Nothing Special   »   [go: up one dir, main page]

CN110128686B - 一种具有化学稳定性的质子交换膜的制备方法 - Google Patents

一种具有化学稳定性的质子交换膜的制备方法 Download PDF

Info

Publication number
CN110128686B
CN110128686B CN201910355411.5A CN201910355411A CN110128686B CN 110128686 B CN110128686 B CN 110128686B CN 201910355411 A CN201910355411 A CN 201910355411A CN 110128686 B CN110128686 B CN 110128686B
Authority
CN
China
Prior art keywords
film
membrane
proton exchange
ferricyanide
polymer matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910355411.5A
Other languages
English (en)
Other versions
CN110128686A (zh
Inventor
尹燕
张俊锋
刘鑫
迈克尔·多米尼克·盖费
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910355411.5A priority Critical patent/CN110128686B/zh
Publication of CN110128686A publication Critical patent/CN110128686A/zh
Priority to US16/690,139 priority patent/US20200343569A1/en
Priority to JP2020072238A priority patent/JP2020184521A/ja
Priority to KR1020200048226A priority patent/KR20200126905A/ko
Priority to JP2022000025U priority patent/JP3237055U/ja
Application granted granted Critical
Publication of CN110128686B publication Critical patent/CN110128686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2323/36Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with nitrogen-containing compounds, e.g. by nitration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于质子导电高分子材料制备技术领域,公开了一种具有化学稳定性的质子交换膜的制备方法。首先制备聚合物基体材料;然后将聚合物基体材料与含有铁氰配位基团的材料进行物理混合,合用为膜配方,或使聚合物基体材料与含有铁氰配位基团的材料发生铁氰配位基团的配位基取代反应成为整体,单独作为膜配方;再将膜配方材料溶解在溶剂中配成制膜液,充分溶解后静置脱泡;再将制膜液倒入培养皿,在一定温度、时间条件下,通过溶剂蒸发法成膜;成膜过程结束后,在冰浴中对膜进行酸化即可得到质子交换膜。本发明在膜配方材料中引入铁氰配位基团,能够持续消耗燃料电池运行过程中系统内产生的自由基,制备出具有高化学稳定性的质子交换膜。

Description

一种具有化学稳定性的质子交换膜的制备方法
技术领域
本发明属于质子导电高分子材料制备技术领域,具体来说,是涉及一种质子交换膜的制备方法。
技术背景
质子交换膜作为质子交换膜燃料电池的核心部件,在分隔电池阴阳极的同时,担负着传导质子、隔绝电子的作用,对质子交换膜燃料电池的整体性能起着决定性的影响。目前,一些商业化的质子交换膜,如Nafion系列产品,其导电性能已经可以达到在质子交换膜燃料电池中使用的基本要求。然而,在质子交换膜燃料电池的实际运行中,质子交换膜处于一个集水、热、电和化学反应交织的复杂体系内,极易发生机械、热和化学降解,其使用耐久性是一个长期未解的难题。
在质子交换膜可能发生的各类降解中,化学降解是指质子交换膜材料受到自由基OH·和OOH·的攻击而受到的破坏,这部分降解在质子交换膜的总降解中占较大比重,因此备受关注。目前,使用最广泛的改善质子交换膜化学稳定性的方式是掺入过渡金属离子类的自由基分解催化剂。其他改善手段包括小分子抗氧化剂,或在质子交换膜中加入杂多酸。尽管这些方法使得质子交换膜的化学稳定性有了一定程度的增强,但效果较为有限,且缺乏对质子交换膜化学稳定性提高的理论支持和深入理解。
发明内容
本发明着力于解决质子交换膜在燃料电池实际使用中耐久性低的技术问题,提供了一种具有化学稳定性的质子交换膜的制备方法,该方法将具有强负电荷密度的铁氰配位基团引入质子交换膜,能够对质子交换膜燃料电池运行过程中系统内的自由基OH·和OOH·进行持续消耗,得到具有高化学稳定性的质子交换膜。
为了解决上述技术问题,本发明通过以下的技术方案予以实现:
一种具有化学稳定性的质子交换膜的制备方法,该方法按照以下步骤进行:
(1)制备能够进行溶液浇铸法成膜的聚合物基体材料;
(2)将所述聚合物基体材料与含有单个铁氰配位基团的无机分子进行简单物理混合,合用为膜配方,或使所述聚合物基体材料与含有铁氰配位基团的材料发生铁氰配位基团的配位基取代反应成为整体,单独作为膜配方;
(3)将所述膜配方的材料溶解在溶剂中,配成总浓度为10-500g/L的制膜液,充分溶解后静置脱泡;
(4)将所述制膜液倒入培养皿,在温度20-120℃下挥发溶剂12-48h成膜;
(5)成膜过程结束后,在冰浴中对膜进行酸化处理,即可得到具有化学稳定性的质子交换膜。
优选地,步骤(1)中所述聚合物基体材料为Nafion212,磺酸化聚醚醚酮,磺酸化聚砜,磺酸化聚醚砜,磺酸化聚酰亚胺,磺酸化聚苯乙烯,聚乙烯基吡啶,聚氯乙烯或偏氟乙烯与六氟丙烯的共聚物中的一种。
优选地,步骤(2)中所述的含有铁氰配位基团的材料为亚铁氰化钾,铁氰化钾或五氰基氨铁钠盐中的一种。
优选地,步骤(2)中所述的聚合物基体材料与含有铁氰配位基团的材料进行物理混合时,二者质量份之比为(99~90):(1~10),使聚合物基体材料与含有铁氰配位基团的材料发生化学反应成为整体时,改性的整体材料中含有铁氰配位基团的链段比例为1%~70%。
优选地,步骤(3)中所述的溶剂为二甲基甲酰胺、二甲基乙酰胺、氮甲基吡咯烷酮、二甲基亚砜、间甲酚、四氢呋喃或甲醇中的一种。
本发明的有益效果是:
本发明提供的一种具有化学稳定性的质子交换膜的制备方法,可适用的原材料广泛,制备流程简单,处理条件温和。
与一般制膜方法相比,本发明将具有强负电荷密度的铁氰配位基团引入成膜配方,能够对质子交换膜燃料电池运行过程中系统内的自由基OH·和OOH·进行持续消耗,得到具有高化学稳定性的质子交换膜。
自由基OH·和OOH·都包含不成对的电子,因此均具有高度的亲电性,质子交换膜结构中带负电荷的区域更容易受到OH·和OOH·的攻击。现有研究表明,质子交换膜中的羧基、磺酸基或醚基通常对OH·和OOH·更敏感,可以作为对此假设支持的有力证据。因此,在膜材料中引入带有强负电荷密度的铁氰配位基团,能够持续消耗燃料电池运行时系统内产生的自由基,显著地提高质子交换膜的化学稳定性,使得质子交换膜在燃料电池实际运行中的使用耐久性得到了大幅度提升。
附图说明
图1为实施例1所制备的质子交换膜(Nafion212-Redox)与由Nafion212溶质单独制备的质子交换膜(Nafion212)在燃料电池无工作电流条件下测试的开路电压值随时间的变化图;
图2为实施例2所制备的质子交换膜(SPEEK-Redox)与由磺酸化聚醚醚酮单独制备的质子交换膜(SPEEK)在燃料电池无工作电流条件下测试的开路电压值随时间的变化图;
图3为实施例3所制备的质子交换膜(SPSf-Redox)与由磺酸化聚砜单独制备的质子交换膜(SPSf)在燃料电池无工作电流条件下测试的开路电压值随时间的变化图。
具体实施方式
下面通过具体的实施例对本发明作进一步的详细描述,以下实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
(1)蒸发商业化NafionD521分散液的溶剂,得到Nafion212溶质;
(2)将Nafion212溶质与亚铁氰化钾按质量份之比95:5进行物理混合为制膜配方;
(3)将制膜配方溶于二甲基甲酰胺,配成溶质总浓度为100g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在80℃蒸发溶20h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
图1为实施例1中由Nafion212溶质和亚铁氰化钾物理混合制备的质子交换膜(Nafion212-Redox)与由Nafion212溶质单独制备的质子交换膜(Nafion212)在燃料电池无工作电流条件下测试的开路电压值随时间的变化。阳极氢气流速120sccm,阴极氧气流速160sccm,测试温度90℃,测试湿度30%RH,测试压力为标准大气压无背压。在高温低湿无工作电流的条件下,燃料电池内会产生大量自由基,使质子交换膜快速地发生化学降解。由图1可见,Nafion212-Redox的开路电压能够在270小时(h)内保持基本不变,而Nafion212的开路电压则在180小时内衰减了60%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例2
(1)将10.0g聚醚醚酮溶于300ml浓硫酸,在室温下反应60小时,产物溶液倒入冰水中,将沉淀物用超纯水洗至pH=7,然后在室温干燥12h,得到磺化度为70%的磺酸化聚醚醚酮;
(2)将磺酸化聚醚醚酮与铁氰化钾按质量份之比90:10进行物理混合为制膜配方;
(3)将制膜配方溶于二甲基乙酰胺,配成溶质总浓度为50g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在120℃蒸发溶12h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例2中由磺酸化聚醚醚酮和铁氰化钾物理混合制备的质子交换膜(SPEEK-Redox)与由磺酸化聚醚醚单独制备的质子交换膜(SPEEK)组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。由图1可见,SPEEK-Redox的开路电压能够在380小时(h)内降低了约2.5%,而SPEEK的开路电压则在220小时内衰减了55%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例3
(1)将5.0g聚砜溶于200ml浓硫酸,在室温下反应30小时,产物溶液倒入冰水中,将沉淀物用超纯水洗至pH=7,然后在室温干燥12h,得到磺化度为45%的磺酸化聚砜;
(2)将磺酸化聚砜与五氰基氨铁钠盐按质量份之比99:1进行物理混合为制膜配方;
(3)将制膜配方溶于氮甲基吡咯烷酮,配成溶质总浓度为500g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在20℃蒸发溶48h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例3中由磺酸化聚砜和五氰基氨铁钠盐物理混合制备的质子交换膜(SPSf-Redox)与由磺酸化聚砜单独制备的质子交换膜(SPSf)组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。由图1可见,SPSf-Redox的开路电压能够在320小时(h)内降低了约5%,而SPSf的开路电压则在180小时内衰减了35%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例4
(1)将3.0g聚醚砜在冰浴环境下溶于100ml三氯乙烷,加入20ml氯磺酸反应6小时,混合溶液倒入冰水中,将沉淀物用超纯水洗至pH=7,然后在室温干燥12h,得到磺化度为55%的磺酸化聚醚砜;
(2)将磺酸化聚醚砜与五氰基氨铁钠盐按质量份之比97:3进行物理混合为制膜配方;
(3)将制膜配方溶于二甲基亚砜,配成溶质总浓度为300g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在40℃蒸发溶40h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例4中由磺酸化聚醚砜和五氰基氨铁钠盐物理混合制备的质子交换膜与由磺酸化聚醚砜单独制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在300小时内降低了约3%,而后者的开路电压则在120小时内衰减了40%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例5
(1)将2.0g二胺基联苯二磺酸、4.0g萘四甲酸二酐、2.0g二氨基二苯醚溶于100ml间甲酚,在氮气保护下130℃反应12h,反应液倒入丙酮中,将沉淀物用1mol/L的稀硫酸浸泡12h,再用超纯水洗至pH=7,然后在30℃干燥12h得到磺化度为50%的磺酸化聚酰亚胺;
(2)将磺酸化聚酰亚胺与铁氰化钾按质量份之比98:2进行物理混合为制膜配方;
(3)将制膜配方溶于间甲酚,配成溶质总浓度为200g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在20℃蒸发溶48h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例5中由磺酸化聚酰亚胺和铁氰化钾物理混合制备的质子交换膜与由磺酸化聚砜单独制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在500小时内降低了约8%,而后者的开路电压则在180小时内衰减了30%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例6
(1)将5.0g乙烯基苯和5.0g乙烯基苯磺酸钠单体溶于苯,以0.7g偶氮二异丁腈为引发剂进行自由基聚合,在氮气保护温度120℃反应18h,将反应液倒入水中沉淀得到磺化度为35%的磺酸化聚苯乙烯;
(2)将磺酸化聚苯乙烯与亚铁氰化钾按质量份之比91:9进行物理混合为制膜配方;
(3)将制膜配方溶于二甲基甲酰胺,配成溶质总浓度为350g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在50℃蒸发溶30h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例6中由磺酸化聚苯乙烯和亚铁氰化钾物理混合制备的质子交换膜与由磺酸化聚苯乙烯单独制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在200小时内降低了约5%,而后者的开路电压则在90小时内衰减了50%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例7
(1)将10.0g乙烯基吡啶单体溶于苯,以0.5g偶氮二异丁腈为引发剂进行自由基聚合,在氮气保护温度100℃反应12h,将反应液倒入水中沉淀得到聚乙烯基吡啶;
(2)将1.6g五氰基氨铁钠盐与3.8g15-冠-5溶于10ml水,0.4g聚乙烯基吡啶溶于10ml甲醇,将两溶液混合,在40℃反应1h,在冰浴氛围中将反应液倒入水中,沉淀物用1mol/L的稀硫酸洗涤/异丙醇沉淀循环3次,然后在室温干燥12h即为产物
Figure BDA0002045263470000071
作为膜配方,其中改性链段比例x为70%;
(3)将膜配方材料溶于甲醇,配成溶质总浓度为10g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在30℃蒸发溶42h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例7中由五氰基氨铁钠盐改性的聚乙烯基吡啶制备的质子交换膜与由未改性的聚乙烯基吡啶制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在360内小时降低了约9%,而后者的开路电压则在60小时内衰减了55%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例8
(1)将商业聚氯乙烯材料溶于四氢呋喃,在水中沉淀,得到纯化的聚氯乙烯;
(2)将5g纯化的聚氯乙烯与0.5g氢化钠、5g对羟基吡啶的300ml二甲基甲酰胺溶液在0℃反应2h,反应液倒入水中,在30℃干燥12h得到前驱体聚合物;将9.6g五氰基氨铁钠盐与24.0g15-冠-5溶于50ml水,1.0g前驱体聚合物溶于50ml二甲基甲酰胺,将两溶液混合,在40℃反应8h,反应液倒入水中,将沉淀物用1mol/L的稀硫酸洗涤3次,再用超纯水洗至pH=7,然后在80℃干燥12h即为产物
Figure BDA0002045263470000072
作为膜配方,其中改性链段比例x为35%;
(3)将膜配方材料溶于四氢呋喃,配成溶质总浓度为250g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在90℃蒸发溶16h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例8中由五氰基氨铁钠盐改性的聚氯乙烯制备的质子交换膜与由未改性的聚氯乙烯制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在400小时内降低了约5%,而后者的开路电压则在150小时内衰减了32%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
实施例9
(1)将4.0g偏氟乙烯和6.0g六氟丙烯溶于100ml二甲基甲酰胺,以0.4g过氧化苯甲酰为引发剂进行自由基聚合,在氮气保护温度120℃反应18h,将反应液倒入水中沉淀得到偏氟乙烯与六氟丙烯的共聚物;
(2)将3g偏氟乙烯与六氟丙烯的共聚物与0.1g氢化钠、1g对羟基吡啶的300ml二甲基甲酰胺溶液在0℃反应1h,反应液倒入水中,在30℃干燥12h得到前驱体聚合物;将1.2g五氰基氨铁钠盐与3.0g15-冠-5溶于10ml水,1.0g前驱体聚合物溶于10ml二甲基甲酰胺,将两溶液混合,在50℃反应6h,反应液倒入水中,将沉淀物用1mol/L的稀硫酸洗涤3次,再用超纯水洗至pH=7,然后在80℃干燥12h即为产物
Figure BDA0002045263470000081
作为膜配方,其中改性链段比例x为1%;
(3)将膜配方材料溶于二甲基亚砜,配成溶质总浓度为200g/L的制膜液,充分溶解后静置脱泡;
(4)将制膜液倒入培养皿,在气压1atm的条件下,在100℃蒸发溶15h成膜;
(5)成膜过程结束后,将膜从培养皿取下,在冰浴环境中浸泡在1mol/L的稀硫酸中进行酸化处理,即可得到具有高化学稳定性的质子交换膜。
将实施例9中由五氰基氨铁钠盐改性的偏氟乙烯与六氟丙烯的共聚物制备的质子交换膜与由未改性的偏氟乙烯与六氟丙烯的共聚物制备的质子交换膜组装在燃料电池中,在无工作电流条件下测试的开路电压值随时间的变化,测试条件与实施例1相同。前者的开路电压在600小时内降低了约6%,而后者的开路电压则在180小时内衰减了30%以上。燃料电池开路电压耐久性的测试结果证明了强负电荷的铁氰基团可以大幅度提高质子交换膜的化学稳定性。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (2)

1.一种具有化学稳定性的质子交换膜的制备方法,其特征在于,该方法按照以下步骤进行:
(1)制备能够进行溶液浇铸法成膜的聚合物基体材料;所述聚合物基体材料为Nafion212,磺酸化聚醚醚酮,磺酸化聚砜,磺酸化聚醚砜,磺酸化聚酰亚胺,磺酸化聚苯乙烯,聚乙烯基吡啶,聚氯乙烯,偏氟乙烯与六氟丙烯的共聚物中的一种;
(2)将所述聚合物基体材料与含有单个铁氰配位基团的无机分子进行物理混合,合用为膜配方,或使所述聚合物基体材料与含有铁氰配位基团的材料发生铁氰配位基团的配位基取代反应成为整体,单独作为膜配方;所述的含有铁氰配位基团的材料为亚铁氰化钾,铁氰化钾或五氰基氨铁钠盐中的一种;
步骤(2)中所述的聚合物基体材料与含有铁氰配位基团的材料进行物理混合时,二者质量份之比为(99~90):(1~10),使聚合物基体材料与含有铁氰配位基团的材料发生铁氰配位基团的配位基取代反应成为整体时,改性的整体材料中含有铁氰配位基团的链段比例为1%~70%;
(3)将所述膜配方的材料溶解在溶剂中,配成总浓度为10-500g/L的制膜液,充分溶解后静置脱泡;
(4)将所述制膜液倒入培养皿,在温度20-120℃下蒸发溶剂12-48h成膜;
(5)成膜过程结束后,在冰浴中对膜进行酸化处理,即可得到具有化学稳定性的质子交换膜。
2.根据权利要求1所述的一种具有化学稳定性的质子交换膜的制备方法,其特征在于,步骤(3)中所述的溶剂为二甲基甲酰胺、二甲基乙酰胺、氮甲基吡咯烷酮、二甲基亚砜、间甲酚、四氢呋喃或甲醇的一种。
CN201910355411.5A 2019-04-29 2019-04-29 一种具有化学稳定性的质子交换膜的制备方法 Active CN110128686B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910355411.5A CN110128686B (zh) 2019-04-29 2019-04-29 一种具有化学稳定性的质子交换膜的制备方法
US16/690,139 US20200343569A1 (en) 2019-04-29 2019-11-21 Proton exchange membrane with enhanced chemical stability and method of preparing thereof
JP2020072238A JP2020184521A (ja) 2019-04-29 2020-04-14 高い化学的安定性を有するプロトン交換膜およびその調製方法
KR1020200048226A KR20200126905A (ko) 2019-04-29 2020-04-21 화학적 안정성이 향상된 양성자 교환막 및 그 제조방법
JP2022000025U JP3237055U (ja) 2019-04-29 2022-01-07 高い化学的安定性を有するプロトン交換膜およびその調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910355411.5A CN110128686B (zh) 2019-04-29 2019-04-29 一种具有化学稳定性的质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN110128686A CN110128686A (zh) 2019-08-16
CN110128686B true CN110128686B (zh) 2022-04-19

Family

ID=67575719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910355411.5A Active CN110128686B (zh) 2019-04-29 2019-04-29 一种具有化学稳定性的质子交换膜的制备方法

Country Status (4)

Country Link
US (1) US20200343569A1 (zh)
JP (2) JP2020184521A (zh)
KR (1) KR20200126905A (zh)
CN (1) CN110128686B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363542B (zh) * 2021-06-09 2023-02-14 深圳市通用氢能科技有限公司 一种质子交换膜及其制备方法和燃料电池
CN114214688B (zh) * 2021-11-18 2023-08-22 宁波东泱氢能科技有限公司 一种提高质子交换膜抗氧化自由基降解的方法
CN114597463A (zh) * 2022-03-11 2022-06-07 南京工业大学 一种基于微孔骨架共混膜制备方法和用途
CN115084608B (zh) * 2022-06-20 2024-05-17 中国科学技术大学 一种抗氧化型质子交换膜、其制备方法及质子交换膜燃料电池
CN114824395A (zh) * 2022-06-20 2022-07-29 江苏展鸣新能源有限公司 一种燃料电池质子交换膜及其制备方法
WO2024014400A1 (ja) * 2022-07-13 2024-01-18 Agc株式会社 含フッ素共重合体の製造方法
CN115566238B (zh) * 2022-10-20 2023-08-22 重庆星际氢源科技有限公司 一种具有高抗硬水能力的复合质子交换膜及其制备方法和应用
CN115548398B (zh) * 2022-11-08 2024-08-06 安徽理工大学 磺化聚醚醚酮、硅钨酸和离子液体掺杂改性聚氯乙烯基质子交换膜的制备方法
CN117254081B (zh) * 2023-09-19 2024-05-14 上海大学 一种抗老化质子交换膜及其制备方法与膜电极组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247155A (ja) * 2003-02-13 2004-09-02 Asahi Glass Co Ltd 固体高分子電解質膜及び固体高分子型燃料電池用膜電極接合体
EP2033324B1 (en) * 2006-05-24 2016-04-13 Ben Gurion University of the Negev Research and Development Authority Membranes and methods for their preparation
CN103214689B (zh) * 2013-03-20 2014-06-11 太原理工大学 一种离子印迹聚合物薄膜的制备方法
JP6665714B2 (ja) * 2016-06-30 2020-03-13 株式会社豊田中央研究所 固体高分子型燃料電池
CN109078501B (zh) * 2018-07-11 2021-08-31 天津大学 一种具有有序离子传导结构的离子交换膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications;Mohammad Javad Parnian等;《Journal of Membrane Science》;20180330;第556卷;第12-22页 *
改性聚苯乙烯磺酸质子交换膜材料的制备及机理;何燕,周震涛;《电源技术》;20050131;第29卷(第1期);第19-23页 *

Also Published As

Publication number Publication date
JP3237055U (ja) 2022-04-07
KR20200126905A (ko) 2020-11-09
US20200343569A1 (en) 2020-10-29
CN110128686A (zh) 2019-08-16
JP2020184521A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
CN110128686B (zh) 一种具有化学稳定性的质子交换膜的制备方法
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
CN102687328B (zh) 具有低降解性的复合质子传导膜以及包含其的燃料电池用膜电极组件
EP1290068B1 (en) Polymer membrane composition
US5795496A (en) Polymer material for electrolytic membranes in fuel cells
EP1085590A1 (en) Composite polymer membrane, method for producing the same and solid polymer electrolyte membrane
CN104134813B (zh) 一种长寿命聚电解质膜及其制备方法
CN112133946A (zh) 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
CN102496732A (zh) 聚偏氟乙烯接枝对苯乙烯磺酸质子交换膜的制备方法
CN108847498B (zh) 一种侧链型磺化聚砜质子交换膜及其制备方法
CN104835933A (zh) 一种接枝型聚合物质子交换膜及其制备方法
CN113067022A (zh) 一种含氨基磺化聚芳醚酮砜共混金属有机框架复合膜及其制备方法
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
CN116613362A (zh) 一种用于钒电池的复合两性离子交换膜及其制备方法
CN112151843A (zh) 一种中性氧化还原液流电池体系的制备方法
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用
CN112421085B (zh) 一种全氟磺酸树脂氢燃料电池质子膜及其制备方法
US8993193B2 (en) Sulfonated perfluorosulfonic acid polyelectrolyte membranes
CN111342094B (zh) 一种稀土掺杂全氟磺酸膜的制备方法
CN115181420B (zh) 一种含亲水辅助基团的离子溶剂膜及其制备方法和应用
CN117069988B (zh) 一种磺化聚醚醚酮基复合离子膜的制备方法及其产品和应用
CN112436169B (zh) 长寿命全氟质子膜及其制备方法
WO2015076641A1 (ko) 이온 교환막 및 그 제조방법
CN116693841A (zh) 一种功能型侧链酚酞聚醚酮、离子交换膜及其制备方法和应用
KR101552677B1 (ko) 테트라페닐에틸렌을 함유하는 설폰화 폴리페닐렌 고분자 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant