragments are recovered and ligated to obtain pY 26-THGR. pUC57-GhF 3' H and pY26-TEF-GPD were cut with BamHI and BspDI endonucleases in the same manner, and the cut fragments were recovered and ligated to obtain pY26-GR 2. pUC57-CrCPR and pY26-GR2 were digested with NotI and PacI endonucleases, respectively, and the digested fragments were recovered and ligated to obtain pY26-THGR 2.
Respectively transferring the plasmid vectors pY26-GR, pY26-THGR, pY26-GR2 and pY26-THGR2 obtained by the construction into Escherichia coli JM109, culturing at 37 ℃ until a monoclonal is grown out, selecting the monoclonal for sequencing, and extracting the plasmid from the positive transformant, wherein the sequencing verification is correct, namely the positive transformant. And respectively transforming the extracted plasmids pY26-GR, pY26-THGR, pY26-GR2 and pY26-THGR2 into a saccharomyces cerevisiae strain C800 by a lithium acetate transformation method to sequentially obtain strains C800GR, C800THGR, C800GR2 and C800THGR 2.
The amplification primers are shown in Table 1, and the strains and plasmids involved in the invention are shown in Table 2.
Primer sequences used in Table 1
Figure BDA0002759675000000031
TABLE 2 strains and plasmids related to the present invention
Figure BDA0002759675000000032
Figure BDA0002759675000000041
Example 2: verification of SmF 3' H and SmCPR catalytic function
Conditions for fermentation of Contig37917(SmF 3' H) and Contig668 (smcr) and strains C800GR, C800GR2, C800THGR and C800THGR2 in 250mL shake flasks: a single colony is picked and inoculated in a 250mL shake flask containing 20mL YNB liquid medium, and cultured for 16-18h at 30 ℃ and 220rpm to obtain a seed culture medium. The seed culture medium was transferred at 2mL/100mL into a 250mL shake flask containing 20mL fresh YNB broth containing 250 mg.L -1 Naringenin was cultured at 30 ℃ and 220rpm for 72 hours, and then the amount of eriodictyol produced was measured.
And diluting fermentation liquor of strains Contig37917, Contig668, C800GR, C800GR2, C800THGR and C800THGR2 by using methanol for one time, shaking for 30s, uniformly mixing, centrifuging at 13500rpm for 5min, filtering, and detecting the yield of the eriodictyol by using a high performance liquid phase. 250mL shake flask detection: mu.L of the fermentation medium was mixed with 900. mu.L of methanol, vortexed and shaken for 30s, centrifuged at 13500rpm for 5min and then filtered. The supernatant was filtered and prepared for HPLC analysis.
Samples were detected using an Agilent high performance liquid chromatography (Agilent 1100, US), C18 reverse phase chromatography column (4.6 mm. times.250 mm, Thermo), at a column temperature of 25 ℃. The mobile phase is methanol: water (41:59) and 3% per mill phosphoric acid. The flow rate is 1mL/min, the sample injection amount is 10 muL, and the detection wavelength is 290 nm.
Through verification, Contig37917 and Contig668 derived from silybum marianum are identified as having the capability of catalyzing naringenin to synthesize eriodictyol, and the catalytic capability is stronger than that of the conventional GhF 3' H/CrCPR. Under the same 250mL shake flask culture condition, the common GhF3 'H/CrCPR can synthesize 49.5mg/L eriodictyol, while the silybum marianum-derived SmF 3' H/SmCPR can synthesize 57.9mg/L, and the yield is increased by 17.0%. Thus, Contig37917(SmF 3' H) and Contig668(SmCPR) showed good eriodictyol production.
Example 3: construction of promoter-optimized SmF 3' H and SmCPR expression level library
20 gradient promoters were selected from the reported Promoter library (Gao, S., et al., Promoter-library-based pathway optimization for efficacy (2S) -naringenin production from p-Promoter acid in Saccharomyces cerevisiae J agricultural Food Chem,2020.68(25): p.6884-6891.) for optimization of expression levels of SmF 3' H and SmCPRR. The 20 promoters were divided into A, B groups. The starter group A contains P INO1 、P SED1 、P TPI1 、P MET6 、P FAS2 、P GAL1 、P LEU2 、P ZWF1 、P ARO7 And P GLN1 (the sequence of which corresponds in sequence to SEQ ID NO.5-SEQ ID NO.14) for fusion and initiation of transcription of SmF 3' H. The starter subgroup B contains P TDH1 、P PGK1 、P TDH3 、P ERG20 、P ADH6 、P GAL10 、P ADE2 、P PMA1 、P ADE6 And P FAD1 (the sequence of which corresponds in turn to SEQ ID NO.15-SEQ ID NO.24) for fusion and initiation of transcription SmCPR.
Vector backbones (expression cassettes containing Promoter amplification sequences and SmcXX-homo-F) were amplified from plasmid pMD19T-XXX (plasmid pMD19T-XXX is the name of the Promoter for ligating the above Promoter to the pMD19T vector, XXX is the name of the Promoter, see Gao, S., et al, Promoter-library-based therapy optimization for efficacy (2S) -naringenin production from p-Promoter acid Saccharomyces cerevisiae J Agric Food Chem,2020.68(25): p.6884-6891.), using primers pY26-THGR-homo-F and pY26-THGR-homo-R, respectively, from plasmid pY26-THGR (expression cassettes containing Promoter amplification sequences and the name of the CPR-3 vector, respectively). The PCR products of the vector backbone, promoter groups A and B were purified separately, and then the three products were mixed to 50. mu.L (promoter group A: promoter group B: vector backbone ═ 2: 2: 1, mol/mol, total about 2-3. mu.g), the mixed system was transformed into s.cerevisiae strain C800 by lithium acetate high efficiency Transformation (specific Transformation methods see: Gietz, R.D. and R.A. woods, Transformation of yeast by little salt acetate/single-stranded carrier DNA/polyethylene glycol method. methods enzyme, 2002.350: p.87-96.), and all the fragments were assembled in s.cerevisiae. The transformation system is coated on an YNB agar plate, and the agar plate is incubated for 3-4 days at 30 ℃ to obtain the random assembled library of the promoter.
Primer sequences used in Table 3
Figure BDA0002759675000000051
Figure BDA0002759675000000061
Figure BDA0002759675000000071
Example 4: screening of promoter-optimized strains
2000 single colonies were picked at random from the randomly assembled library and cultured using 48 deep well plates: the colonies on the plate were automatically inoculated into a 48-deep well plate using an automated colony picking instrument QPix 420. 1.5mL YNB liquid medium was added to each well, and the final concentration of the medium was 250 mg.L -1 Naringenin. The deep well plate was transferred to a well plate shaker and incubated at 30 ℃ and 220rpm for 48 hours. The deep well plate was placed on a table for 2 hours to pellet the cells and the supernatant was available for high throughput screening.
High throughput detection method: after the strains in the random assembly library are fermented in a 48-deep-hole plate, 100 mu L of fermentation supernatant is automatically taken and transferred into a 96-shallow-hole enzyme label plate hole by using an automatic workstation equipped with an enzyme label instrument, and then 100 mu L of 4M KOH is added. After about 5min, the mixture turned purple, with the shade of purple being proportional to the concentration of eriodictyol, and the high producing strains could be directly screened visually. Automatically transferring the color-changing elisa plate to an elisa plate reader, detecting the light absorption value of the mixture at 550nm, and selecting the strains with high light absorption value to enter a shake flask for rescreening.
The detection method comprises the following steps: diluting the 48-deep-hole plate fermentation liquor by one time with methanol, shaking for 30s, mixing uniformly, centrifuging at 13500rpm for 5min, filtering, and detecting the yield of eriodictyol by using a high performance liquid phase. 250mL shake flask detection: mu.L of the fermentation medium was mixed with 900. mu.L of methanol, vortexed and shaken for 30s, centrifuged at 13500rpm for 5min and then filtered. The supernatant was filtered and prepared for HPLC analysis.
Samples were detected using an Agilent high performance liquid chromatography (Agilent 1100, US), C18 reverse phase chromatography column (4.6 mm. times.250 mm, Thermo), at a column temperature of 25 ℃. The mobile phase is methanol: water (41:59) and 3% o phosphoric acid. The flow rate is 1mL/min, the sample injection amount is 10 muL, and the detection wavelength is 290 nm.
Through promoter optimization, 10 strains with the highest yield are selected, and the eriodictyol yield accumulated at the level of a 48-deep-well plate is respectively 29.2mg/L, 29.9mg/L, 30.7mg/L, 30.8mg/L, 31.9mg/L, 33.0mg/L, 35.5mg/L, 36.6mg/L, 46.2mg/L and 51.8mg/L from low to high. Subsequent sequencing of the genotypes of the 10 strains, their genotypes and the corresponding promoter expression intensities are listed in figure 4. While the starting strain did not detect the formation of eriodictyol.
The 10 strains with the highest eriodictyol yield are selected for rescreening and sequencing, and 250mL shake flask rescreening is carried out: selecting a single colony, inoculating the single colony in a 250mL shake flask containing 20mL YNB liquid culture medium, culturing at 30 ℃ and 220rpm for 16-18h to obtain a seed culture medium; the seed medium was transferred at 2mL/100mL into a 250mL shake flask containing 20mL fresh YPD liquid medium, and the yield of eriodictyol was measured after culturing at 30 ℃ and 220rpm for 72 hours. At 0h, 12h, 24h and 36h, 375 mg. L are respectively added -1 Naringenin is added into YPD culture medium, and eriodictyol content is measured after fermentation.
The results of rescreening the two strains with the highest yield at the level of a 250mL shake flask show that the two strains can respectively accumulate 720.4mg/L and 805.6mg/L eriodictyol, and the yields are increased by 260.2 percent and 302.8 percent compared with the reported highest yield, the plasmids in the strains are pY26-P04 and pY26-P05 respectively, and the genotypes corresponding to pY26-P05 are pY26-P INO1 -SmF3′H-P TDH1 -SmCPR, pY26-P04 corresponds to the genotype pY26-P SED1 -SmF3′H-P TDH1 -SmCPR。
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
SEQUENCE LISTING
<110> university in south of the Yangtze river
<120> flavone 3 beta-hydroxylase of silybum marianum source and application of coenzyme thereof
<130> BAA201245A
<160> 24
<170> PatentIn version 3.3
<210> 1
<211> 1557
<212> DNA
<213> Silybum marianum
<400> 1
atgactatcc tacccctgct actctacgcc tccataactg gtttactaat ctatgtattg 60
cttaacctac gcaccacccc tcgttctaac cacctcccac tcccacccgg cccaacccca 120
tggccaatca tcggaaactt acctcatctt ggaagaatac cgcaccatgc gctggcggcc 180
atggctacaa agtacggccc gttgatgcat ctccggctcg gcgtcgttga cgtggtggtg 240
gcggcgtctg cgtcggtggc ggcacagttt ttgaaggttc atgacgccaa tttcgcgagt 300
aggccgccga actccggcgc gaaacacatc gcgtataatt atcaggatct ggtgtttgca 360
ccttatggtc agaaatggcg gatgcttagg aagatttgct ccgtgcatct gttctctaac 420
aaagcactcg atgatttccg tcacgttcgt caggaggagg tggcgattct ggtgcgcgct 480
ttggccggag ccggtcgatc tacggcggcg gcgttaggtc aactacttaa cgtttgcacc 540
acaaacgcgt tggcacgagt gatgttaggt cggagagtgt tcgtggacgg aagtgaaggc 600
aatcgagacg cggatgaatt caaggatatg gtggttgaag tgatggtatt ggccggagaa 660
ttcaacatcg gcgacttcat tccggcgctt gattggctgg atctgcaaag cgtgacgaag 720
aagatgaaga aactccatct ccgattcgat tcgtttctta acaaaatcct ggaagaccat 780
agaaatggag gtgacgtcac ttcgggtaac gtggatttgc tgagcacgtt gatttcgctc 840
aaggatgacg ccgatggaga gggcgggaag ctttcagata tcgaaatcaa agctttgctt 900
ctgaatttat tcactgcggg aacagacaca tcatctagta cggtggaatg ggcaatggct 960
gaactcattc gccatccgca attattgaag caagcccaag aagaattgga cactgttgtt 1020
ggtaaagacc ggcttgtatc cgaattggac ctgagtagac taacattcct cgaagccatt 1080
gtgaaggaaa ccttcaggct ccacccatcg accccactct ctttgccacg gattgcatca 1140
gagagctgtg aagtcgatgg gtattacatt cctaagggaa ccacacttct tgttaacgtg 1200
tgggccattg cccgagaccc aaaaatgtgg accgacccgc ttgaattccg acccacccgg 1260
ttcttgccgg gaggtgaaaa gccgaatgct aatgtaaagg gaaatgattt tgaaataata 1320
ccgtttgggg ctggtcgaag gatttgtgcg ggtatgagcc tagggttacg gatggttcag 1380
ttgctcactg cgactctggt tcatgccttt gattggaaat tggctaacgg gttagaccca 1440
gagaagctca atatggaaga agcttatggg ttgacccttc aaagggctgc acccttgatg 1500
gtgcacccaa ccccacggtt agctccccat ttgtatgaaa gcagtcaagg tttataa 1557
<210> 2
<211> 518
<212> PRT
<213> Silybum marianum
<400> 2
Met Thr Ile Leu Pro Leu Leu Leu Tyr Ala Ser Ile Thr Gly Leu Leu
1 5 10 15
Ile Tyr Val Leu Leu Asn Leu Arg Thr Thr Pro Arg Ser Asn His Leu
20 25 30
Pro Leu Pro Pro Gly Pro Thr Pro Trp Pro Ile Ile Gly Asn Leu Pro
35 40 45
His Leu Gly Arg Ile Pro His His Ala Leu Ala Ala Met Ala Thr Lys
50 55 60
Tyr Gly Pro Leu Met His Leu Arg Leu Gly Val Val Asp Val Val Val
65 70 75 80
Ala Ala Ser Ala Ser Val Ala Ala Gln Phe Leu Lys Val His Asp Ala
85 90 95
Asn Phe Ala Ser Arg Pro Pro Asn Ser Gly Ala Lys His Ile Ala Tyr
100 105 110
Asn Tyr Gln Asp Leu Val Phe Ala Pro Tyr Gly Gln Lys Trp Arg Met
115 120 125
Leu Arg Lys Ile Cys Ser Val His Leu Phe Ser Asn Lys Ala Leu Asp
130 135 140
Asp Phe Arg His Val Arg Gln Glu Glu Val Ala Ile Leu Val Arg Ala
145 150 155 160
Leu Ala Gly Ala Gly Arg Ser Thr Ala Ala Ala Leu Gly Gln Leu Leu
165 170 175
Asn Val Cys Thr Thr Asn Ala Leu Ala Arg Val Met Leu Gly Arg Arg
180 185 190
Val Phe Val Asp Gly Ser Glu Gly Asn Arg Asp Ala Asp Glu Phe Lys
195 200 205
Asp Met Val Val Glu Val Met Val Leu Ala Gly Glu Phe Asn Ile Gly
210 215 220
Asp Phe Ile Pro Ala Leu Asp Trp Leu Asp Leu Gln Ser Val Thr Lys
225 230 235 240
Lys Met Lys Lys Leu His Leu Arg Phe Asp Ser Phe Leu Asn Lys Ile
245 250 255
Leu Glu Asp His Arg Asn Gly Gly Asp Val Thr Ser Gly Asn Val Asp
260 265 270
Leu Leu Ser Thr Leu Ile Ser Leu Lys Asp Asp Ala Asp Gly Glu Gly
275 280 285
Gly Lys Leu Ser Asp Ile Glu Ile Lys Ala Leu Leu Leu Asn Leu Phe
290 295 300
Thr Ala Gly Thr Asp Thr Ser Ser Ser Thr Val Glu Trp Ala Met Ala
305 310 315 320
Glu Leu Ile Arg His Pro Gln Leu Leu Lys Gln Ala Gln Glu Glu Leu
325 330 335
Asp Thr Val Val Gly Lys Asp Arg Leu Val Ser Glu Leu Asp Leu Ser
340 345 350
Arg Leu Thr Phe Leu Glu Ala Ile Val Lys Glu Thr Phe Arg Leu His
355 360 365
Pro Ser Thr Pro Leu Ser Leu Pro Arg Ile Ala Ser Glu Ser Cys Glu
370 375 380
Val Asp Gly Tyr Tyr Ile Pro Lys Gly Thr Thr Leu Leu Val Asn Val
385 390 395 400
Trp Ala Ile Ala Arg Asp Pro Lys Met Trp Thr Asp Pro Leu Glu Phe
405 410 415
Arg Pro Thr Arg Phe Leu Pro Gly Gly Glu Lys Pro Asn Ala Asn Val
420 425 430
Lys Gly Asn Asp Phe Glu Ile Ile Pro Phe Gly Ala Gly Arg Arg Ile
435 440 445
Cys Ala Gly Met Ser Leu Gly Leu Arg Met Val Gln Leu Leu Thr Ala
450 455 460
Thr Leu Val His Ala Phe Asp Trp Lys Leu Ala Asn Gly Leu Asp Pro
465 470 475 480
Glu Lys Leu Asn Met Glu Glu Ala Tyr Gly Leu Thr Leu Gln Arg Ala
485 490 495
Ala Pro Leu Met Val His Pro Thr Pro Arg Leu Ala Pro His Leu Tyr
500 505 510
Glu Ser Ser Gln Gly Leu
515
<210> 3
<211> 2133
<212> DNA
<213> Silybum marianum
<400> 3
atgcaatcgg actcgtctct ggaaacgtcg tcgtttgatt tgattaccgc agctcttaag 60
gagaaagtta ttgatacagc aaacgcatct gatagtggag attcaacgat gcctccggct 120
ttggcgatga ttttggaaaa ccgtgagctg tttatgatgc tgactacaac agtggctctt 180
ttgcttggat ttattgtcgt ttcgttctgg aagagatctt ctgagaagaa gtcggctaag 240
gatttggagc taccgaagat cgttgtgcct aagagacagc aggaacagga ggttgatgac 300
ggtaagaaga aggttacgat tctttttgga acgcagaccg gaacggcgga aggtttcgct 360
aaggcactgt tggaagaagc taaagcgcga tatgaaaagg cgacctttaa agtagtcgat 420
ttggatgatt atgctgttga tgatgatgag tacgaagaga aactaaagaa ggagtcattt 480
gctttcttct tcttggctac atatggagat ggtgagccaa ctgataatgc tgccagattt 540
tataaatggt ttacagaggg aggtgagaaa ggagtttggc ttgaaaagct tcaatatgga 600
gtatttggcc ttggcaatag acaatacgag catttcaaca agattgcaaa agaggttgac 660
gatggtctcg cagagcaggg tgcaaagcgc cttgttccag ttggccttgg agatgatgat 720
caatccattg aagatgattt tactgcatgg aaagagttag tgtggcctga gttggatgaa 780
ttgcttcgtg acgaggatga caaaggcgtt gctactcctt acacagctgc tattccggaa 840
taccgagttg tgtttcatga gaaacatgat acatctgctg aagatcaaat tcagacaaat 900
ggtcatgctg ttcatgatgc tcaacatcca tgcagatcca atgtggctgt taaaaaggag 960
ctccataccc ctgaatctga tcgctcttgc acgcatctgg aatttgacat ctcacacact 1020
ggactatcat acgaaactgg ggaccatgtt ggtgtctact gtgagaactt aagtgaagtt 1080
gtggaggagg ctgagaggtt aataggttta ccatcggata cttatttctc agttcacacg 1140
gataacgaag atggaacacc acttggtgga gcttccttac tacctccttt ccctccatgc 1200
actttaagaa aagcattggc taattacgca gatgtattga cttctcccaa aaagtcggcc 1260
ttgattgctc tagctgctca tgcttctgat cctactgaag ctgaacgact aaaatttctt 1320
gcatctcctg ctgggaagga tgaatattct caatggatta ttgcaagcca aagaagcctg 1380
cttgaggtca tggaagcttt cccatcggct aagcctccac ttggggtttt ctttgcagct 1440
attgctccac gcttacagcc tcgatactac tctatttctt cctccccgaa gatggcacct 1500
agcaggattc atgttacttg tgcattagtt tatgagaaaa cacctgcagg ccgtctccat 1560
aaaggaatct gttcaacctg gatgaagaat gctgtgccta tgacggaaag tcaggattgc 1620
agctgggcac ctattttcgt tagaacgtct aacttcagac ttcccactga tcctaaagtt 1680
cctgttatca tgattggccc tggaaccgga ttggctccgt tcagaggttt tcttcaagaa 1740
agattagctc tgaaggaagc cggaactgaa ctgggatcat ccattttatt cttcggatgt 1800
agaaatcgca aagtggattt catatatgag aatgaactga aagactttgt tgagaatggt 1860
gctgtttccg agcttattgt tgccttctcc cgtgaaggcc ccaataagga atatgtgcaa 1920
cataaaatga gcgatagggc ttcggatcta tggaacttgc tttcggaggg agcatattta 1980
tacgtttgtg gtgatgccaa aggcatggct aaagatgtac accggaccct tcacacaatt 2040
gtgcaagaac agggatctct agactcgtca aaggcagagc tgtatgtgaa gaatctacaa 2100
atgtcaggaa gatacctccg tgatgtttgg tag 2133
<210> 4
<211> 710
<212> PRT
<213> Silybum marianum
<400> 4
Met Gln Ser Asp Ser Ser Leu Glu Thr Ser Ser Phe Asp Leu Ile Thr
1 5 10 15
Ala Ala Leu Lys Glu Lys Val Ile Asp Thr Ala Asn Ala Ser Asp Ser
20 25 30
Gly Asp Ser Thr Met Pro Pro Ala Leu Ala Met Ile Leu Glu Asn Arg
35 40 45
Glu Leu Phe Met Met Leu Thr Thr Thr Val Ala Leu Leu Leu Gly Phe
50 55 60
Ile Val Val Ser Phe Trp Lys Arg Ser Ser Glu Lys Lys Ser Ala Lys
65 70 75 80
Asp Leu Glu Leu Pro Lys Ile Val Val Pro Lys Arg Gln Gln Glu Gln
85 90 95
Glu Val Asp Asp Gly Lys Lys Lys Val Thr Ile Leu Phe Gly Thr Gln
100 105 110
Thr Gly Thr Ala Glu Gly Phe Ala Lys Ala Leu Leu Glu Glu Ala Lys
115 120 125
Ala Arg Tyr Glu Lys Ala Thr Phe Lys Val Val Asp Leu Asp Asp Tyr
130 135 140
Ala Val Asp Asp Asp Glu Tyr Glu Glu Lys Leu Lys Lys Glu Ser Phe
145 150 155 160
Ala Phe Phe Phe Leu Ala Thr Tyr Gly Asp Gly Glu Pro Thr Asp Asn
165 170 175
Ala Ala Arg Phe Tyr Lys Trp Phe Thr Glu Gly Gly Glu Lys Gly Val
180 185 190
Trp Leu Glu Lys Leu Gln Tyr Gly Val Phe Gly Leu Gly Asn Arg Gln
195 200 205
Tyr Glu His Phe Asn Lys Ile Ala Lys Glu Val Asp Asp Gly Leu Ala
210 215 220
Glu Gln Gly Ala Lys Arg Leu Val Pro Val Gly Leu Gly Asp Asp Asp
225 230 235 240
Gln Ser Ile Glu Asp Asp Phe Thr Ala Trp Lys Glu Leu Val Trp Pro
245 250 255
Glu Leu Asp Glu Leu Leu Arg Asp Glu Asp Asp Lys Gly Val Ala Thr
260 265 270
Pro Tyr Thr Ala Ala Ile Pro Glu Tyr Arg Val Val Phe His Glu Lys
275 280 285
His Asp Thr Ser Ala Glu Asp Gln Ile Gln Thr Asn Gly His Ala Val
290 295 300
His Asp Ala Gln His Pro Cys Arg Ser Asn Val Ala Val Lys Lys Glu
305 310 315 320
Leu His Thr Pro Glu Ser Asp Arg Ser Cys Thr His Leu Glu Phe Asp
325 330 335
Ile Ser His Thr Gly Leu Ser Tyr Glu Thr Gly Asp His Val Gly Val
340 345 350
Tyr Cys Glu Asn Leu Ser Glu Val Val Glu Glu Ala Glu Arg Leu Ile
355 360 365
Gly Leu Pro Ser Asp Thr Tyr Phe Ser Val His Thr Asp Asn Glu Asp
370 375 380
Gly Thr Pro Leu Gly Gly Ala Ser Leu Leu Pro Pro Phe Pro Pro Cys
385 390 395 400
Thr Leu Arg Lys Ala Leu Ala Asn Tyr Ala Asp Val Leu Thr Ser Pro
405 410 415
Lys Lys Ser Ala Leu Ile Ala Leu Ala Ala His Ala Ser Asp Pro Thr
420 425 430
Glu Ala Glu Arg Leu Lys Phe Leu Ala Ser Pro Ala Gly Lys Asp Glu
435 440 445
Tyr Ser Gln Trp Ile Ile Ala Ser Gln Arg Ser Leu Leu Glu Val Met
450 455 460
Glu Ala Phe Pro Ser Ala Lys Pro Pro Leu Gly Val Phe Phe Ala Ala
465 470 475 480
Ile Ala Pro Arg Leu Gln Pro Arg Tyr Tyr Ser Ile Ser Ser Ser Pro
485 490 495
Lys Met Ala Pro Ser Arg Ile His Val Thr Cys Ala Leu Val Tyr Glu
500 505 510
Lys Thr Pro Ala Gly Arg Leu His Lys Gly Ile Cys Ser Thr Trp Met
515 520 525
Lys Asn Ala Val Pro Met Thr Glu Ser Gln Asp Cys Ser Trp Ala Pro
530 535 540
Ile Phe Val Arg Thr Ser Asn Phe Arg Leu Pro Thr Asp Pro Lys Val
545 550 555 560
Pro Val Ile Met Ile Gly Pro Gly Thr Gly Leu Ala Pro Phe Arg Gly
565 570 575
Phe Leu Gln Glu Arg Leu Ala Leu Lys Glu Ala Gly Thr Glu Leu Gly
580 585 590
Ser Ser Ile Leu Phe Phe Gly Cys Arg Asn Arg Lys Val Asp Phe Ile
595 600 605
Tyr Glu Asn Glu Leu Lys Asp Phe Val Glu Asn Gly Ala Val Ser Glu
610 615 620
Leu Ile Val Ala Phe Ser Arg Glu Gly Pro Asn Lys Glu Tyr Val Gln
625 630 635 640
His Lys Met Ser Asp Arg Ala Ser Asp Leu Trp Asn Leu Leu Ser Glu
645 650 655
Gly Ala Tyr Leu Tyr Val Cys Gly Asp Ala Lys Gly Met Ala Lys Asp
660 665 670
Val His Arg Thr Leu His Thr Ile Val Gln Glu Gln Gly Ser Leu Asp
675 680 685
Ser Ser Lys Ala Glu Leu Tyr Val Lys Asn Leu Gln Met Ser Gly Arg
690 695 700
Tyr Leu Arg Asp Val Trp
705 710
<210> 5
<211> 510
<212> DNA
<213> Artificial sequence
<400> 5
gaagacgatg aggccggtgc cgatgtgccc ttgatggaca acaaacaaca gctctcttcc 60
ggccgtactt agtgatcgga acgagctctt tatcaccgta gttctaaata acacatagag 120
taaattattg cctttttctt cgttcctttt gttcttcacg tcctttttat gaaatacgtg 180
ccggtgttcc ggggttggat gcggaatcga aagtgttgaa tgtgaaatat gcggaggcca 240
agtatgcgct tcggcggcta aatgcggcat gtgaaaagta ttgtctattt tatcttcatc 300
cttctttccc agaatattga acttatttaa ttcacatgga gcagagaaag cgcacctctg 360
cgttggcggc aatgttaatt tgagacgtat ataaattgga gctttcgtca cctttttttg 420
gcttgttctg ttgtcgggtt cctaatgtta gttttatcct tgatttattc tgtttcattc 480
cctttttttt ccagtgaaaa agaagtaaca 510
<210> 6
<211> 550
<212> DNA
<213> Artificial sequence
<400> 6
ctaccttcca tacaccactg attgctccac gtcatgcggc cttctttcga ggacaaaaag 60
gcatatatcg ctaaaattag ccatcagaac cgttattgtt attatatttt cattacgaaa 120
gaggagaggg cccagcgcgc cagagcacac acggtcattg attactttat ttggctaaag 180
atccatccct tctcgatgtc atctctttcc attcttgtgt atttttgatt gaaaatgatt 240
ttttgtccac taatttctaa aaataagaca aaaagccttt aagcagtttt tcatccattt 300
tactacggta aaatgaatta gtacggtatg gctcccagtc gcattatttt tagattggcc 360
gtaggggctg gggtagaact agagtaagga acattgctct gccctctttt gaactgtcat 420
ataaatacct gacctatttt attctccatt atcgtattat ctcacctctc tttttctatt 480
ctcttgtaat tattgattta tagtcgtaac tacaaagaca agcaaaataa aatacgttcg 540
ctctattaag 550
<210> 7
<211> 623
<212> DNA
<213> Artificial sequence
<400> 7
acccaaatgg actgattgtg agggagacct aactacatag tgtttaaaga ttacggatat 60
ttaacttact tagaataatg ccattttttt gagttataat aatcctacgt tagtgtgagc 120
gggatttaaa ctgtgaggac cttaatacat tcagacactt ctgcggtatc accctactta 180
ttcccttcga gattatatct aggaacccat caggttggtg gaagattacc cgttctaaga 240
cttttcagct tcctctattg atgttacacc tggacacccc ttttctggca tccagttttt 300
aatcttcagt ggcatgtgag attctccgaa attaattaaa gcaatcacac aattctctcg 360
gataccacct cggttgaaac tgacaggtgg tttgttacgc atgctaatgc aaaggagcct 420
atataccttt ggctcggctg ctgtaacagg gaatataaag ggcagcataa tttaggagtt 480
tagtgaactt gcaacattta ctattttccc ttcttacgta aatatttttc tttttaattc 540
taaatcaatc tttttcaatt ttttgtttgt attcttttct tgcttaaatc tataactaca 600
aaaaacacat acataaacta aaa 623
<210> 8
<211> 580
<212> DNA
<213> Artificial sequence
<400> 8
catgaaccag ggtcccgcac tccgggtaaa ggaccatcac gccacatcac gtgcacatta 60
ctagtaaaag ccacaggaaa tatttcacgt gacttacaaa cagagtcgta cgtcaggacc 120
ggagtcaggt gaaaaaatgt gggccggtaa agggaaaaaa ccagaaacgg gactactatc 180
gaactcgttt agtcgcgaac gtgcaaaagg ccaatatttt tcgctagagt catcgcagtc 240
atggcagctc tttcgctcta tctcccggtc gcaaaactgt ggtagtcata gctcgttctg 300
ctcaattgag aactgtgaat gtgaatatgg aacaaatgcg atagatgcac taatttaagg 360
gaagctagct agttttccca actgcgaaag aaaaaaagga aagaaaaaaa aattctatat 420
aagtgataga tatttccatc tttactagca ttagtttctc ttttacgtat tcaatatttt 480
tgttaaactc ttcctttatc ataaaaaagc aagcatctaa gagcattgac aacactctaa 540
gaaacaaaat accaatataa tttcaaagta catatcaaaa 580
<210> 9
<211> 543
<212> DNA
<213> Artificial sequence
<400> 9
gttgtcgttg ttgtcccagc cgttgtcaaa acgcgttaat tccaactatt ttctatattt 60
ctattctatc cgaactcccc ttttgtatat caatatatct taatactttc gcctattctt 120
tactatattt cctaaatttt ctctggtctg caggccaaaa acaacaactt actactgaat 180
catggacgtg tatttagttt agccaagcaa tatttaaata tcactcttcc taaaaataca 240
ttgggcatta cccgcaaact aacccatcgc ttagcaaaat ccaaccattt tttttttatc 300
tcccgcgttt tcacatgcta cctcattcgc ctcgtaacgt tacgaccgaa atctcactaa 360
ggcacggttt gttgggcagt ttacagatgt tggataacca gttgtttcta aacggttatg 420
cctcatatat aacttgttaa ctgaaggtta cacaagacca catcaccact gtcgtgcttt 480
tctaataacc gctatattag acgtttaaag ggctacagca acaccaattg aaataccatc 540
att 543
<210> 10
<211> 668
<212> DNA
<213> Artificial sequence
<400> 10
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcattac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctcgt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaattaac 420
gaatcaaatt aacaaccata ggatgataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat ggaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcagtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactata 668
<210> 11
<211> 544
<212> DNA
<213> Artificial sequence
<400> 11
tcctgtactt ccttgttcat gtgtgttcaa aaacgttata tttataggat aattatactc 60
tatttctcaa caagtaattg gttgtttggc cgagcggtct aaggcgcctg attcaagaaa 120
tatcttgacc gcagttaact gtgggaatac tcaggtatcg taagatgcaa gagttcgaat 180
ctcttagcaa ccattatttt tttcctcaac ataacgagaa cacacagggg cgctatcgca 240
cagaatcaaa ttcgatgact ggaaattttt tgttaatttc agaggtcgcc tgacgcatat 300
acctttttca actgaaaaat tgggagaaaa aggaaaggtg agagcgccgg aaccggcttt 360
tcatatagaa tagagaagcg ttcatgacta aatgcttgca tcacaatact tgaagttgac 420
aatattattt aaggacctat tgttttttcc aataggtggt tagcaatcgt cttactttct 480
aacttttctt accttttaca tttcagcaat atatatatat atatttcaag gatataccat 540
tcta 544
<210> 12
<211> 600
<212> DNA
<213> Artificial sequence
<400> 12
gccgtcgaaa aggatctcgt ctctgttggg agcacctggt aagtaaggtg tagttttgca 60
cccgtgtaca taagcgtgaa atcaccacaa actgtgtgta tcaagtacat agtgacattt 120
aaataatagc aagaacaaca ataatagtag cgctactgga agcaccacgt aatagtggaa 180
aagaactgga aaaaccgcta taagatgcat actccggcgg tcttacgcgg agatacaagc 240
ttccaacggt gctaaaagcc cggtttcggc tcggccggag gaggaagaga gacgaaaaaa 300
aaaaaaatga ctaaaaaaaa aatggaatat tattaatgtg ggatttttgg ctcaaggtgt 360
ggtggcccct tttctaaggg tggcgaattc ttcaatgtac ggaaaactcg ccaaggctat 420
cccatatata agcaaactgt gggttcatct atataccgac acataacacc taaagtggct 480
tcctcctgcc cctctctccc ttttctccac tcacccctcc ttctccccct tccccctctc 540
caattggctg tatagacaga aagagtaaat ccaatagaat agaaaaccac ataaggcaag 600
<210> 13
<211> 520
<212> DNA
<213> Artificial sequence
<400> 13
tggattacat ttgattcagt catacacgaa ttatggtctt gatactgaca aattttccag 60
attgaggcgg ttcttatggt ttagaacttg gggactttac aagtcgaaag aggatttaga 120
tagagaagcc aagatcaatg aagaaatgat acgcaaactg aaagcagcta aatgaaatca 180
cctattgcgc cgctcgcgga atacaattac taaattttat atatattctt taaaaatgca 240
tctatacatt cgtttttcca cgtataccaa attcgaaaaa agttgttaaa ccatcgtttt 300
cacgtttttt aatttttttt tggttctctt tttttttttt tttcaatatc aacttttttt 360
caaacttcgt gttgcatttc ctttatcgta aattttcaat ggatctctat aatcttcgaa 420
gttcgaagaa aagaagaaaa aaagtattga aaagttgaaa catcgattcc gttttgctaa 480
caaatagcac tcagcatcct gcataaaatt ggtataagat 520
<210> 14
<211> 553
<212> DNA
<213> Artificial sequence
<400> 14
ggtccgcaca gacgatgcca gacggtgttt tatcgaaaat ttttttcgca tcatagtgcc 60
atttgtggtc attattattc cccaaatatg cgaaaatagt acactatttt tggcaggaga 120
gtaggctgat atgccgcatt gatgtcctgt gtagcgaaac acaaacaaaa aaagaaaaag 180
taggatgaaa aaaagaaaag taatatgaaa aaagagtgaa aaattaattc atttgttagt 240
gtaagcggtc aggtgtaagt agtaggcttg ataatgaatt aaagatgact ccgacgcata 300
ttgtttgcca tgtttttatt ttagtttgta gatttctttt tttgtaatat ataagggagt 360
gattctatat atcgaattct caggcttggt tggttcgtag gttgttctgt ctttgttttc 420
gttaggtaag aacatcacac aaagataact atagaatcac atacatattt gtgagaaatt 480
aacttcattt catttataga agaagttcaa ccgaaacaaa aattaaacat aatataatat 540
aatataatca aaa 553
<210> 15
<211> 530
<212> DNA
<213> Artificial sequence
<400> 15
gaaaccacac cgtggggcct tgttgcgcta ggaataggat atgcgacgaa gacgcttctg 60
cttagtaacc acaccacatt ttcagggggt cgatctgctt gcttccttta ctgtcacgag 120
cggcccataa tcgcgctttt tttttaaaag gcgcgagaca gcaaacagga agctcgggtt 180
tcaaccttcg gagtggtcgc agatctggag actggatctt tacaatacag taaggcaagc 240
caccatctgc ttcttaggtg catgcgacgg tatccacgtg cagaacaaca tagtctgaag 300
aaggggggga ggagcatgtt cattctctgt agcagtaaga gcttggtgat aatgaccaaa 360
actggagtct cgaaatcata taaatagaca atatattttc acacaatgag atttgtagta 420
cagttctatt ctctctcttg cataaataag aaattcatca agaacttggt ttgatatttc 480
accaacacac acaaaaaaca gtacttcact aaatttacac acaaaacaaa 530
<210> 16
<211> 700
<212> DNA
<213> Artificial sequence
<400> 16
gtgagtaagg aaagagtgag gaactatcgc atacctgcat ttaaagatgc cgatttgggc 60
gcgaatcctt tattttggct tcaccctcat actattatca gggccagaaa aaggaagtgt 120
ttccctcctt cttgaattga tgttaccctc ataaagcacg tggcctctta tcgagaaaga 180
aattaccgtc gctcgtgatt tgtttgcaaa aagaacaaaa ctgaaaaaac ccagacacgc 240
tcgacttcct gtcttcctat tgattgcagc ttccaatttc gtcacacaac aaggtcctag 300
cgacggctca caggttttgt aacaagcaat cgaaggttct ggaatggcgg gaaagggttt 360
agtaccacat gctatgatgc ccactgtgat ctccagagca aagttcgttc gatcgtactg 420
ttactctctc tctttcaaac agaattgtcc gaatcgtgtg acaacaacag cctgttctca 480
cacactcttt tcttctaacc aagggggtgg tttagtttag tagaacctcg tgaaacttac 540
atttacatat atataaactt gcataaattg gtcaatgcaa gaaatacata tttggtcttt 600
tctaattcgt agtttttcaa gttcttagat gctttctttt tctctttttt acagatcatc 660
aaggaagtaa ttatctactt tttacaacaa atataaaaca 700
<210> 17
<211> 698
<212> DNA
<213> Artificial sequence
<400> 17
ataaaaaaca cgctttttca gttcgagttt atcattatca atactgccat ttcaaagaat 60
acgtaaataa ttaatagtag tgattttcct aactttattt agtcaaaaaa ttagcctttt 120
aattctgctg taacccgtac atgcccaaaa tagggggcgg gttacacaga atatataaca 180
tcgtaggtgt ctgggtgaac agtttattcc tggcatccac taaatataat ggagcccgct 240
ttttaagctg gcatccagaa aaaaaaagaa tcccagcacc aaaatattgt tttcttcacc 300
aaccatcagt tcataggtcc attctcttag cgcaactaca gagaacaggg gcacaaacag 360
gcaaaaaacg ggcacaacct caatggagtg atgcaacctg cctggagtaa atgatgacac 420
aaggcaattg acccacgcat gtatctatct cattttctta caccttctat taccttctgc 480
tctctctgat ttggaaaaag ctgaaaaaaa aggttgaaac cagttccctg aaattattcc 540
cctacttgac taataagtat ataaagacgg taggtattga ttgtaattct gtaaatctat 600
ttcttaaact tcttaaattc tacttttata gttagtcttt tttttagttt taaaacacca 660
agaacttagt ttcgaataaa cacacataaa caaacaaa 698
<210> 18
<211> 530
<212> DNA
<213> Artificial sequence
<400> 18
gaaaccacac cgtggggcct tgttgcgcta ggaataggat atgcgacgaa gacgcttctg 60
cttagtaacc acaccacatt ttcagggggt cgatctgctt gcttccttta ctgtcacgag 120
cggcccataa tcgcgctttt tttttaaaag gcgcgagaca gcaaacagga agctcgggtt 180
tcaaccttcg gagtggtcgc agatctggag actggatctt tacaatacag taaggcaagc 240
caccatctgc ttcttaggtg catgcgacgg tatccacgtg cagaacaaca tagtctgaag 300
aaggggggga ggagcatgtt cattctctgt agcagtaaga gcttggtgat aatgaccaaa 360
actggagtct cgaaatcata taaatagaca atatattttc acacaatgag atttgtagta 420
cagttctatt ctctctcttg cataaataag aaattcatca agaacttggt ttgatatttc 480
accaacacac acaaaaaaca gtacttcact aaatttacac acaaaacaaa 530
<210> 19
<211> 807
<212> DNA
<213> Artificial sequence
<400> 19
acgcacgtag gcgcatactt ctatcatacg tagaaaagcg tttcccagag gttatgatgt 60
tggaaaaata gcttcattga acattttagc attagtggga agaattcctc atgttactta 120
tgagggagtt aattttcctt agggatttta ggaatttcta tacggaggta gcgatcgacc 180
ttagaacttt tatttagttt gtacatatac ctcacctgag ttttgctttt ttctctggga 240
gcctaaacca tttaaaatga tatataatag ataataaatc caggataaaa tgtggctaat 300
tgatcttttt tcattttcaa cttggtaatg acgtactgga tactttcgac gctctttttt 360
agtccccgat ccccgtcttc caggaccttg acgtggaatt ccgatcacag ccactctcgt 420
cacggctccg ttaaaatgaa tggttttccg ttacatttac tggtcttttt atctttttac 480
agtaaatggg tgatatactg tgacacaatt tgtgtctcta ctgtgtgaac ttccattgct 540
gactaaagat tccccgctcc gcttatatgt ccggtccgtc cttgaccgaa gatcacattg 600
ccaatttttc acatctggaa gcgatacgac aatataggag aaaaagaaaa gtgaaaggca 660
aaaaagcacc aacagttctc gaggtgaagt gccgtcaatc ttctgtataa attcggccaa 720
ttcaatctaa tttaatagat ttgcgacaga ctttcacatc cacattcgag gaagaaattc 780
aacacaacaa caagaaaagc caaaatc 807
<210> 20
<211> 668
<212> DNA
<213> Artificial sequence
<400> 20
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 60
ttttatgaca tttgaataag aagtaataca aactgaaaat gttgaaagta ttagttaaag 120
tggttatgca gcttttccat ttatatatct gttaatagat caaaaatcat cgcttcgctg 180
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tatcatccta tggttgttaa 240
tttgattcgt taatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 300
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 360
ctgcgtttca ggaacgcgac cggtgaagac gaggacgcac ggaggagagt cttccgtcgg 420
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 480
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 540
catttccaca acatataagt aagattagat atggatatgt atatggtggt aatgccatgt 600
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 660
caatataa 668
<210> 21
<211> 689
<212> DNA
<213> Artificial sequence
<400> 21
ctagtaacgc cgtatcgtga ttaacgtatt acataagtta caggattcat gcttatgggt 60
tagctatttc gcccaatgtg tccatctgac attactattt tgcattttaa tttaattaga 120
acttgactag cgcactacca gtatatcatc tcatttccgt aaataccaaa tgtattatat 180
attgaaagct tttgaccagg ttattataaa agaaacttca tgctcgaaaa agatcatttc 240
gaaaagttgc ctagtttcat gaaattttaa agcagtttat ataaatttta ccttttgatg 300
cggaattgac tttttcttga ataatacata acttttctta aaagaatcaa agacagataa 360
aatttaagag atattaaata ttagtgagaa gccgagaatt ttgtaacacc aacataacac 420
tgacatcttt aacaactttt aattatgata catttcttac gtcatgattg attattacag 480
ctatgctgac aaatgactct tgttgcatgg ctacgaaccg ggtaatacta agtgattgac 540
tcttgctgac cttttattaa gaactaaatg gacaatatta tggagcattt catgtataaa 600
ttggtgcgta aaatcgttgg atctctcttc taagtacatc ctactataac aatcaagaaa 660
aacaagaaaa tcggacaaaa caatcaagt 689
<210> 22
<211> 545
<212> DNA
<213> Artificial sequence
<400> 22
ccctcgttca cagaaagtct gaagaagcta tagtagaact atgagctttt tttgtttctg 60
ttttcctttt tttttttttt acctctgtgg aaattgttac tctcacactc tttagttcgt 120
ttgtttgttt tgtttattcc aattatgacc ggtgacgaaa cgtggtcgat ggtgggtacc 180
gcttatgctc ccctccatta gtttcgatta tataaaaagg ccaaatattg tattattttc 240
aaatgtccta tcattatcgt ctaacatcta atttctctta aattttttct ctttctttcc 300
tataacacca atagtgaaaa tctttttttc ttctatatct acaaaaactt tttttttcta 360
tcaacctcgt tgataaattt tttctttaac aatcgttaat aattaattaa ttggaaaata 420
accatttttt ctctctttta tacacacatt caaaagaaag aaaaaaaata taccccagct 480
agttaaagaa aatcattgaa aagaataaga agataagaaa gatttaatta tcaaacaata 540
tcaat 545
<210> 23
<211> 508
<212> DNA
<213> Artificial sequence
<400> 23
ctgaacgtat cgagactcgg ttgtgtcgtt atgctagcaa tgtcctcaca ggctccattc 60
cttctttcgc tctattggat atcatcacag ctattctccc tggtgcaaaa tatcatatta 120
aattggattt atccttacca acgatggtga agctgacgca tagataggat atgtaattct 180
acatcagctt gtaaataaac aaaaatgact ttcaatatcc ttcaaccgtt cctgactctt 240
tcctgctgac ccgtttttcc aaatttctcg tcgaacttga aattgaaaaa aaaaaaaaaa 300
aattgaatga ggactcatta aacagatgat gccgtaataa atgcaatata tcttgctatt 360
taactctttc tttctttgaa aaccttgaca tacgtattta aataattggc tgtccctgcc 420
tcgaagtata tttctcttct acttttatct tagcgatatc cctaagagtt taatcctccc 480
aggtccataa caaaagaagt caagttca 508
<210> 24
<211> 520
<212> DNA
<213> Artificial sequence
<400> 24
cttgaagcag gagaacagct cagtgcagat gaggaagttt cgtccagcgc aaataaaata 60
gtgaatgtag gtgttttatg gaataaagac acgaataatg acttactaat tgttgaaaat 120
tatctcaaaa gcctcaaaaa aaatttaact agagacaggt agaaaattat tcaaaccttg 180
taaatagtgt tatatatatg tgttagactt aaaagcgcta ataaacgttc ctgctcgcat 240
ttaacttctg ttccaatttt cctatttttt agttagcttg ttcggcagat ttcaaattca 300
ttgagtccga ggaaacaaaa ggatgggaag agctcaaaat ttggagatgg gtttcatata 360
caacacgttg gttagcaaga acctaaggat ccgtctatag aaagaacctc gaaaaatctt 420
cgaaagattt tgttgactga gagtggaaaa aactgatatt actttctcgg tatagagggc 480
aacatttgca aaaagtaata aacaaatagg ggagcacaat 520

Claims (10)

1. A microbial cell expressing flavone 3 β -hydroxylase and/or a flavone 3 β -hydroxylase coenzyme, wherein the flavone 3 β -hydroxylase has the amino acid sequence shown in SEQ ID No. 2; the amino acid sequence of the flavone 3 beta-hydroxylase coenzyme is shown in SEQ ID NO. 4.
2. The microbial cell of claim 1, wherein promoter P is used INO1 、P SED1 、P FAS2 、P GAL1 Or P LEU2 The expression of flavone 3 beta-hydroxylase is promoted, and the promoters are respectively shown as SEQ ID NO.5, SEQ ID NO.6, SEQ ID NO.9, SEQ ID NO.10 and SEQ ID NO. 11.
3. The microbial cell of claim 1, wherein the microbial cell is selected from the group consisting ofUsing the promoter P TDH1 、P PGK1 、P ADH6 、P GAL10 、P ADE2 Or P ADE6 Promoting the expression of the coenzyme of the flavone 3 beta-hydroxylase, wherein the promoters are respectively shown as SEQ ID NO.15, SEQ ID NO.16, SEQ ID NO.19, SEQ ID NO.20, SEQ ID NO.21 and SEQ ID NO. 23.
4. The microbial cell of claim 1, wherein the microbial cell is a prokaryotic or eukaryotic cell.
5. Use of the microbial cell of any one of claims 1-4 for the production of eriodictyol, wherein said microbial cell expresses both said flavone 3 β -hydroxylase and said flavone 3 β -hydroxylase co-enzymes.
6. Use according to claim 5, wherein the microbial cells are added to the reaction system.
7. The use of claim 6, characterized by naringenin as a substrate.
8. A method for whole-cell catalytic production of eriodictyol, characterized in that the microbial cells of any one of claims 1 to 4 are added to a reaction system, and the microbial cells express both the flavone 3 β -hydroxylase and the flavone 3 β -hydroxylase coenzyme.
9. The method as claimed in claim 8, wherein the seed solution is obtained by culturing at 25-35 ℃ and 200-250rpm for 16-18h, and the seed solution is added to the reaction system in an amount of 1-5mL/100 mL.
10. Use of the method of claim 8 or 9 for the production of eriodictyol or products starting from eriodictyol.
CN202011213885.5A 2020-11-04 2020-11-04 Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof Active CN112391300B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011213885.5A CN112391300B (en) 2020-11-04 2020-11-04 Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011213885.5A CN112391300B (en) 2020-11-04 2020-11-04 Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof

Publications (2)

Publication Number Publication Date
CN112391300A CN112391300A (en) 2021-02-23
CN112391300B true CN112391300B (en) 2022-08-23

Family

ID=74598141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011213885.5A Active CN112391300B (en) 2020-11-04 2020-11-04 Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof

Country Status (1)

Country Link
CN (1) CN112391300B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391360B (en) * 2020-11-04 2022-09-06 江南大学 Flavone 3 beta-hydroxylase reductase mutant and application thereof
CN112391362B (en) * 2020-11-04 2022-07-05 江南大学 Flavone 3 beta-hydroxylase mutant with improved catalytic activity and application thereof

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216583A (en) * 1996-03-01 1999-05-12 国际花卉开发有限公司 Genetic sequences encoding flavonoid pathway enzymes and uses therefor
EP1546340A1 (en) * 2002-08-30 2005-06-29 INTERNATIONAL FLOWER DEVELOPMENTS Pty. Ltd. Flavanoid 3',5'hydroxylase gene sequences and uses therefor
EP1629710A1 (en) * 2003-05-22 2006-03-01 Fumio Hashimoto Method of crossing flower color genotypes
JP2007325533A (en) * 2006-06-07 2007-12-20 Kagoshima Univ Method for predicting flower color
CN101668420A (en) * 2007-04-26 2010-03-10 石原产业株式会社 Method for production of moth orchid having modified flower color
GB201119596D0 (en) * 2010-11-15 2011-12-28 Pitt Elaine Improved compositions
CN103589694A (en) * 2012-10-31 2014-02-19 上海交通大学 Tulip flavonoid-3'-hydroxylase TfF3' H protein and its coding gene
CN103865864A (en) * 2014-03-04 2014-06-18 江南大学 Method for producing eriodictyol by reforming escherichia coli in metabolic engineering
CN105087508A (en) * 2015-06-26 2015-11-25 上海交通大学 Eggplant flavanone 3-hydroxylase SmF3H as well as gene and application thereof
CN109342415A (en) * 2018-11-28 2019-02-15 江南大学 A kind of method of high-throughput detection eriodictyol
WO2020077367A1 (en) * 2018-10-12 2020-04-16 Conagen Inc. Biosynthesis of homoeriodictyol
CN111263809A (en) * 2017-08-09 2020-06-09 科纳根公司 Biosynthesis of eriodictyol from engineered microorganisms
WO2020165178A1 (en) * 2019-02-11 2020-08-20 Abolis Biotechnologies Method for biosynthesising eriodictyol and/or luteolin in a yeast
CN111566222A (en) * 2017-12-05 2020-08-21 埃沃尔瓦公司 Production of steviol glycosides in recombinant hosts
CN112391360A (en) * 2020-11-04 2021-02-23 江南大学 Flavone 3 beta-hydroxylase reductase coenzyme mutant and application thereof
CN112391362A (en) * 2020-11-04 2021-02-23 江南大学 Flavone 3 beta-hydroxylase mutant with improved catalytic activity and application thereof
CN112458065A (en) * 2020-11-04 2021-03-09 江南大学 Silybum marianum-derived flavone 3-hydroxylase and application thereof
WO2021076638A1 (en) * 2019-10-14 2021-04-22 Conagen Inc. Biosynthesis of eriodictyol
CN113403334A (en) * 2021-06-11 2021-09-17 江南大学 Plasmid kit for saccharomyces cerevisiae multi-copy integration
WO2021220268A1 (en) * 2020-04-26 2021-11-04 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Phenol-rich grapes
CN114150011A (en) * 2021-11-17 2022-03-08 天津大学 Recombinant saccharomyces cerevisiae for heterogeneously synthesizing carnosic acid and construction method

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216583A (en) * 1996-03-01 1999-05-12 国际花卉开发有限公司 Genetic sequences encoding flavonoid pathway enzymes and uses therefor
EP1546340A1 (en) * 2002-08-30 2005-06-29 INTERNATIONAL FLOWER DEVELOPMENTS Pty. Ltd. Flavanoid 3',5'hydroxylase gene sequences and uses therefor
EP1629710A1 (en) * 2003-05-22 2006-03-01 Fumio Hashimoto Method of crossing flower color genotypes
JP2007325533A (en) * 2006-06-07 2007-12-20 Kagoshima Univ Method for predicting flower color
CN101668420A (en) * 2007-04-26 2010-03-10 石原产业株式会社 Method for production of moth orchid having modified flower color
GB201119596D0 (en) * 2010-11-15 2011-12-28 Pitt Elaine Improved compositions
CN103589694A (en) * 2012-10-31 2014-02-19 上海交通大学 Tulip flavonoid-3'-hydroxylase TfF3' H protein and its coding gene
CN103865864A (en) * 2014-03-04 2014-06-18 江南大学 Method for producing eriodictyol by reforming escherichia coli in metabolic engineering
CN105087508A (en) * 2015-06-26 2015-11-25 上海交通大学 Eggplant flavanone 3-hydroxylase SmF3H as well as gene and application thereof
CN111263809A (en) * 2017-08-09 2020-06-09 科纳根公司 Biosynthesis of eriodictyol from engineered microorganisms
CN111566222A (en) * 2017-12-05 2020-08-21 埃沃尔瓦公司 Production of steviol glycosides in recombinant hosts
WO2020077367A1 (en) * 2018-10-12 2020-04-16 Conagen Inc. Biosynthesis of homoeriodictyol
CN109342415A (en) * 2018-11-28 2019-02-15 江南大学 A kind of method of high-throughput detection eriodictyol
WO2020165178A1 (en) * 2019-02-11 2020-08-20 Abolis Biotechnologies Method for biosynthesising eriodictyol and/or luteolin in a yeast
WO2021076638A1 (en) * 2019-10-14 2021-04-22 Conagen Inc. Biosynthesis of eriodictyol
WO2021220268A1 (en) * 2020-04-26 2021-11-04 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization (Aro) (Volcani Center) Phenol-rich grapes
CN112391360A (en) * 2020-11-04 2021-02-23 江南大学 Flavone 3 beta-hydroxylase reductase coenzyme mutant and application thereof
CN112391362A (en) * 2020-11-04 2021-02-23 江南大学 Flavone 3 beta-hydroxylase mutant with improved catalytic activity and application thereof
CN112458065A (en) * 2020-11-04 2021-03-09 江南大学 Silybum marianum-derived flavone 3-hydroxylase and application thereof
CN113403334A (en) * 2021-06-11 2021-09-17 江南大学 Plasmid kit for saccharomyces cerevisiae multi-copy integration
CN114150011A (en) * 2021-11-17 2022-03-08 天津大学 Recombinant saccharomyces cerevisiae for heterogeneously synthesizing carnosic acid and construction method

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisiea functionally expressing flavonoid 3" hydroxylase;Amor, I. L. 等;《Nat Prod Commun》;20101231;第1893-1898页 *
Efficient Biosynthesis of (2 S)-Eriodictyol from (2 S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution;Song Gao 等;《ACS Synth Biol.》;20201218;第6884-6891页 *
Efficient Synthesis of Eriodictyol from L-Tyrosine in Escherichia coli;Saijie Zhu 等;《Applied and Environmental Microbiology》;20140531;第3072-3080页 *
flavonoid 3" hydroxylase, partial [Silybum marianum];NCBI;《GenBank Database》;20150826;Accession No.ALA39990.1 *
Promoter library based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae;Song Gao 等;《Journal of Agricultural and Food Chemistry》;20200527;第1-38页 *
代谢工程改造酿酒酵母从头合成黄杉素;高松;《中国优秀博士学位论文全文数据库(电子期刊)工程科技I辑》;20220115;全文 *
康美玲等.水芹类黄酮3'-羟化酶基因的克隆与表达特性分析.《植物生理学报》.2018,(第02期), *
植物类黄酮3’-羟化酶(F3’H)基因的研究进展;侯杰 等;《植物生理学报》;20110720;第641-647页 *
水飞蓟来源黄酮3-轻化酶鉴定及黄杉素发酵优化;高松 等;《生物工程学报》;20201225;第2838-2849页 *
茶树类黄酮3′-羟化酶基因的克隆与表达特性分析;王文丽等;《茶叶科学》;20170215(第01期);全文 *

Also Published As

Publication number Publication date
CN112391300A (en) 2021-02-23

Similar Documents

Publication Publication Date Title
AU2019250216B2 (en) Expression constructs and methods of genetically engineering methylotrophic yeast
CN109777815B (en) HMG-CoA synthetase gene RKHMGCS and application thereof
CN113403334B (en) Plasmid kit for Saccharomyces cerevisiae multi-copy integration
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN111434773A (en) Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN112458065B (en) Silybum marianum-derived flavone 3-hydroxylase and application thereof
CN115873836A (en) Nerolidol synthetase and application thereof
CN112920960B (en) Method for increasing palmitoleic acid content of saccharomyces cerevisiae
CN114672525B (en) Biosynthesis method and application of N-acetyl-5-methoxy tryptamine
CN112391362B (en) Flavone 3 beta-hydroxylase mutant with improved catalytic activity and application thereof
CN112391360B (en) Flavone 3 beta-hydroxylase reductase mutant and application thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN114806913B (en) High-yield succinic acid yeast engineering strain with mitochondria positioning reduction TCA pathway, construction method and application thereof
CN114426983B (en) Method for producing 5-aminolevulinic acid by knocking out transcription regulatory factor Ncgl0580 in corynebacterium glutamicum
CN112852847B (en) Recombinant saccharomyces cerevisiae strain and construction method and application thereof
CN113249240B (en) Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof
KR20240019132A (en) Improved methods and cells for increasing enzyme activity and production of insect pheromones
CN113817752B (en) Application of slr0681 gene in synthesis of synechocystis carotene
CN114774443B (en) Recombinant saccharomyces cerevisiae strain for producing parthenolide and construction method thereof
CN115873732A (en) Method for preparing nervonic acid by using saccharomyces cerevisiae engineering bacteria
CN112553099A (en) Recombinant saccharomyces cerevisiae and application thereof
CN116751698A (en) Genetically engineered bacterium for producing 7-dehydrocholesterol and construction method and application thereof
CN116731885A (en) Genetically engineered bacterium for synthesizing p-coumaric acid and derivatives thereof, construction method and application thereof
CN114806902A (en) Method for obtaining non-transgenic trichoderma reesei targeted genetic engineering improved strain and application
CN116694609A (en) Sandalene synthetase mutant, engineering bacteria and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant