Nothing Special   »   [go: up one dir, main page]

CN111244428B - 一种高循环性能和高安全性能的锂离子电池 - Google Patents

一种高循环性能和高安全性能的锂离子电池 Download PDF

Info

Publication number
CN111244428B
CN111244428B CN202010073074.3A CN202010073074A CN111244428B CN 111244428 B CN111244428 B CN 111244428B CN 202010073074 A CN202010073074 A CN 202010073074A CN 111244428 B CN111244428 B CN 111244428B
Authority
CN
China
Prior art keywords
lini
lithium ion
performance
ion battery
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010073074.3A
Other languages
English (en)
Other versions
CN111244428A (zh
Inventor
杜小红
李国华
高云芳
王俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010073074.3A priority Critical patent/CN111244428B/zh
Publication of CN111244428A publication Critical patent/CN111244428A/zh
Application granted granted Critical
Publication of CN111244428B publication Critical patent/CN111244428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种高循环性能和高安全性能的锂离子电池,以Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2为正极材料,以石墨为负极材料,以多孔聚乙烯膜为隔膜,以含1.0mol/L锂盐LiPF6的DMC/EC/EMC混合溶液为电解液制得。本发明锂电池在1C充放电倍率下(2.5~4.3V),2500次循环后容量保持率为84.62%,电池的循环性能和安全性高。

Description

一种高循环性能和高安全性能的锂离子电池
(一)技术领域
本发明涉及一种高循环性能和高安全性能的锂离子电池。
(二)背景技术
锂离子电池是一种二次电池,主要依靠锂离子在电池的正极和负极之间迁移来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌。在关键技术不断突破、产业政策红利等多重因素刺激下,动力电池和储能电池业务以燎原之势增长,我国锂电行业呈现出欣欣向荣的态势。对高能量和高安全性锂离子电池(LIBs)的需求不断增长,激发了人们对锂离子电池正极材料的巨大研究兴趣。用于下一代锂离子电池的正极材料需具备更高的能量密度、更长的循环寿命,并且在电动汽车和固定式储能应用中需要具有更好的安全性能。
在镍钴锰三元材料体系中,镍含量越高,材料的能量密度越高,然而,较高的镍含量会引起材料的不可逆相变,导致材料的循环性能及安全性能变差。主要原因有高镍正极材料在高温下循环时通常经历从层状相到尖晶石状相和岩盐相的结构降解。该结构变化是由过渡金属离子在充电和放电过程中迁移到锂层中引起的,这些相变伴随着晶格常数和体积的变化,其从晶格释放氧气,导致热不稳定和结构不稳定。此外,特别是在高电压下充电时,具有强氧化性质的Ni4+离子物种在电解液中的溶解度增加,导致安全问题和电化学性能恶化。
(三)发明内容
为解决上述问题,本发明提供了一种高循环性能和高安全性能的锂离子电池。
本发明采用的技术方案是:
一种高循环性能和高安全性能的锂离子电池,以Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2为正极材料,以石墨为负极材料,以多孔聚乙烯膜为隔膜,隔膜表面涂覆陶瓷材料(α-Al2O3:SiO2重量比65%~96%:35%~4%),以含1.0mol/L锂盐LiPF6的DMC/EC/EMC混合溶液为电解液制得。
所述锂电池包括:正极,是利用烷氧基铝化合物易与羟基发生反应的特性,制得的表面面包覆Al2O3的高镍三元材料LiNi0.6Co0.2Mn0.2O2,Al2O3在高镍材料表面上的面包覆能有效地防止活性材料和电解质之间的直接接触,改善材料的结构和表面稳定性,改善材料的循环性能和安全性能;负极,所述负极的负极材料为石墨;隔离膜;电解液,所述电解液为DMC/EC/EMC=1:1:1(体积比),含1.0mol/L锂盐LiPF6
Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2材料作为锂离子电池正极材料,可以保护材料主体结构免受HF的侵蚀并抑制电极和电解质之间的副反应,目的是为了提高锂离子电池的循环性能和安全性能。
所述锂离子电池的正极按如下方法制得:Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2与导电剂乙炔黑以及粘结剂聚偏氟乙烯按质量比80:10:10混合,加入溶剂N-甲基吡咯烷酮制成浆料,将浆料涂覆于厚度为12μm的铝箔上,120℃真空干燥,辊压成片,作为锂离子电池正极。
本发明采用表面包覆来提高高镍正极材料的结构稳定性和电化学性能。表面包覆可以保护材料主体结构免受HF的侵蚀并抑制电极和电解质之间的副反应,提高了高镍正极材料的结构稳定性和电化学性能。
所述Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2由如下方法制备获得:
(1)将异丙氧基铝溶于无水异丙醇中,配制成浓度为0.5~2wt%的稀溶液;
(2)将LiNi0.6Co0.2Mn0.2O2材料置于异丙氧基铝-异丙醇稀溶液中,加以氮气保护,在常温下搅拌8~12小时后,停止氮气保护,通入空气,使之发生水解反应;
(3)过滤并烘干,并在400~600℃下热处理8~12h,得到所述Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2
步骤(2)中所述异丙氧基铝用量以铝元素计为LiNi0.6Co0.2Mn0.2O2材料质量的0.5~5%。
优选的,所述LiNi0.6Co0.2Mn0.2O2材料由如下方法制得:
(1)称取化学计量比为6:2:2的NiSO4、CoSO4和MnSO4,加入蒸馏水中配成浓度为2.0mol/L的混合溶液;
(2)将步骤(1)中的混合溶液缓慢加入惰性气体保护的共沉淀反应釜中,配制4.0mol/L NaOH溶液作为沉淀剂和3mol/L NH3·H2O溶液作为螯合剂,并依次加入反应釜中进行共沉淀;加料速度控制在0.8~1L/h,搅拌速率控制在200~300r/min,控制温度为55±2℃,pH值为10.5,液相共沉淀产物陈化时间为8h;
(3)过滤、洗涤和干燥步骤(2)中的共沉淀反应产物,得到了镍钴锰复合氢氧化物前驱体[(Ni0.6Co0.2Mn0.2)](OH)2
(4)将步骤(3)中的前驱体与Li2CO3放入研钵中研磨均匀,先在空气中预烧结5h,然后进行12h的高温煅烧,最终制得LiNi0.6Co0.2Mn0.2O2三元材料。
步骤(4)中[(Ni0.6Co0.2Mn0.2)](OH)2和Li2CO3中Li:(Ni+Co+Mn)物质的量之比为1.12:1。
本发明的有益效果主要体现在:本发明采用面包覆Al2O3的LiNi0.6Co0.2Mn0.2O2为正极材料,在1C充放电倍率下(2.5~4.3V),2500次循环后容量保持率为84.62%,电池的循环性能和安全性高。
(四)附图说明
图1为本发明Al2O3面包覆的NCM622材料结构示意图。
图2为实施例1制得各样品的X射线衍射图;(a)PC-NCM622,SC-NCM622和PC-NCM523的X射线衍射图;(b)PC-NCM622;(c)SC-NCM622;(d)PC-NCM523。
图3为PC-NCM523,PC-NCM622和SC-NCM622样品的TEM图像和EDS图像;(a)PC-NCM523;(b)PC-NCM622;(c)SC-NCM622。
图4为在25℃、1C充放电倍率下,样品在2.5~4.3V之间的循环性能;
图5为所制备样品在室温下的倍率性能。(a),以1C的倍率充电,分别以1C,2C,2.5C的倍率放电,在2.5~4.3V范围内进行充放电测试;(b),分别以1C,2C,2.5C的倍率充电,以1C的倍率放电,在2.5~4.3V范围内进行充放电测试。
图6为在不同温度下三种材料首次放电容量随温度的变化以及循环性能曲线;(a),在所示各温度下,三种材料首次放电容量随温度的变化;(b),(c)和(d)分别是PC-NCM523,PC-NCM622和SC-NCM622样品在25℃和45℃条件下的循环性能曲线(1C,2.5~4.3V)。
图7为分别在0℃,25℃和45℃的环境温度下,以PC-NCM523,PC-NCM622和SC-NCM622三种材料为正极材料的电池的充放电欧姆内阻和充放电脉冲功率随10%~90%DOD的变化曲线。(a)、(c)、(e),不同电池的充放电欧姆内阻;(b)、(d)(f),充放电脉冲功率。
图8为以PC-NCM622和SC-NCM622为正极材料的电池过充性能实验结果;(a)、(b),SC-NCM622、PC-NCM622的过充电压和温度曲线;(c)、(d),SC-NCM622、PC-NCM622的穿透电压和温度曲线。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1:
一、锂离子电池正极材料的制备:
制备[(Ni0.5Co0.2Mn0.3)](OH)2前驱体:
分别称取化学计量比(5:2:3)的NiSO4、CoSO4和MnSO4,加入蒸馏水中,配成浓度2.0mol/L的混合溶液。配制1mol/L NH3·H2O溶液和4.0mol/L NaOH溶液,将混合溶液通入共沉淀反应釜中,同时,添加4.0mol/L NaOH溶液和1mol/L NH3·H2O溶液作为螯合剂(NaOH和NH3·H2O摩尔比为2:1),保持反应釜温度恒定,控制搅拌速度。加料速度控制在0.8~1L/h,搅拌速率控制在300r/min左右,控制温度为55±2℃,pH值为10.5,最终的液相共沉淀产物陈化时间确定为8h,制得镍钴锰复合氢氧化物[(Ni0.5Co0.2Mn0.3)](OH)2;按照上述方法制备[(Ni0.6Co0.2Mn0.2)](OH)2。分别过滤、洗涤并且干燥上述化合物,获得氢氧化物前驱体。
将上述前驱体分别和Li2CO3(Li:(Ni+Co+Mn)=1.12:1)放入研钵中研磨均匀,将混合物首先在500℃空气中预烧结5h,然后在840℃进行12h的高温煅烧,最终制得LiNi0.5Co0.2Mn0.3O2和LiNi0.6Co0.2Mn0.2O2三元材料。
分别称取所需的Al(NO3)3·9H2O和LiNi0.5Co0.2Mn0.3O2,用去离子水分别配成0.02mol/L的Al(NO3)3溶液和50g/L的LiNi0.5Co0.2Mn0.3O2悬浊液,Al(NO3)3溶液与LiNi0.5Co0.2Mn0.3O2悬浊液在剧烈的搅拌下混合均匀。用0.5mol/L的氨水把PH值调节到9.0,反应过程控制氨水的流量,反应时间4h,陈化2h后过滤,用去离子水洗涤3次,100℃下恒温5h,得到包覆Al(OH)3的LiNi0.5Co0.2Mn0.3O2。再将其500℃下恒温10h,即得到Al2O3点包覆的LiNi0.5Co0.2Mn0.3O2,得到的样品标记为PC-NCM523。
Al2O3点包覆的LiNi0.6Co0.2Mn0.2O2制备方法与之相同,所得样品标记为PC-NCM622。
Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2的制备方法:
(1)将异丙氧基铝溶于异丙醇(预先除水)中,配制成浓度为1wt%的稀溶液;
(2)将上述制备的LiNi0.6Co0.2Mn0.2O2材料置于异丙氧基铝-异丙醇稀溶液中(异丙氧基铝用量以铝元素计为LiNi0.6Co0.2Mn0.2O2材料质量的1%),加以氮气保护,在常温下搅拌8小时,然后,停止氮气保护,通入空气,使之发生水解反应;
(3)过滤并烘干,并在500℃下热处理10h,从而得到表面面包覆Al2O3的LiNi0.6Co0.2Mn0.2O2材料(Al元素包覆量约为1%),所得样品标记为SC-NCM622。
制备的样品的晶体结构通过Cu Kα辐射的粉末X射线衍射(XRD)分析,收集XRD数据的2θ范围为10~90°,步长为4°/min。用透射电子显微镜(TEM)结合能量色散X射线光谱(EDS)观察粉末的形貌和元素的种类。
各样品的X射线衍射图如图2所示。从XRD结果看,图中所有的衍射峰基于六方α-NaFeO2层状结构指示,空间群为R-3m,无明显杂质和次生相。所有样品的(006)/(102)和(108)/(110)峰的明显分裂,表明这些材料具有良好的层状结构。这表明NCM晶体结构不受Al2O3包覆的影响。此外,所有样品的相应晶格参数由Rietveld精修计算并列于表1中。峰强度比I003/I104始终是确定材料阳离子混合程度的参数,一般来说,当比值大于1.2时,I003/I104比值越高,阳离子混合程度越低,材料具有良好的层状结构,电化学性能相对较好。由表1可知,Al2O3面包覆的NCM622样品具有最大的I003/I104,因此其阳离子混排程度降低,有利于提高其电化学性能。
表1:样品的相应晶格参数
Figure BDA0002377770140000071
PC-NCM523,PC-NCM622和SC-NCM622样品的TEM图像和EDS图像显示在图3中。由TEM结合EDS可以看出:图3(a)和(c)中,Al2O3颗粒不均匀地分布在LiNi0.5Co0.2Mn0.3O2和LiNi0.6Co0.2Mn0.2O2颗粒的表面上,是点包覆的表现;在图3(b)中,LiNi0.6Co0.2Mn0.2O2颗粒的表面,Al2O3呈均匀分布,是面包覆的表现。
二、正极片的制备:
将正极材料、导电剂乙炔黑以及粘结剂聚偏氟乙烯(PVDF)在N-甲基吡咯烷酮(NMP)溶剂中搅拌制成正极浆料,正极浆料中固体成分中正极材料、导电剂乙炔黑和聚偏氟乙烯(PVDF)的质量比为80:10:10。将浆料涂覆于厚度为12μm的铝箔上,然后在120℃真空干燥,辊压成片。
三、锂电池组装:
利用上述正极片与石墨负极片(148×199mm),多孔聚乙烯膜隔膜(隔膜表面涂有一层陶瓷材料,陶瓷材料中α-Al2O3:SiO2重量比为70%:30%),以及由1mol/L的LiPF6与碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸甲乙酯(EMC)(体积比为1:1:1)的混合液构成的电解液,在Ar气氛中组装成52Ah锂离子电池全电池。
使用自动恒电流充放电装置(LAND CT2001A电池测试仪)研究电化学性能。电池的高低温性能测试在高温和低温测试室中进行:测试电池首先以1℃的温度和25℃的温度激活,然后以恒定电流充电至4.3V。在相同条件下,接着是4.3V的恒定电压放电,截止电流是恒定电流的1/20。最后,设定不同的温度并以恒定电流(以1C的速率)放电到2.5V。采用HPPC(Hybrid Pulse Power Characterization)方法,在0℃,25℃和45℃下测试了电池的内阻和脉冲功率性能。
图4显示了在25℃,1C充放电倍率下,样品在2.5~4.3V之间的循环性能。PC-NCM523,PC-NCM622和SC-NCM622三种材料在1C下的初始容量分别为45.92Ah,52.36Ah和52.60Ah,显示出循环过程中容量的逐渐衰减,三种材料在2500次循环后,仍有80%以上的容量,容量保持率依次为81.72%,82.84%和84.62%。经历2500次的循环之后,SC-NCM622材料表现出更高的放电容量和更好的容量保持率,因此具有更好的循环性能。
图5显示了所制备样品在室温下的倍率性能。图5(a)以1C的倍率充电,分别以1C,2C,2.5C的倍率放电,在2.5~4.3V范围内进行充放电测试。图5(b)分别以1C,2C,2.5C的倍率充电,以1C的倍率放电,在2.5~4.3V范围内进行充放电测试。从图5(a)的数据可以知道,随着充电倍率的加大,锂离子电池容量的衰降速度也在增加。在2.5C的充电倍率下,PC-NCM523,PC-NCM622和SC-NCM622样品的容量分别为1C时的86.84%,88.91%,90.07%
SC-NCM622样品具有更好的充电倍率性能。从图5(b)看出,随着放电电流密度的增大,与1C时相比,各样品的放电容量先减小后有所增大,而其中SC-NCM622样品具有更少的放电容量降低,具有更好的放电倍率性能。循环性能和倍率性能提高的原因与充电/放电过程中界面处的Li+扩散有关。一方面,颗粒表面上的均匀Al2O3包覆有效地防止活性材料和电解质之间的直接接触,有利于改善材料的结构和表面稳定性,抑制氧气产生和HF侵蚀。另一方面,表面包覆Al2O3可以通过在材料表面引入强Al-O键来降低活性材料的活性,从而降低活性材料与高电位电解质的表面反应性并抑制电解质的分解。
图6(a)显示在如图所示各温度下,三种材料首次放电容量随温度的变化。由图可知,随着温度的升高,电池放电容量逐渐增加;各温度条件下,SC-NCM622样品具有最高的放电容量。图6(b),6(c)和6(d)分别是PC-NCM523,PC-NCM622和SC-NCM622样品在25℃和45℃条件下的循环性能曲线(1C,2.5~4.3V)。由图可知,与25℃下的循环性能相比,在45℃的温度下,各样品的循环性能明显降低。经过1400次循环后,PC-NCM523,PC-NCM622和SC-NCM622三种样品的容量保持率依次为78.78%,79.59%和80.56%,由此可知SC-NCM622样品在45℃温度下的循环性能更好,即SC-NCM622样品具有更好的高温循环性能。
图7是分别在0℃,25℃和45℃的环境温度下,以PC-NCM523,PC-NCM622和SC-NCM622三种材料为正极材料的电池的充放电欧姆内阻和充放电脉冲功率随10%~90%DOD的变化曲线。不同电池的充放电欧姆内阻分别总结于图7(a),(c)和(e),充放电脉冲功率分别总结于图7(b),(d)和(f)。综合图7可知,在每个温度下,在每一放电深度下,三种样品中SC-NCM622样品的充放电内阻相对较小且充放电脉冲功率相对较大。此外,各样品的电池欧姆内阻随着温度的升高而降低,这可以归因为当环境温度较高时,锂离子电池内部的电解液对锂离子的溶解性增大,锂离子在电解液中的扩散速率加快,从而引起电池欧姆内阻的降低,欧姆内阻的降低有利于电池容量的增加。这与图6(a)的结果相吻合。
为了研究Al2O3面包覆对锂离子电池正极材料安全性能的影响,对电池进行过充和针刺实验,图8(a)和(b)分别显示了以PC-NCM622和SC-NCM622为正极材料的电池过充性能实验结果。
结论:
本发明通过Al2O3面包覆的改性,LiNi0.6Co0.2Mn0.2O2材料的循环性能和倍率性能得到明显改善。采用Al2O3面包覆的材料作为正极的锂电池具有52.60Ah的初始放电容量,并且2500次循环(25℃,2.5~4.3V,1C)后容量保持率为84.62%,高于采用Al2O3点包覆的材料作为正极的锂电池在相同条件下的容量保持率(82.84%)。同样,在25℃、2.5~4.3V测试条件下,本发明锂电池在3C的倍率下放电具有更好的容量保持率,表现出最佳的倍率性能。由此可见,Al2O3面包覆可以有效地防止活性材料和电解质之间的直接接触,有利于改善材料的结构和表面稳定性,从而提高锂离子电池正极的电化学性能。

Claims (5)

1.一种高循环性能和高安全性能的锂离子电池正极材料的制备方法,锂离子电池以Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2为正极材料,以石墨为负极材料,以多孔聚乙烯膜为隔膜、隔膜表面涂覆陶瓷材料,以含1.0 mol/L锂盐LiPF6的DMC/EC/EMC混合溶液为电解液;所述Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2由如下方法制备获得:
(1)将异丙氧基铝溶于无水异丙醇中,配制成浓度为0.5~2wt%的稀溶液;
(2)将LiNi0.6Co0.2Mn0.2O2材料置于异丙氧基铝-异丙醇稀溶液中,加以氮气保护,在常温下搅拌8~12小时后,停止氮气保护,通入空气,使之发生水解反应;
(3)过滤并烘干,并在400~600℃下热处理8~12 h,得到所述Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2
2.如权利要求1所述的方法,其特征在于正极按如下方法制得:Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2与导电剂乙炔黑以及粘结剂聚偏氟乙烯按质量比80:10:10混合,加入溶剂N-甲基吡咯烷酮制成浆料,将浆料涂覆于厚度为12 µm的铝箔上,120 ℃真空干燥,辊压成片,作为锂离子电池正极。
3.如权利要求1所述的方法,其特征在于步骤(2)中所述异丙氧基铝用量以铝元素计为LiNi0.6Co0.2Mn0.2O2材料质量的0.5~5%。
4.如权利要求1所述的方法,其特征在于所述LiNi0.6Co0.2Mn0.2O2材料由如下方法制得:
(1)称取化学计量比为6:2:2的NiSO4、CoSO4和MnSO4,加入蒸馏水中配成浓度为2.0mol/L的混合溶液;
(2)将步骤(1)中的混合溶液缓慢加入惰性气体保护的共沉淀反应釜中,配制4.0 mol/L NaOH溶液作为沉淀剂和3 mol/L NH3·H2O溶液作为螯合剂,并依次加入反应釜中进行共沉淀;加料速度控制在0.8~1 L/h,搅拌速率控制在200~300 r/min,控制温度为55±2 ℃,pH值为10.5,液相共沉淀产物陈化时间为8 h;
(3)过滤、洗涤和干燥步骤(2)中的共沉淀反应产物,得到了镍钴锰复合氢氧化物前驱体[(Ni0.6Co0.2Mn0.2)](OH)2
(4)将步骤(3)中的前驱体与Li2CO3放入研钵中研磨均匀,先在空气中预烧结5 h,然后在840℃下进行12 h的高温煅烧,最终制得LiNi0.6Co0.2Mn0.2O2三元材料。
5.如权利要求4所述的方法,其特征在于[(Ni0.6Co0.2Mn0.2)](OH)2和Li2CO3中Li:(Ni+Co+Mn)物质的量之比为1.12 : 1。
CN202010073074.3A 2020-01-22 2020-01-22 一种高循环性能和高安全性能的锂离子电池 Active CN111244428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010073074.3A CN111244428B (zh) 2020-01-22 2020-01-22 一种高循环性能和高安全性能的锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010073074.3A CN111244428B (zh) 2020-01-22 2020-01-22 一种高循环性能和高安全性能的锂离子电池

Publications (2)

Publication Number Publication Date
CN111244428A CN111244428A (zh) 2020-06-05
CN111244428B true CN111244428B (zh) 2021-06-22

Family

ID=70879792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010073074.3A Active CN111244428B (zh) 2020-01-22 2020-01-22 一种高循环性能和高安全性能的锂离子电池

Country Status (1)

Country Link
CN (1) CN111244428B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190494A (zh) * 1996-05-09 1998-08-12 松下电器产业株式会社 非水电解质二次电池
WO2010072136A1 (zh) * 2008-12-22 2010-07-01 深圳市比克电池有限公司 一种锂离子电池正极的材料及制备方法
CN103700825A (zh) * 2013-12-18 2014-04-02 江苏科捷锂电池有限公司 Li(Ni0.4Co0.2Mn0.4)O0.2锂电池正极材料掺杂包覆方法
CN104852038A (zh) * 2015-04-08 2015-08-19 中国科学院长春应用化学研究所 高容量、可快速充放电锂离子电池三元正极材料的制备方法
CN106450198A (zh) * 2016-10-21 2017-02-22 浙江工业大学 一种醇铝水解法制备氧化铝包覆富锂锰基材料的方法及其应用
CN109546111A (zh) * 2018-11-13 2019-03-29 武汉科技大学 一种多重改性镍钴锰正极材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336915B (zh) * 2014-08-13 2019-01-01 微宏动力系统(湖州)有限公司 锂离子二次电池用正极材料、其制备方法及锂离子二次电池
CN110416550B (zh) * 2019-08-21 2021-05-28 中国科学院宁波材料技术与工程研究所 一种包覆型锂离子电池电极材料及其制备方法以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190494A (zh) * 1996-05-09 1998-08-12 松下电器产业株式会社 非水电解质二次电池
WO2010072136A1 (zh) * 2008-12-22 2010-07-01 深圳市比克电池有限公司 一种锂离子电池正极的材料及制备方法
CN103700825A (zh) * 2013-12-18 2014-04-02 江苏科捷锂电池有限公司 Li(Ni0.4Co0.2Mn0.4)O0.2锂电池正极材料掺杂包覆方法
CN104852038A (zh) * 2015-04-08 2015-08-19 中国科学院长春应用化学研究所 高容量、可快速充放电锂离子电池三元正极材料的制备方法
CN106450198A (zh) * 2016-10-21 2017-02-22 浙江工业大学 一种醇铝水解法制备氧化铝包覆富锂锰基材料的方法及其应用
CN109546111A (zh) * 2018-11-13 2019-03-29 武汉科技大学 一种多重改性镍钴锰正极材料及其制备方法

Also Published As

Publication number Publication date
CN111244428A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN114790013B (zh) 自补钠的钠离子电池正极活性材料及其制备方法和应用
EP3930051B1 (en) Positive electrode material and application thereof
KR101400593B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN111422919B (zh) 四元正极材料及其制备方法、正极、电池
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
CN116454261A (zh) 锂离子电池正极材料及其制备方法
CN114497527B (zh) 一种富锂锰基正极材料及其制备方法和锂离子电池
CN111771301A (zh) 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
CN111009654A (zh) Mo掺杂的LiNi0.6Co0.2Mn0.2O2正极材料及其制备方法
KR101439638B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN113571679A (zh) 一种尖晶石氧化物包覆富锂锰基正极材料
CN114597372A (zh) 一种超高镍正极材料及其制备方法和应用
CN116344827B (zh) 一种多元正极材料及其制备方法
EP4299650A1 (en) Core-shell gradient ternary precursor, and preparation method therefor and use thereof
CN111244428B (zh) 一种高循环性能和高安全性能的锂离子电池
CN113437285B (zh) 一种钾离子二次电池正极材料及其制备方法和应用
CN114864894A (zh) 一种耐高压包覆层修饰的富锂锰基正极材料及其制备方法和应用
CN113328077A (zh) 一种正极材料、其制备方法和应用
CN115064682B (zh) 一种表面和体相共同修饰的富锂锰基层状氧化物的制备方法及应用
CN116247161B (zh) 一种电池
Liu et al. Synthesis and electrochemical properties of LiNi 0.4 Mn 1.5 Cr 0.1 O 4 and Li 4 Ti 5 O 12
CN111009642A (zh) Al2O3面包覆的LiNi0.6Co0.2Mn0.2O2正极材料及其制备方法
KR101448356B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant