CN111650225A - 一种岩芯三维数字化扫描系统 - Google Patents
一种岩芯三维数字化扫描系统 Download PDFInfo
- Publication number
- CN111650225A CN111650225A CN202010499959.XA CN202010499959A CN111650225A CN 111650225 A CN111650225 A CN 111650225A CN 202010499959 A CN202010499959 A CN 202010499959A CN 111650225 A CN111650225 A CN 111650225A
- Authority
- CN
- China
- Prior art keywords
- core
- ray
- rotor
- turntable
- slip ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种岩芯数字化扫描系统,岩芯数字化扫描系统包括岩芯进给装置、平面线扫描装置和X射线三维CT装置,岩芯进给装置包括岩芯支撑件,平面线扫描装置设在岩芯运动路径上方,X射线三维CT装置包括转盘,转盘有为岩芯支撑件在设定范围作往复直线运动提供通道的通孔,转盘第一侧面设X射线源和X射线探测器,用于获取岩芯三维数字化数据,转盘第二侧面设电液混合滑环,电液混合滑环中心轴线与转盘的旋转轴线位于同一条直线上,电液混合滑环的转子连接到转盘,从动于转盘,电液混合滑环在随转盘转动过程中为X射线三维CT装置提供电力、信号和冷却液的传输。本发明可以同时提供岩芯的三维数字化信息以及表面图像信息,且扫描效率高,易操作。
Description
技术领域
本发明涉及岩芯数字化扫描技术设备技术领域,特别是涉及一种岩芯数字化扫描系统。
背景技术
起源于医学CT(X-ray 3D Computed Tomography,简称CT)的三维岩芯CT成像技术,是深部油气预测与评价的重要辅助手段。该技术通过对岩芯无损扫描,可以直观重建岩芯的三维空间结构,为研究提供丰富的岩芯内部数据信息。数字岩芯能够反映出不同深度孔隙的发育情况,结合空间模型和定量参数,同一岩性不同层段的岩芯孔隙度、渗透率与测录井发现的气测异常呈现相同分布规律,助力科研人员准确定位和分析深部非常规气的有利赋存区。目前,获取三维数字岩芯的技术均来自于医用CT和工业CT。医用CT的空间分辨率比较低,分辨率300微米左右;工业锥束CT可以到达130微米,但是,扫描方式采用的是夹持岩芯旋转。在岩芯取样过程中,很多岩芯有裂隙,甚至是一段一段的碎岩芯,无法进行夹持。另外,医用CT和工业CT都无法在钻井现场对岩芯进行成像。这些因素大大限制了三维岩芯CT成像技术的推广应用。
发明内容
本发明的目的在于提供一种岩芯数字化扫描系统来克服或至少减轻现有技术的上述缺陷中的至少一个。
为实现上述目的,本发明提供一种岩芯数字化扫描系统,所述岩芯数字化扫描系统包括岩芯进给装置、平面线扫描装置和X射线三维CT装置,所述岩芯进给装置包括用于放置待检测的岩芯的岩芯支撑件,所述平面线扫描装置设置在所述岩芯运动路径的上方,用于获取得到所述岩芯的表面图像数据,所述X射线三维CT装置包括可转动的转盘,所述转盘的中心具有为所述岩芯支撑件在设定范围内作往复直线运动提供通道的通孔,所述转盘的第一侧面上设置有X射线源和X射线探测器,用于获取所述岩芯的三维数字化数据,所述转盘的第二侧面设置有电液混合滑环,所述电液混合滑环的中心轴线与所述转盘的旋转轴线位于同一条直线上,所述电液混合滑环的转子连接到所述转盘,从动于所述转盘,所述电液混合滑环在随所述转盘转动的过程中为X射线三维CT装置提供电力、信号和冷却液的传输。
进一步地,所述电液混合滑环包括液滑环和电滑环,所述液滑环具有第一定子和第一转子,所述电滑环具有第二定子和第二转子,所述第一定子和第一转子、第二定子和第二转子均为两端开口且中空的筒体结构,所述第二定子与所述第一定子以对接的方式固定后连接到机架总成,所述第二转子与第一转子以对接的方式固定后连接到所述转盘。
进一步地,所述第一定子以可相对于所述第一转子转动的方式套装在所述第一转子的外部,所述第一定子的侧壁以从内到外贯通的方式设置有冷却液入口和冷却液出口,所述第一转子上与所述冷却液入口相对的部位设置有进水槽,使外接冷却液在外部动力作用下可通过所述液体入口直接落入到所述进水槽中,所述第一转子上与所述冷却液出口相对的部位设置有与所述进水槽彼此隔离的出水槽,使所述出水槽中的液体在液压作用下能够直接从所述冷却液出口排出,所述进水槽的一端流体连通所述X射线探测器的冷却系统的冷却液入口,出水槽的一端流体连通所述X射线探测器的冷却系统的冷却液出口。
进一步地,所述进水槽和出水槽平行地布置在所述第一转子上由所述第一定子套设的部位,所述第一定子和第一转子之间通过所述进水槽和出水槽两边设置的动密封件进行密封。
进一步地,所述进水槽和出水槽包括形成在所述第一转子的圆柱形外侧壁环形槽和与所述环形槽流体连通的直线槽,环形槽的延伸方向是环绕轴向设置,而直线槽是沿轴向延伸至所述第一转子的端部,所述直线槽位于所述第一转子的端部的端口通过穿过所述通孔的管路流体连通所述X射线探测器的冷却系统。
进一步地,所述X射线探测器包括X射线积分型平板探测器和X射线光子探测器,二者同时通过一基座设置在临近所述通孔的位置,所述X射线源以与所述X射线探测器相对的方式临近所述通孔设置,所述X射线积分型平板探测器用于获得所述岩芯的三维CT内部结构数据,所述X射线光子探测器用于获得岩芯内部的原子序数和电子密度分布。
进一步地,所述基座为探测器位置调节机构,通过所述探测器位置调节机构增大或减小所述X射线源与所述X射线探测器之间的距离,以控制探测的感兴趣区域。
进一步地,所述岩芯支撑件由碳纤维圆管切割成半圆形制成,其一端通过岩芯支撑压紧块压紧而能够沿水平方向布置,另一端悬置而能够在设定范围内从所述通孔的一侧穿过到另一侧。
进一步地,所述岩芯进给装置还包括高度调节机构和直线移动调节机构,所述岩芯支撑压紧块通过所述高度调节机构设置在所述直线移动调节机构的滑块上,通过所述高度调节机构可调整所述岩芯支撑压紧块的高度,使所述岩芯的中心轴线和所述通孔的中心位于同一高度。
进一步地,所述岩芯进给装置还包括支撑框架,用于为所述直线移动调节机构提供支撑,所述平面线扫描装置设置在所述支撑框架的末端的正上方。
本发明系统可以同时提供岩芯的三维数字化信息以及表面图像信息,并且扫描效率高,易操作。
附图说明
图1为本发明实施例提供的岩芯数字化扫描系统的立体结构示意图。
图2为图1中的岩芯进给装置和平面线扫描装置三者的位置关系示意图。
图3为图1中的岩芯进给装置的结构示意图。
图4为图1中的X射线三维CT装置中转盘、射线源和探测器的位置关系示意图。
图5为图1中的电液混合滑环的结构示意图。
图6为图5中的电液混合滑环沿其中心轴线方向的剖面示意图。
具体实施方式
在附图中,使用相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
如图1和图2所示,本发明实施例所提供的岩芯数字化扫描系统包括岩芯进给装置1、平面线扫描装置3和X射线三维CT装置4。
岩芯进给装置1包括支撑框架15,支撑框架15上通过直线移动调节机构13设置有岩芯支撑件12。岩芯支撑件12沿水平方向布置,其上用于放置待检测的岩芯2,并为岩芯2提供支托。由于岩芯2大多呈圆柱形,因此岩芯支撑件12与岩芯2接触的支托面构造成弧形面,弧形面朝上,这样,岩芯2放置在岩芯支撑件12提供的弧形支托面上后,弧形支托面两侧会对岩芯2形成阻挡,从而避免岩芯2滚落,脱离弧形支托面。岩芯支撑件12的制作材料可以选用碳纤维,碳纤维的含碳量在90%以上,具有高强度、高模量和低密度的特点,其高强度的特点能够支持较大质量的样品而不变形,低密度的特点有利于X射线的穿过,并且对岩芯2的成像影响小。当然,也可以采用其它的制作材料。制作时,从市面购置碳纤维圆管,通过将碳纤维圆管切割成半圆形,便可以获得本实施例中所需的岩芯支撑件12。由于岩芯数字化扫描系统工作过程中,岩芯支撑件12需要承载岩芯2穿过X射线三维CT装置4,因此,岩芯支撑件12的弧形支托面的尺寸受到限制,其具体的尺寸将在介绍X射线三维CT装置4的部分详细说明。
直线移动调节机构13用于将驱动机构(图中未示出)输出的动力传递给岩芯支撑件12,且将转矩转换成直线运动的方式传递给岩芯支撑件12,驱动岩芯支撑件12在设定范围内往复直线运动。该设定范围的大小大于岩芯2的最大长度,并且,以岩芯支撑件12的初始位置作为设定范围的一个端点,岩芯2从X射线三维CT装置4的一侧完全可穿过到X射线三维CT装置4的另一侧的位置作为设定范围的另一个端点。
作为直线移动调节机构13的一种优选实施方式,直线移动调节机构13包括直线导轨131、滑块132、以及与滑块132配合的滚珠丝杠(图中未示出)。其中,直线导轨131安装于支撑框架15,为滑块132做滑动支撑。滑块132的上方设置有岩芯支撑压紧块11,岩芯支撑压紧块11固定连接水平布置的岩芯支撑件12的一端,将岩芯支撑件12的该端在竖直方向压紧固定,岩芯支撑件12的另一端悬置,进而能够在设定范围内从X射线三维CT装置4的一侧完全可穿过到X射线三维CT装置4的另一侧,这样X射线三维CT装置4可以对岩芯2有效进行CT扫描。
岩芯支撑压紧块11与滑块132之间设置有高度调节机构,该高度调节机构的驱动部14可以是如图3中示出的旋转手柄,通过旋转手柄可以手动调节高度调节机构的高度,进而调整岩芯支撑压紧块11相对于支撑框架15的高度,以保证岩芯2的中心轴线和转盘45的通孔44的中心位于同一高度。当然,驱动部14也可以采用其它的手动高度调节的结构形式,甚至还可以采用电驱动方式予以高度调节。
平面线扫描装置3设置在岩芯2运动路径的上方,用于获取得到岩芯2的表面图像数据。具体地,平面线扫描装置3设置在支撑框架15的末端的正上方,并在不干涉扫描岩芯的前提下,贴近岩芯2。支撑框架15的两端指的是其长度方向上相对的两个端部,支撑框架15两侧指的是其宽度方向上相对的两侧。此处的“末端”可以理解为岩芯支撑件12延伸方向所对应的端部。这样,在岩芯进给装置1向X射线三维CT装置4输送岩芯2的时候,平面线扫描装置3可以通过对岩芯2的外表面的进行拍照,获取得到岩芯2的表面图像数据。
如图3所示,X射线三维CT装置4用于获取三维数字化岩芯数据。X射线三维CT装置4包括转盘45,转盘45以可转动的方式连接到机架5上。比如,转盘45通过转盘轴承(图中未示出)连接到机架5上,转盘轴承的内圈与机架5连接固定,转盘轴承的外圈与转盘2连接。转盘5通过螺钉410与转盘轴承的外圈固定连接,转盘轴承的外圈外侧与转盘45的第二侧面上的驱动电机(图中未示出)驱动连接。
转盘45中心开设有通孔44,X射线三维CT装置4在对岩芯2进行CT扫描过程中,为岩芯2提供支撑力的岩芯进给装置1从通孔44的一侧水平穿行到另一侧。也就是说,通孔44为岩芯支撑件12在设定范围内作往复直线运动提供通道。因此,通孔44的尺寸与为岩芯2提供支托的岩芯支撑件12的尺寸相适配,这样,既可以供岩芯2水平穿过,也可以供岩芯2在竖直方向上小幅度的运动。在本实施例中,通孔44呈圆形,直径为220mm。与此相对应地,岩芯支撑件12的弧形支托面的尺寸不得大于通孔44的直径,并且岩芯支撑件12的高度受到通孔44的直径大小限制。
转盘45的第一侧面上设置有X射线源41和X射线探测器,用于获取岩芯2的三维数字化数据。
在一个实施例中,X射线三维CT装置4采用单射线源对应两个探测器。具体地,X射线探测器包括X射线积分型平板探测器42和X射线光子探测器43。本实施例通过一次扫描,同时获得岩芯2的三维CT内部结构数据以及岩芯内部的原子序数和电子密度分布,两套数据相互印证,进而获得高质量的三维数字化岩芯数据。三维数字化岩芯数据通过数据存储器46进行存储。
在一个实施例中,X射线源41布置在其发射的X射线可穿过岩芯2的位置,X射线穿过岩芯2前后的能量强度将发生变化。X射线源41出射的X射线的强度和出射线的时间受控于射线源控制器415。
X射线积分型平板探测器42与X射线源41相对设置,分别布置在通孔44的两侧,并依靠探测X射线穿过岩芯2后的强度变化,对岩芯2内部进行成像,获得岩芯2的三维CT内部结构数据。X射线积分型平板探测器42具有成像分辨率高,成像速度快的优势,但是也存在缺点,比如:物质区分能力弱,导致同质异像或异质同像,而且射束硬化、散射等因素均会给基于密度的图像分割带来困难。
鉴于此,X射线光子探测器43与X射线积分型平板探测器42布置在通孔44的同一侧,也与X射线源41分别布置在通孔44的两侧。X射线光子探测器43能够探测到X射线穿过岩芯2后不同能量光子的变化,获得岩芯2内部的原子序数和电子密度分布。X射线光子探测器43的物质区分和分离能力强,可以消除各种图像伪影,获得高质量CT图像。X射线积分型平板探测器42和X射线光子探测器43的开关时间由探测器控制器411控制,且X射线积分型平板探测器42和X射线光子探测器43获得的数据同样由探测器控制器411进行保存。
X射线积分型平板探测器42和X射线光子探测器43通过探测器位置调节机构47垂直于转盘45的第一侧面设置,以控制探测的感兴趣区域,垂直于转盘45。探测器位置调节机构47可以采用滑轨滑块和丝杠驱动的组合结构,比如手动转动丝杠,从而调节X射线积分型平板探测器42和X射线光子探测器43与X射线源41之间的距离,用于增大或减小X射线源41与探测器之间的距离。当然,探测器位置调节机构47不限于本实施例中列举出来的调节设备,还可以采用市面上其它的具有类似本实施例中的位置调节功能的设备。
如图4所示,在一个实施例中,本发明实施例所提供的岩芯数字化扫描系统还包括电液混合滑环6,电液混合滑环6设置在转盘45的第二侧面,电液混合滑环6的中心轴线与转盘45的旋转轴线位于同一条直线上,电液混合滑环6的转子连接到转盘45,并从动于转盘45,跟随转盘45的转动而转动,为X射线三维CT装置4中的X射线源41、X射线积分型平板探测器42和X射线光子探测器43提供电力、信号和冷却液的传输。
如图4至图6所示,作为电液混合滑环6的一种实现方式,电液混合滑环6具体包括液滑环61和电滑环62。
液滑环61具有第一定子611和第一转子612,第一定子611和第一转子612均为两端开口且中空的筒体结构,并且,第一定子611以可相对于第一转子612转动的方式套装在第一转子612的外部,二者的中心轴线位于同一条直线上。第一定子611沿其中心轴线的长度小于第一转子612。
第一定子611的侧壁开设有冷却液入口613和冷却液出口614,冷却液入口613和冷却液出口614从第一定子611的侧壁外表面贯通到内表面。第一转子612上与冷却液入口613相对的部位设置有进水槽615,使冷却液入口613外接冷却液时,冷却液可以在外部动力作用下通过冷却液入口613进入到进水槽615中。第一转子612上与冷却液出口614相对的部位设置有出水槽616,使出水槽616中由于液压作用,出水槽616中冷却液能够直接从冷却液出口614流出。进水槽615与出水槽616在第一转子612的外侧壁上平行布置,并且彼此密封隔离。第一转子612上由第一定子611套设的部位设置有平行布置的进水槽615和出水槽616,第一定子611和第一转子612之间通过进水槽615和出水槽616两边设置的动密封件617进行密封,这样可以保证冷却液在水槽流动的时候不会外溢。
进水槽615的一端通过穿过通孔44的管路流体连通X射线积分型平板探测器42或X射线光子探测器43的冷却系统的冷却液入口。出水槽616的一端通过穿过通孔44的管路流体连通X射线积分型平板探测器42或X射线光子探测器43的冷却系统的冷却液出口。
作为进水槽615和出水槽616的一种优选实现方式,进水槽615和出水槽616的深度方向为沿垂直于轴向(第一转子612的中心轴线)的方向,其具体可以包括形成在第一转子612的圆柱形外侧壁环形槽(如图6所示)和与环形槽流体连通的直线槽(图中未示出),环形槽的延伸方向是环绕轴向设置的,而直线槽是沿轴向延伸至第一转子612的端部,直线槽位于第一转子612的端部的端口通过穿过通孔44的管路流体连通X射线积分型平板探测器42或X射线光子探测器43的冷却系统。
当然,上述实施例中的直线槽也可以由其它的结构形式替代,在此不一一列举。也就是说,只要是能够实现上述冷却液流体连通的器件或结构均可以采用。
下面以冷却X射线积分型平板探测器42为例,说明电液混合滑环6的冷却液传输原理。
第一转子612转动时,外部冷却液经由冷却液入口613流经进水槽614,再通过X射线积分型平板探测器42的冷却液入口进入到X射线积分型平板探测器42的冷却系统中,吸收X射线积分型平板探测器42工作过程中产生的部分热量后,从X射线积分型平板探测器42的冷却液出口流入到出水槽615中,并从冷却液出口614排出系统外。
电滑环62具有第二定子621和第二转子622,第二定子621和第二转子622均为两端开口且中空的筒体结构,并且,第二定子621以可相对于第二转子622转动的方式套装在第二转子622的外部,二者的中心轴线与液滑环61的中心轴线和通孔44的中心位于同一条直线上。第二定子621与第一定子611以对接的方式固定连接到机架总成5。第二转子622与第一转子612以对接的方式固定连接,再通过连接件7(例如法兰)固定连接到转盘45,这样便可以与转盘45同步转动。并且,第二转子622与第一转子612的侧壁内表面基本对齐。本实施例中的电滑环62可以从市面直接购置得到。
第二转子622上有安装有铜环环路(图中未示出),第二定子621上安装有电刷(图中未示出),第二定子621引出的外接电接头623通过电缆连接外部的电源和信号控制单元(图中未示出),外接电接头623还通过电缆624连接X射线源41、X射线积分型平板探测器42、X射线光子探测器43、射线源控制器415和探测器控制器411,电源通过电缆为X射线三维CT装置4中的所有用电设备供电,信号控制单元则通过电缆向转盘45上的X射线源41、X射线积分型平板探测器42和X射线光子探测器43传送控制指令。
上述实施例通过电液混合滑环技术,不仅可以解决转盘45连续转动时,转盘上方的探测器、射线源和控制电脑的电力供应、信号控制,还可以为探测器、射线源的冷却提供冷却液,进而可以采用高功率射线源和高信噪比探测器。高功率的射线源通常采用的是液体冷却方式,而液态冷却的探测器可以获得更好的信噪比数据。
如图3所示,在一个实施例中,转盘45的第一侧面还设置有配重块48,电缆缠绕块49、412、416和接线端子卡规413、414,其中,配重块48用于调制转盘45上的配重分布,从而到达调节转盘动平衡。电缆缠绕块49、412、416用于归置转盘45上的射线源和探测器的过长的线缆。接线端子卡规413和414用于连接转盘45上的线路的接头。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。本领域的普通技术人员应当理解:可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种岩芯数字化扫描系统,其特征在于,包括岩芯进给装置(1)、平面线扫描装置(3)和X射线三维CT装置(4),所述岩芯进给装置(1)包括用于放置待检测的岩芯(2)的岩芯支撑件(12),所述平面线扫描装置(3)设置在所述岩芯(2)运动路径的上方,用于获取得到所述岩芯(2)的表面图像数据,所述X射线三维CT装置(4)包括可转动的转盘(45),所述转盘(45)的中心具有为所述岩芯支撑件(12)在设定范围内作往复直线运动提供通道的通孔(44),所述转盘(45)的第一侧面上设置有X射线源(41)和X射线探测器,用于获取所述岩芯(2)的三维数字化数据,所述转盘(45)的第二侧面设置有电液混合滑环(6),所述电液混合滑环(6)的中心轴线与所述转盘(45)的旋转轴线位于同一条直线上,所述电液混合滑环(6)的转子连接到所述转盘(45),从动于所述转盘(45),所述电液混合滑环(6)在随所述转盘(45)转动的过程中为X射线三维CT装置(4)提供电力、信号和冷却液的传输。
2.如权利要求1所述的岩芯数字化扫描系统,其特征在于,所述电液混合滑环(6)包括液滑环(61)和电滑环(62),所述液滑环(61)具有第一定子(611)和第一转子(612),所述电滑环(62)具有第二定子(621)和第二转子(622),所述第一定子(611)和第一转子(612)、第二定子(621)和第二转子(622)均为两端开口且中空的筒体结构,所述第二定子(621)与所述第一定子(611)以对接的方式固定后连接到机架总成(5),所述第二转子(622)与第一转子(612)以对接的方式固定后连接到所述转盘(45)。
3.如权利要求2所述的岩芯数字化扫描系统,其特征在于,所述第一定子(611)以可相对于所述第一转子(612)转动的方式套装在所述第一转子(612)的外部,所述第一定子(611)的侧壁以从内到外贯通的方式设置有冷却液入口(613)和冷却液出口(614),所述第一转子(612)上与所述冷却液入口(613)相对的部位设置有进水槽(615),使外接冷却液在外部动力作用下可通过所述液体入口(613)直接落入到所述进水槽(615)中,所述第一转子(612)上与所述冷却液出口(614)相对的部位设置有与所述进水槽(615)彼此隔离的出水槽(616),使所述出水槽(616)中的液体在液压作用下能够直接从所述冷却液出口(614)排出,所述进水槽(615)的一端流体连通所述X射线探测器的冷却系统的冷却液入口,出水槽(616)的一端流体连通所述X射线探测器的冷却系统的冷却液出口。
4.如权利要求3所述的岩芯数字化扫描系统,其特征在于,所述进水槽(615)和出水槽(616)平行地布置在所述第一转子(612)上由所述第一定子(611)套设的部位,所述第一定子(611)和第一转子(612)之间通过所述进水槽(615)和出水槽(616)两边设置的动密封件(617)进行密封。
5.如权利要求4所述的岩芯数字化扫描系统,其特征在于,所述进水槽(615)和出水槽(616)包括形成在所述第一转子(612)的圆柱形外侧壁环形槽和与所述环形槽流体连通的直线槽,环形槽的延伸方向是环绕轴向设置,而直线槽是沿轴向延伸至所述第一转子(612)的端部,所述直线槽位于所述第一转子(612)的端部的端口通过穿过所述通孔(44)的管路流体连通所述X射线探测器的冷却系统。
6.如权利要求1至5中任一项所述的岩芯数字化扫描系统,其特征在于,所述X射线探测器包括X射线积分型平板探测器(42)和X射线光子探测器(43),二者同时通过一基座设置在临近所述通孔(44)的位置,所述X射线源(41)以与所述X射线探测器相对的方式临近所述通孔(44)设置,所述X射线积分型平板探测器(42)用于获得所述岩芯(2)的三维CT内部结构数据,所述X射线光子探测器(43)用于获得岩芯(2)内部的原子序数和电子密度分布。
7.如权利要求6所述的岩芯数字化扫描系统,其特征在于,所述基座为探测器位置调节机构(47),通过所述探测器位置调节机构(47)增大或减小所述X射线源(41)与所述X射线探测器之间的距离,以控制探测的感兴趣区域。
8.如权利要求6所述的岩芯数字化扫描系统,其特征在于,所述岩芯支撑件(12)由碳纤维圆管切割成半圆形制成,其一端通过岩芯支撑压紧块(11)压紧而能够沿水平方向布置,另一端悬置而能够在设定范围内从所述通孔(44)的一侧穿过到另一侧。
9.如权利要求8所述的岩芯数字化扫描系统,其特征在于,所述岩芯进给装置(1)还包括高度调节机构和直线移动调节机构(13),所述岩芯支撑压紧块(11)通过所述高度调节机构设置在所述直线移动调节机构(13)的滑块(132)上,通过所述高度调节机构可调整所述岩芯支撑压紧块(11)的高度,使所述岩芯(2)的中心轴线和所述通孔(44)的中心位于同一高度。
10.如权利要求1所述的岩芯数字化扫描系统,其特征在于,所述岩芯进给装置(1)还包括支撑框架(15),用于为所述直线移动调节机构(13)提供支撑,所述平面线扫描装置(3)设置在所述支撑框架(15)的末端的正上方。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010499959.XA CN111650225B (zh) | 2020-06-04 | 2020-06-04 | 一种岩芯三维数字化扫描系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010499959.XA CN111650225B (zh) | 2020-06-04 | 2020-06-04 | 一种岩芯三维数字化扫描系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111650225A true CN111650225A (zh) | 2020-09-11 |
CN111650225B CN111650225B (zh) | 2022-05-03 |
Family
ID=72344138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010499959.XA Active CN111650225B (zh) | 2020-06-04 | 2020-06-04 | 一种岩芯三维数字化扫描系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111650225B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115753543A (zh) * | 2022-11-05 | 2023-03-07 | 西南石油大学 | 考虑概率分布的页岩支撑裂缝相对渗透率测定装置及方法 |
WO2023125616A1 (zh) * | 2021-12-30 | 2023-07-06 | 同方威视技术股份有限公司 | 扫描检查装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10211196A (ja) * | 1997-01-31 | 1998-08-11 | Olympus Optical Co Ltd | X線ctスキャナ装置 |
US20020031201A1 (en) * | 2000-09-12 | 2002-03-14 | Tsutomu Suzuki | X-ray CT scanner |
CN1476813A (zh) * | 2002-07-18 | 2004-02-25 | 西门子公司 | 在医疗诊断或治疗设备中定位患者的方法和装置 |
US20040120454A1 (en) * | 2002-10-02 | 2004-06-24 | Michael Ellenbogen | Folded array CT baggage scanner |
CN102349219A (zh) * | 2008-10-27 | 2012-02-08 | 维斯塔斯风力系统集团公司 | 具有冷却能力的滑环组件 |
DE102012201798A1 (de) * | 2012-02-07 | 2013-08-08 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Planung einer Röntgenbildgebung mit geringer Strahlenbelastung |
CN104274197A (zh) * | 2013-07-10 | 2015-01-14 | 上海西门子医疗器械有限公司 | 一种冷却系统及设备 |
US20150028719A1 (en) * | 2012-03-02 | 2015-01-29 | Toyota Jidosha Kabushiki Kaisha | Slip ring system |
CN104545969A (zh) * | 2013-10-14 | 2015-04-29 | 西门子公司 | 借助解剖学标志来确定拍摄参数的值 |
CN106463903A (zh) * | 2014-03-27 | 2017-02-22 | 滑动环及设备制造有限公司 | 具有主动式冷却的滑环 |
CN108072673A (zh) * | 2018-01-17 | 2018-05-25 | 天津三英精密仪器股份有限公司 | 一种岩芯ct装置 |
CN208076418U (zh) * | 2018-01-17 | 2018-11-09 | 天津三英精密仪器股份有限公司 | 一种岩芯ct装置 |
WO2020064021A1 (en) * | 2018-09-30 | 2020-04-02 | Shanghai United Imaging Healthcare Co., Ltd. | Systems for imaging |
-
2020
- 2020-06-04 CN CN202010499959.XA patent/CN111650225B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10211196A (ja) * | 1997-01-31 | 1998-08-11 | Olympus Optical Co Ltd | X線ctスキャナ装置 |
US20020031201A1 (en) * | 2000-09-12 | 2002-03-14 | Tsutomu Suzuki | X-ray CT scanner |
CN1476813A (zh) * | 2002-07-18 | 2004-02-25 | 西门子公司 | 在医疗诊断或治疗设备中定位患者的方法和装置 |
US20040120454A1 (en) * | 2002-10-02 | 2004-06-24 | Michael Ellenbogen | Folded array CT baggage scanner |
CN102349219A (zh) * | 2008-10-27 | 2012-02-08 | 维斯塔斯风力系统集团公司 | 具有冷却能力的滑环组件 |
DE102012201798A1 (de) * | 2012-02-07 | 2013-08-08 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur Planung einer Röntgenbildgebung mit geringer Strahlenbelastung |
US20150028719A1 (en) * | 2012-03-02 | 2015-01-29 | Toyota Jidosha Kabushiki Kaisha | Slip ring system |
CN104274197A (zh) * | 2013-07-10 | 2015-01-14 | 上海西门子医疗器械有限公司 | 一种冷却系统及设备 |
CN104545969A (zh) * | 2013-10-14 | 2015-04-29 | 西门子公司 | 借助解剖学标志来确定拍摄参数的值 |
CN106463903A (zh) * | 2014-03-27 | 2017-02-22 | 滑动环及设备制造有限公司 | 具有主动式冷却的滑环 |
CN108072673A (zh) * | 2018-01-17 | 2018-05-25 | 天津三英精密仪器股份有限公司 | 一种岩芯ct装置 |
CN208076418U (zh) * | 2018-01-17 | 2018-11-09 | 天津三英精密仪器股份有限公司 | 一种岩芯ct装置 |
WO2020064021A1 (en) * | 2018-09-30 | 2020-04-02 | Shanghai United Imaging Healthcare Co., Ltd. | Systems for imaging |
Non-Patent Citations (1)
Title |
---|
孙媛媛等: "《医学影像诊断与新技术应用》", 31 March 2019, 吉林科学技术出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023125616A1 (zh) * | 2021-12-30 | 2023-07-06 | 同方威视技术股份有限公司 | 扫描检查装置 |
CN115753543A (zh) * | 2022-11-05 | 2023-03-07 | 西南石油大学 | 考虑概率分布的页岩支撑裂缝相对渗透率测定装置及方法 |
CN115753543B (zh) * | 2022-11-05 | 2024-01-23 | 西南石油大学 | 考虑概率分布的页岩支撑裂缝相对渗透率测定装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111650225B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111650225B (zh) | 一种岩芯三维数字化扫描系统 | |
WO2017012465A1 (zh) | 一种工业ct扫描试验系统 | |
US9541670B2 (en) | In-situ downhole X-ray core analysis system | |
CN105425276B (zh) | 脉冲x射线能谱测量装置 | |
WO2011035624A1 (zh) | 用于物体安全检查的辐射检查设备及其检查方法 | |
CN111948065A (zh) | 基于实验室x射线源的高温在位加载ct测试系统及其方法 | |
CN117405707A (zh) | 核废物包装体双模同步扫描检测装置 | |
KR101209518B1 (ko) | 헬리컬 ct장치 | |
KR20130057653A (ko) | 의료영상기기 | |
WO2017012466A1 (zh) | 一种工业ct扫描试验系统及流体压力加载装置 | |
CN108007943A (zh) | 基于矩阵分解的矩形波导扫频微波成像系统及检测方法 | |
CN1010529B (zh) | 探测和定位中性粒子的设备及其应用 | |
CN112666595B (zh) | 质子束流的测量装置和方法 | |
CN111239074A (zh) | 太赫兹检测机器人及检测方法 | |
CN113963105A (zh) | 现场岩心三维重构方法和系统 | |
CN217820090U (zh) | 一种针对大型板状物的x射线成像装置 | |
CN210221864U (zh) | 一种工件转动的无损探伤设备 | |
CN116698886A (zh) | 一种高压电缆x射线步进式检测装置及图像三维重构系统 | |
CN117761062A (zh) | 一种基于激光扫描的煤炭检测方法 | |
KR101817987B1 (ko) | 큰 시야각을 갖는 x선 촬영장치 | |
CN214252088U (zh) | 三维多视角x光机 | |
CN115844331A (zh) | 一种多角度的光声层析成像系统及方法 | |
CN209215261U (zh) | 一种用于x射线透射与背散射一体成像系统的扫描器 | |
CN216053097U (zh) | 现场岩心三维重构装置 | |
CN108535289B (zh) | 一种x射线成像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |