Nothing Special   »   [go: up one dir, main page]

CN115832295A - 一种极片及其制备方法 - Google Patents

一种极片及其制备方法 Download PDF

Info

Publication number
CN115832295A
CN115832295A CN202111186045.9A CN202111186045A CN115832295A CN 115832295 A CN115832295 A CN 115832295A CN 202111186045 A CN202111186045 A CN 202111186045A CN 115832295 A CN115832295 A CN 115832295A
Authority
CN
China
Prior art keywords
pole piece
optionally
carbon atoms
pore
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111186045.9A
Other languages
English (en)
Other versions
CN115832295B (zh
Inventor
林江辉
赵延杰
李星
金海族
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Priority to CN202111186045.9A priority Critical patent/CN115832295B/zh
Priority to PCT/CN2022/118742 priority patent/WO2023061136A1/zh
Priority to EP22880078.5A priority patent/EP4239729A1/en
Publication of CN115832295A publication Critical patent/CN115832295A/zh
Priority to US18/330,093 priority patent/US20230317948A1/en
Application granted granted Critical
Publication of CN115832295B publication Critical patent/CN115832295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种极片及其制备方法。本申请的极片包括集流体和设置于所述集流体至少一个表面上的极片材料层,所述极片材料层包括活性物质和任选地导电剂,其中所述极片材料层包括式(I)的化合物。本申请的极片孔隙率较高、孔隙分布更均匀、电解液初始浸润效果更好、对电解液的保液能力好,并且具有降低的初始极化、减小的直流阻抗(DCR),进而能够改善包含该极片的电池的性能。

Description

一种极片及其制备方法
技术领域
本申请涉及锂电池技术领域,尤其涉及一种极片及其制备方法、二次电池、电池模块、电池包和用电装置。
背景技术
锂离子电池作为一种高性能二次电池,因其循环寿命长和环境友好等特点,被广泛应用于诸多领域。获得性能更好的锂离子电池是普遍的追求。
现有的极片中孔隙率小,孔隙分布不均匀,不利于电解液的浸润,对电解液的保有量不足,这使极片极化增大,进一步导致电池性能不理想。
为解决上述问题,现有技术中采用多种方式对极片造孔,但所得极片的孔隙率、孔隙分布等均不够理想,并且造孔过程还伴随有污染、腐蚀、成本高等问题。
因此,本领域急需开发一种孔隙率提高、孔隙分布均匀的极片。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种孔隙率高、孔隙分布均匀的极片。
为了达到上述目的,本申请提供了一种极片,其包括集流体和设置于所述集流体至少一个表面上的极片材料层,所述极片材料层包括活性物质和导电剂,其中,所述极片材料层还包括式(I)的化合物:
Figure BDA0003299847800000021
其中,R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为1-6的链烷氧基、碳原子数为2-6的链烯基、碳原子数为6-20的芳基、羟基或氨基;其中所述链烷基、链烷氧基、链烯基和芳基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、碳原子数为1-6的烷基羟基、羟基、氨基、酰胺基、氰基、羧基、卤素;并且n为50-10000的整数。
由此,本申请提供了一种极片,其孔隙率较高、孔隙分布更均匀。并且,本申请的极片电解液初始浸润效果更好、对电解液的保液能力好、具有降低的初始极化、减小的直流阻抗(DCR)。
在任意实施方式中,式(I)中,R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为2-6的链烯基或苯基;其中所述链烷基、链烯基和苯基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、羟基或氨基;可选地,R1选自碳原子数为1-6的链烷基、未取代的碳原子数为1-6的链烯基或苯基,所述链烷基和苯基各自独立地任选地被碳原子数为1-3的烷基或羟基取代;更可选地,R1选自乙基、异丙基、烯丙基、羟甲基或对羟基苯基;并且R2为氢。
在任意实施方式中,式(I)中,n为75-5000的整数;可选地,n为100-2000的整数。
以上,通过进一步选择式(I)中的各个基团和聚合单元数n,能够进一步改善极片的孔隙结构特性(如,孔隙率和分布均匀性),并且能够进一步提高极片对电解液的“抓取”和保液能力,降低初始极化,减小DCR等。
在任意实施方式中,所述极片材料层包括0.1-20重量%,可选地0.2-10重量%的式(I)的化合物,基于所述极片材料层的总重量计。以上述含量包含式(I)的化合物的极片,其具有更好的电解液浸润效果。
在任意实施方式中,所述极片为负极极片。
在任意实施方式中,所述活性物质选自以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂。
通过选择负极活性物质,进一步提升负极极片的性能。
本申请的第二方面提供一种极片的制备方法,包括:
(1)将活性物质、导电剂和式(I)的化合物的干混混合物、水、粘结剂在低于35℃的第一温度下混合,得到极片材料浆料,
Figure BDA0003299847800000031
其中,R1、R2和n如上文所定义,
(2)将所述极片材料浆料施加在集流体的至少一个表面上,干燥,得到极片。
以上,提供了本申请的极片的制备方法。其中,采用式(I)的化合物作为造孔剂,实现了对极片孔隙率、均匀性和一致性的改善,并改善了极片被电解液浸润的性能和对电解液的保液性能,从而改善了极片和包含该极片的电池的循环性能。
在任意实施方式中,所述极片材料浆料的固含量为40重量%-70重量%,可选地为40重量%-65重量%,更可选地为45重量%-60重量%,基于所述极片材料浆料的总重量计。
在本申请的极片制备方法中,通过控制浆料的固含量可以控制并改善造孔效果。
通过控制造孔剂式(I)的化合物的加入量可以控制和改善造孔效果。
在任意实施方式中,所述第一温度为20-30℃,可选地为22-28℃,更可选地为25℃。选择这样的第一温度使式(I)的化合物在浆料制备期间能够溶于溶剂(如,水)中,以实现更理想的造孔效果。
在任意实施方式中,所述干燥在高于45℃的温度下,可选地在90℃-150℃,更可选在115℃-145℃,最可选在125-135℃下进行。通过将干燥温度选择在上述范围内,可以获得理想的烘干速率,兼顾生产效率的同时,实现期望的造孔过程;所得到的极片结构更稳定,孔道更均匀,从而使极片性能更好。
在任意实施方式中,所述水为去离子水。进一步选择去离子水,能够减少杂质在极片内的残留,避免其对极片的电化学性能造成不良影响。
在任意实施方式中,所述极片是负极极片。
在任意实施方式中,所述活性物质选自以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂。进一步选择负极活性物质,能够进一步改善负极极片性能。
本申请的第三方面提供式(I)的化合物作为造孔剂的用途,
Figure BDA0003299847800000041
其中,R1、R2和n如上文所定义。
以上,本申请提供了一种式(I)的化合物作为造孔剂的用途。该化合物用于造孔用途,操作简单、过程环保,所得到的孔隙率高、孔隙分布均匀。
在任意实施方式中,所述造孔剂用于对极片的极片材料层造孔。
在任意实施方式中,所述极片为负极极片。
当式(I)的化合物作为造孔剂用于对电池极片造孔时,除了能够提高孔隙率,改善孔隙分布均匀度之外,由于其保留在极片中,还能够改善极片被电解液的浸润性能、提高极片的电解液的保液性能,进而提高极片和电池的循环性能。
本申请的第四方面提供一种二次电池,其包括本申请第一方面的极片或通过第二方面的制备方法得到的极片。
本申请的第五方面提供一种电池模块,其包括本申请第四方面的二次电池。
本申请的第六方面提供一种电池包,其包括本申请第五方面的电池模块。
本申请的第七方面提供一种用电装置,其包括选自本申请第四方面的二次电池、本申请第五方面的电池模块或本申请第六方面的电池包中的至少一种。
本申请所提供的极片具有以下效果中的至少一种:孔隙率高、孔隙分布均匀、电解液浸润效果好、对电解液保液能力强、初始极化小、内阻小、循环性能好。相应地,包含本申请的极片的二次电池、电池模块、电池包和用电装置均具有改善的循环性能。
附图说明
图1为本申请式(I)的化合物的造孔原理示意图;
图2为本申请式(I)的化合物保留在极片孔隙中,吸收电解液溶胀的示意图;
图3为本申请的极片截面形貌的扫描电镜图;
图4是本申请一实施方式的二次电池的示意图;
图5是图4所示的本申请一实施方式的二次电池的分解图;
图6是本申请一实施方式的电池模块的示意图;
图7是本申请一实施方式的电池包的示意图;
图8是图7所示的本申请一实施方式的电池包的分解图;
图9是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,详细说明本申请的极片及其制备方法、二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
现有技术的极片由于孔隙率较小且孔隙分布不均,不利于电解液浸润,因此极片远端(即,更接近集流体的一侧)的活性物质难以充分发挥其容量作用。此外,锂离子二次电池随着循环次数增加,电芯膨胀后,极片孔隙率进一步下降,极片内的电解液被消耗、挤出,使极片极化增大,从而导致电池的循环性能并不理想。
为解决上述问题,现有技术中采用多种方式对极片造孔,但其基本思路是使用造孔剂在极片制备时占据一定体积,而在造孔完毕后将其除去,从而得到孔隙。造孔剂的除去通常是通过例如高温或电化学过程使其分解或挥发为气体逸出,或者通过使其溶于电解液。现有造孔方法虽然在一定程度上实现了孔隙率的提升,但同时也带来诸多问题。例如,本领域通常通过高温还是电化学过程使极片中的造孔剂转化为气体逸出这种方式造孔,但这种方式能耗大、成本高;并且,气体的逸出不可控,因而无法保证孔隙均匀性。此外,这些气体还可能具有腐蚀性而不利于设备寿命和人员健康。再例如,如果采用将极片中的造孔剂溶解于电解液的方式除去造孔剂而实现造孔,虽然能够避免上述某些问题且易于操作,但是造孔剂的溶解会改变电解液组成,从而可能损害电池性能。
因此,本领域急需开发一种具备具有提高的孔隙率且不存在上述问题的极片。
为提高极片孔隙率,发明人采用式(I)的化合物作为造孔剂。该化合物的分子中具有疏水性基团(如,R1和/或R2)和亲水性基团酰胺基。该化合物具有“温敏”性质——在温度较低时,能够与溶剂(如,水)形成氢键而溶解于其中,呈现亲水性;然而,在温度升高到一定程度时,氢键断裂,其转而呈现疏水性质。
Figure BDA0003299847800000081
尽管机理尚未完全明确,但该化合物的造孔过程大体上可参考图1来理解。如图1所示,在制备浆料时,温度较低,该化合物的分子链中的酰胺基与周围水分子存在强烈的氢键作用,使该分子溶于水而均匀分布在浆料中。随后,浆料被涂布在集流体上形成湿润的(也即,尚未被干燥的)极片材料层。此时,由于极片尚未干燥,造孔剂分子链由于仍溶于水中,而呈现伸展状态,吸水溶胀,体积较大,在极片材料层中各自占据一定的体积。随着干燥进行,极片材料层的温度上升,造孔剂分子与溶剂水之间的氢键断裂,分子链间的疏水作用占据主导地位,分子链逐渐由溶解时的伸展状态逐渐收缩聚集,最终形成紧密的胶粒状。这样的转变使化合物分子体积减少数倍甚至几十倍,因此在干燥的极片中形成孔隙,孔隙率明显提高。
由于式(I)的化合物能够由于溶于水而均匀地分布于浆料及由此形成的极片材料层中,其产生的孔隙分布均匀。并且,在造孔过程中无需额外的耗能步骤、不产生气体,也不会改变电解液的成分,因此克服了现有技术的诸多缺点。
此外,值得注意的是,在造孔完成后,造孔剂式(I)的化合物而并未被除去,而是保留在本申请极片的孔隙中——发明人发现,该化合物在200℃以下的温度下不会分解或挥发。尽管机理尚不完全明确,发明人却出乎预料地发现,当新制的本申请的极片在被电解液浸润时,存在于极片孔隙中的式(I)的化合物与电解液之间存在亲和力,因此能够“抓取”电解液,进一步提高了电解液的浸润效果,降低极片的初始极化。同时,由于该化合物在被电解液浸润后,会吸收电解液而溶胀(如图2所示),这又能够进一步改善极片在多次循环后对电解液的保有量,从而能够减少极片在循环后期的极化,从而进一步改善了电池的循环性能。
得益于本申请所采用的造孔剂——式(I)的化合物,本申请的极片具有提高的孔隙率,改善的电解液浸润,改善的循环性能,从而延长了使用寿命。
以下详细说明本申请。
本申请的第一方面提供一种极片,其包括集流体和设置于所述集流体至少一个表面上的极片材料层,所述极片材料层包括活性物质和导电剂,其中,所述极片材料层包括式(I)的化合物:
Figure BDA0003299847800000091
其中,R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为1-6的链烷氧基、碳原子数为2-6的链烯基、碳原子数为6-20的芳基、羟基或氨基;其中所述链烷基、链烷氧基、链烯基和芳基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、碳原子数为1-6的烷基羟基、羟基、氨基、酰胺基、氰基、羧基、卤素;并且n为50-10000的整数。
由此,本申请提供了一种极片,其孔隙率较高,孔隙分布更均匀。同时,本申请的极片电解液初始浸润效果更好,对电解液的保液能力好,具有降低的初始极化、减小的直流阻抗(DCR)。进一步地,包含该极片的电池将会具有改善的性能,例如,循环性能、功率性能。
如本文所使用的,术语“功率性能”是指,电池在放电做功时,有用功在总功中的占比高。换言之,电池在放电做功过程中,电功损失(如,由于电阻产热等)较少,对外输出的有用功较多,也即功率输出多。因此,能够理解,在本申请中,由于极片的DCR较小,相应地,功率性能较好。
在一些实施方式中,式(I)中,R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为2-6的链烯基或苯基;其中所述链烷基、链烯基和苯基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、羟基或氨基;并且,R2为氢。
在一些实施方式中,可选地,R1选自碳原子数为1-6的链烷基、未取代的碳原子数为2-6的链烯基或苯基,所述链烷基和苯基各自独立地任选地被碳原子数为1-3的烷基或羟基取代,更可选地,R1选自乙基、异丙基、烯丙基、羟甲基或对羟基苯基;并且,R2为氢。
在一些实施方式中,式(I)中,n为75-5000的整数;可选地,n为100-2000的整数。
以上,通过进一步选择式(I)中的各个基团和聚合单元数n,能够进一步改善极片的孔隙结构特性(如,孔隙率和分布均匀性),并且能够进一步提高极片对电解液的“抓取”能力和保液能力,降低初始极化,减小DCR等。
发明人发现,式(I)的化合物的聚合单元数n会影响极片的孔隙率和孔隙分布均匀性。根据上文,式(I)的化合物是利用其在升温前后的体积变化来实现造孔;而式(I)的化合物的聚合单元数n会影响其在升温前后的体积变化率。通过将聚合单元数n控制在上述范围内,能够使式(I)的化合物的分子量适中,从而能在具有良好溶解度的同时,具有适当的溶解体积(这样才能产生期望大小的孔隙),升温时适当的体积变化率,从而在极片中得到孔隙尺寸和分布的均匀性和一致性更好的孔隙。
在一些实施方案中,所述极片材料层包括0.1-20重量%,可选地0.2-10重量%的式(I)的化合物,基于所述极片材料层的总重量计。
可以通过红外光谱测试来证明极片材料层包含式(I)的化合物。检测时,从待测极片的极片材料层直接刮下粉末,依据GB/T6040-2002红外光谱分析方法测试。包含有式(I)化合物的极片样品在其红外谱图中,能够看到式(I)化合物的特征峰,如,1600-1700cm-1处的酰胺C=O伸缩振动峰。
负极极片
在一些实施方式中,所述极片为负极极片。
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极极片材料层,所述极片材料层包括活性物质和导电剂;其中,所述负极极片材料层包括本申请第一方面的式(I)的化合物。
在一些实施方式中,所述极片材料层包括0.1-20重量%,可选地0.2-10重量%的式(I)的化合物,基于所述极片材料层的总重量计。
如本文中所使用的,术语“极片材料层的总重量”是指经干燥的极片材料层中所包含的所有物质的总重量。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极极片材料层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性物质可采用本领域公知的用于电池的负极活性物质。作为示例,负极活性物质可包括以下材料中的至少一种:人造石墨、天然石墨、软炭(或软碳)、硬炭(或硬碳)、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性物质的传统材料。这些负极活性物质可以仅单独使用一种,也可以将两种以上组合使用。通过选择负极活性物质,进一步提升负极极片的性能。
在一些实施方式中,负极极片材料层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极极片材料层包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极极片材料层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性物质、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
正极极片
在一些实施方式中,本申请的极片可以是正极极片。正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极极片材料层,所述正极极片材料层包括本申请第一方面的式(I)的化合物。
在一些实施方式中,正极极片可以以任何适合于在极片内造孔的量包含式(I)的化合物。在一些实施方式中,可选地,正极极片的极片材料层包括0.1-20重量%,可选地0.2-10重量%的式(I)的化合物,基于所述极片材料层的总重量计。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极极片材料层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极极片材料层包括正极活性物质。正极活性物质可采用本领域公知的用于电池的正极活性物质。作为示例,正极活性物质可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性物质的传统材料。这些正极活性物质可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO2)、锂镍氧化物(如LiNiO2)、锂锰氧化物(如LiMnO2、LiMn2O4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi1/3Co1/ 3Mn1/3O2(也可以简称为NCM333)、LiNi0.5Co0.2Mn0.3O2(也可以简称为NCM523)、LiNi0.5Co0.25Mn0.25O2(也可以简称为NCM211)、LiNi0.6Co0.2Mn0.2O2(也可以简称为NCM622)、LiNi0.8Co0.1Mn0.1O2(也可以简称为NCM811)、锂镍钴铝氧化物(如LiNi0.85Co0.15Al0.05O2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极极片材料层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极极片材料层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性物质、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
本申请的第二方面提供一种极片的制备方法,包括:
(1)将活性物质、导电剂和式(I)的化合物的干混混合物、水、粘结剂在低于35℃的第一温度下混合,得到极片材料浆料,
Figure BDA0003299847800000141
其中,R1、R2和n如上文所定义,
(2)将所述极片材料浆料施加在集流体的至少一个表面上,干燥,得到极片。
如本文所使用的,术语“干混混合物”是指将用于制备混合物的材料在无溶剂的情况下进行混合得到的混合物。
以上,提供了本申请的极片的制备方法。在本申请的方法中,采用式(I)的化合物作为造孔剂,实现了对极片孔隙率、均匀性和一致性的改善,并改善了极片被电解液浸润的性能和对电解液的保液性能,从而改善了极片和包含该极片的电池的循环性能、功率性能等。
在一些实施方式中,可以采用本领域任何常规方式将所述极片材料浆料施加在集流体的至少一个表面上,包括,但不限于,涂布。
在一些实施方式中,所述极片材料浆料的固含量为40重量%-70重量%,可选地为40重量%-65重量%,更可选地为45重量%-60重量%,基于所述极片材料浆料的总重量计。
在本申请的极片制备方法中,通过控制浆料的固含量可以控制并改善式(I)的化合物作为造孔剂的造孔效果。固含量在上述范围内时,能够使极片的干燥时间处于期望范围内;并且,水含量允许式(I)的化合物与之形成适量氢键,这使得在干燥过程中该化合物体积变化率适当,并在极片中产生尺寸合适且结构稳定的孔隙。
在一些实施方式中,所述极片材料浆料包括0.1重量%-20重量%,可选地0.15重量%-15重量%,更可选地0.2重量%-10重量%的式(I)的化合物,基于所述极片材料浆料组合物的干重计。
如本文所使用的,术语“干重”是指,从极片材料浆料中除去溶剂(如,水)后,剩余的全部物质(或,全部干物质)的总重量。
通过控制造孔剂式(I)的化合物的加入量可以控制和改善造孔效果。具体来说,将浆料中式(I)的化合物的含量控制在上述范围内,能够获得良好的造孔效果:所得到的极片材料层中孔隙量适当,且孔隙结构稳定(也即,这些孔隙不易在随后的冷压中被破坏,而导致孔隙率再次下降)。另外,式(I)的化合物的上述含量范围允许极片中活性物质的负载量处于合理范围内,进而能够使电芯的能量密度合乎期望。
在一些实施方式中,第一温度为室温。在一些实施方式中,所述第一温度为20-30℃,可选地为22-28℃,更可选地为25℃。选择这样的第一温度使式(I)的化合物在浆料制备期间能够呈现较高亲水性而溶于水中,从而均匀分布在浆料及由此形成的极片材料层中,以实现均匀造孔的目的。
在一些实施方式中,干燥在任何温度下进行。在一些实施方式中,干燥在高于45℃的温度下进行的。在一些实施方式中,可选地,干燥在90℃-150℃,更可选在115℃-145℃,最可选在125-135℃下进行。通过将干燥温度选择在上述范围内,可以获得理想的干燥速率,兼顾生产效率的同时,实现期望的造孔过程;所得到的极片结构更稳定,孔道更均匀,从而使极片性能更好。
在一些实施方式中,可选地,所述水为去离子水。如此能够减少杂质在极片内的残留,避免其对极片的电化学性能造成不良影响。
在一些实施方式中,所制备的极片是负极极片。
在一些实施方式中,所述活性物质选自以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂。进一步选择负极活性物质,能够进一步改善负极极片性能。
本申请的第三方面提供式(I)的化合物作为造孔剂的用途,
Figure BDA0003299847800000161
其中,R1、R2和n如上文所定义。
由此,本申请提供了一种式(I)的化合物作为造孔剂的用途。该化合物用于造孔用途,操作简单、过程环保,所得到的孔隙率高、孔隙分布均匀。
在一些实施方式中,本申请的式(I)的化合物可用于对正极、负极极片造孔,也可用于对隔膜材料造孔。
在一些实施方式中,所述造孔剂用于对极片的极片材料层造孔。
在一些实施方式中,所述极片为负极极片。
在极片(特别是负极极片)的浆料中加入式(I)的化合物作为造孔剂,利用该化合物能够溶解于溶剂(如,水)中,并在涂布过程中受热发生体积收缩来造孔,从而在最终得到的极片中形成均匀的孔隙,从而提高极片孔隙率。并且,由于在造孔后,该化合物会保留在极片材料层中,其疏水性质会使其与电解液之间具有亲和力,从而改善极片对电解液的浸润性能;并且,由于其在被电解质浸润之后会发生溶胀,又进一步提高了极片对电解液的保留能力,进而改善锂离子电池的循环性能。
本申请的第四方面提供一种二次电池,其包括本申请第一方面的极片或通过本申请第二方面的制备方法得到的极片。
本申请的第五方面提供一种电池模块,其包括本申请第四方面的二次电池。
本申请的第六方面提供一种电池包,其包括本申请第五方面的电池模块。
本申请的第七方面提供一种用电装置,其包括选自本申请第四方面的二次电池、第五方面的电池模块或第六方面的电池包中的至少一种。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图4是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图5,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图6是作为一个示例的电池模块4。参照图6,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图7和图8是作为一个示例的电池包1。参照图7和图8,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图9是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1-5
负极极片制备
将石墨、导电剂炭黑以及作为造孔剂的式(I)的化合物(如下表1所示)按重量比96∶1∶2干混后,加入去离子水,调节固含量至55重量%,再加入1重量%的粘结剂丁苯橡胶(SBR),搅拌均匀后得到负极极片材料浆料,而后将该负极极片材料浆料以12mg/cm2的负载量涂布在集流体铜箔上,在130℃±5℃的温度下干燥,再经冷压、分切制成负极极片。
表1实施例1-5中作为造孔剂的式(I)的化合物
实施例 式(I)的化合物 来源
1 聚(N-异丙基丙烯酰胺) 湖北实兴化工有限公司
2 聚(N-乙基丙烯酰胺) 上海阿拉丁生化科技股份有限公司
3 聚(N-烯丙基丙烯酰胺) 上海依赫生物科技有限公司
4 聚(N-羟甲基丙烯酰胺) 上海源叶生物科技有限公司
5 聚(N-对羟苯基丙烯酰胺) 深圳爱拓化学有限公司
正极极片制备
将正极镍钴锰三元材料LiNi0.5Co0.2Mn0.3O2、导电剂炭黑和粘接剂聚偏氟乙烯(PVDF)按重量比96∶2.5∶1.5的加入混合均匀后,添加溶剂N-甲基吡咯烷酮(NMP),调节固含量至70重量%-80重量%,搅拌均匀后得到正极浆料,而后将该正极浆料以20mg/cm2的负载量涂布在集流体铝箔上,经干燥、冷压、分切制成正极极片;
二次电池制备
1.电解液制备:将碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)按照体积比3/7混合均匀,再向其中加入LiPF6,使LiPF6的终浓度为12.5重量%,搅拌均匀,得到电解液。
2.电池制备:将上述制得的负极和正极极片与12μm厚的PP隔膜卷绕成电芯,并用铝塑膜封装成干电芯,经注液、化成、老化等工序,制备得到二次电池。
实施例6-14
实施例6-14采用实施例1的聚(N-异丙基丙烯酰胺)作为造孔剂,按照实施例1进行极片及二次电池的制备。与实施例1不同的是聚(N-异丙基丙烯酰胺)的聚合单元数n,详见下表3。
实施例15-22
实施例15-22采用实施例1的聚(N-异丙基丙烯酰胺)作为造孔剂,按照实施例1进行极片及二次电池的制备,其中,石墨、炭黑和造孔剂的质量比如下表2所示。
表2实施例中石墨、炭黑和造孔剂的质量比
实施例 石墨∶炭黑∶造孔剂(质量比)
15 97.95∶1∶0.05
16 97.9∶1∶0.1
17 97.8∶1∶0.2
18 91∶1∶7
19 88∶1∶10
20 83∶1∶15
21 68∶1∶20
22 63∶1∶25
实施例23-30
实施例22-29采用实施例1的聚(N-异丙基丙烯酰胺)作为造孔剂,按照实施例1进行极片及二次电池的制备。与实施例1不同的是负极材料浆料的固含量,详见下表3。
对比例C1
负极极片制备
将活性物质石墨、导电剂炭黑以重量比98∶1干混后,加入去离子水,调节固含量至55重量%,然后加入1重量%粘结剂丁苯橡胶,搅拌均匀后得到负极浆料,而后将负极浆料以12mg/cm2的负载量涂布在集流体铜箔上,在130℃±5℃干燥后,再经冷压、分切制成负极极片。
正极极片和二次电池依照实施例1相关步骤制备。
对比例C2
负极极片制备
按照实施例1的制备步骤制备负极极片,其中,造孔剂为碳酸铵。
正极极片和二次电池依照实施例1相关步骤制备。
将上述实施例1-30和对比例C1和C2中得到的负极极片及二次电池,进行性能测试。测试方法如下:
【极片相关测试】
1.孔隙率测试:
将待测极片裁剪成一定长宽尺寸的方形样品,先测得样品的表观体积V1,V1=S×d,S为极片面积可用长×宽测得,单位cm2,d为极片厚度可直接测得,单位cm。采用AccuPycII 1340真密度仪,参考GB/T 24586-2009中孔隙率测试方法,利用氦气置换法,结合阿基米德原理和玻尔定律(PV=nRT),精确测量被测材料的真实体积V2,单位cm3,通过公式计算得到待测样品的孔隙率p=(V1-V2)/V1*100%。
2.吸液速率测试:
将待测极片在100℃干燥30min,然后裁剪成5cm×5cm的正方形,固定在样品台上,采用内径d=200μm的毛细管吸取如实施例1中所制备的电解液(密度ρ为1.6g/cm3),管中吸入的电解液液面高度h=3mm。测试开始前,将吸取了电解液的毛细管以与极片垂直的方式夹持于极片上方,使毛细管下端正对极片材料层。测试开始后将毛细管保持垂直并逐渐下移至与极片材料层刚好接触时,停止移动毛细管并开始用秒表计时。用Dino-Lite EdgeDigital Microscope(型号:AM7115MZT)观察毛细管内液面下降,当液面下降至毛细管下端管口时,读取时间t。根据公式计算单个极片的吸液速率v,v=π×(d/2)2×h×ρ/t(π为圆周率)。
以上述方式测试n(n≥3)个平行样,然后计算平均值。
3.极片断面形貌表征:
采用蔡司sigma300扫描电子显微镜,用剪刀剪取5mm*5mm大小的极片样品并粘贴在粘有导电胶的样品台上,拍取截面形貌,设备参数为——模式:In-lens,电压:10KV,光阑:30μm,工作距离:4.5mm。测试流程:100倍左右移动样品,确认样品整体无明显异常后采用所需放大倍数随机选取两个视野拍照。
4.极片材料层成分检测
取根据实施例的方法制备的负极极片,将极片材料层刮下,依据GB/T6040-2002采用红外光谱法对极片材料进行检测,以确认其中含有式(I)化合物。
【二次电池性能测试】
1.大倍率放电测试:
(1)4C放电容量:
在25℃,将各实施例和对比例制备得到的二次电池以1C倍率恒流充电至充电截止电压4.35V,之后恒压充电至电流≤0.05C,静置10min,再以4C倍率恒流放电至放电截止电压2.8V,记录放电容量C4C
(2)1C放电容量:
在25℃,将上述二次电池以1C倍率恒流充电至充电截止电压4.35V,之后恒压充电至电流≤0.05C,静置10min,再以1C倍率恒流放电至放电截止电压2.8V,记录放电容量C1C
(3)计算电芯大倍率放电容量保持率=C4C/C1C*100%。
2.循环性能测试:
在25℃,将各实施例和对比例制备得到的二次电池以1C倍率恒流充电至充电截止电压4.30V,之后恒压充电至电流≤0.05C,静置10min,再以1C倍率恒流放电至放电截止电压3.3V,静置10min,此为一个充放电循环(即,1圈),记录放电容量C1。按照此方法对电池进行1000圈(cls)充放电循环测试,记录相应的放电容量C1000,计算放电容量保持率=C1000/C1*100%。
3.电池直流阻抗(DCR)测试:
在25℃下,将待测电池以1/3C恒流充电至4.3V,再以4.3V恒定电压充电至电流为0.05C,搁置5min后,记录电压V1。然后再以1/3C放电30s,记录电压V2,则电池的内阻DCR=(V2-V1)/(1/3C)。
测试结果如下:
1.极片断面形貌:
图1示出了实施例1和对比例C1的负极极片的断面形貌的并排比较。
首先,通过比较两者可见,实施例1的负极极片的极片材料层中孔隙明显大于对比例C1。
其次,由图1还可以看到,相比于对比例C1的极片,实施例1的极片材料层中孔隙较均匀,一致性较好。具体来说,实施例1的极片在垂直于集流体(位于图片最下方)的方向上,孔隙分布较为均匀,上下的孔隙率及孔隙大小基本一致;而对比例C1的极片中,孔隙较小且不均匀。
这说明通过加入本申请的式(I)的化合物作为造孔剂实现了理想的造孔效果——提高了极片的孔隙率,使极片内孔隙较大且分布较均匀。
2.极片成分
通过红外光谱法,确认了根据实施例1的方法制备的极片的极片材料层中含有式(I)化合物的特征峰——1600-1700cm-1处有酰胺C=O伸缩振动峰。
3.极片及二级电池的性能测试结果
表3示出了实施例1-30与对比例的极片及电池的测试结果。
Figure BDA0003299847800000261
Figure BDA0003299847800000271
Figure BDA0003299847800000281
由表3可见,相比于对比例C1,本发明各个实施例的负极极片的孔隙率有所提高,这说明加入本申请的造孔剂可提高极片孔隙率。相较于对比例C1,大倍率下电池的放电容量保持率(参见,表3中“4C放电容量保持率”一栏)有所提高,说明经本申请的造孔剂造孔后,极片的孔隙率增大,孔隙均匀,更有利于电解液在其中进行离子传导,进而改善了电池的倍率性能。而从循环1000圈后的容量保持率来看,加入造孔剂后,电池的循环性能相较于对比例C1也有明显改善。
相较于对比例C2,在孔隙率基本相同的情况下,本申请实施例极片的吸液速率有所提升。可见,由于本申请的造孔剂——式(I)的化合物在造孔后仍保留在极片的极片材料层中,其具有“抓取”电解液的能力,从而能够进一步改善新制极片的电解液浸润效果。
此外,相较于现有技术,本申请的极片具有降低的新制电池的直流阻抗(DCR)。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (21)

1.一种极片,其包括集流体和设置于所述集流体至少一个表面上的极片材料层,所述极片材料层包括活性物质和导电剂,其中,所述极片材料层还包括式(I)的化合物:
Figure FDA0003299847790000011
其中,
R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为1-6的链烷氧基、碳原子数为2-6的链烯基、碳原子数为6-20的芳基、羟基或氨基;其中所述链烷基、链烷氧基、链烯基和芳基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、碳原子数为1-6的烷基羟基、羟基、氨基、酰胺基、氰基、羧基、卤素;并且
n为50-10000的整数。
2.根据权利要求1所述的极片,其中,R1与R2各自独立地选自氢、碳原子数为1-6的链烷基、碳原子数为2-6的链烯基或苯基;其中所述链烷基、链烯基和苯基各自独立地任选地被选自以下的基团中的至少一种所取代:碳原子数为1-3的烷基、羟基或氨基;可选地,R1选自碳原子数为1-6的链烷基、碳原子数为2-6的链烯基或苯基,所述链烷基和苯基各自独立地任选地被碳原子数为1-3的烷基或羟基取代;更可选地,R1选自乙基、异丙基、烯丙基、羟甲基或对羟基苯基;并且
R2为氢。
3.根据权利要求1或2所述的极片,其中,n为75-5000的整数;可选地,n为100-2000的整数。
4.根据权利要求1至3中任一项所述的极片,其中所述极片材料层包括0.1-20重量%,可选地0.2-10重量%的式(I)的化合物,基于所述极片材料层的总重量计。
5.根据权利要求1至4中任一项所述的极片,其中所述极片为负极极片。
6.根据权利要求5所述的极片,其中所述活性物质选自以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂。
7.一种极片的制备方法,包括:
(1)将活性物质、导电剂和式(I)的化合物的干混混合物、水、粘结剂在低于35℃的第一温度下混合,得到极片材料浆料,
Figure FDA0003299847790000021
其中,R1、R2和n如权利要求1所定义,
(2)将所述极片材料浆料施加在集流体的至少一个表面上,干燥,得到极片。
8.根据权利要求7所述的制备方法,其中所述极片材料浆料的固含量为40重量%-70重量%,可选地为40重量%-65重量%,更可选地为45重量%-60重量%,基于所述极片材料浆料的总重量计。
9.根据权利要求7或8所述的制备方法,其中所述极片材料浆料包括0.1重量%-20重量%,可选地0.15重量%-15重量%,更可选地0.2重量%-10重量%的式(I)的化合物,基于所述极片材料浆料的干重计。
10.根据权利要求7-9中任一项所述的制备方法,其中,所述第一温度为20-30℃,可选地为22-28℃,更可选地为25℃。
11.根据权利要求7-10中任一项所述的制备方法,其中所述干燥在高于45℃的温度下,可选地在90℃-150℃,更可选在115℃-145℃,最可选在125-135℃下进行。
12.根据权利要求7-11中任一项所述的制备方法,其中所述水为去离子水。
13.根据权利要求7-12任一项所述的制备方法,其中所述极片是负极极片。
14.根据权利要求13所述的制备方法,其中所述活性物质选自以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂。
15.式(I)的化合物作为造孔剂的用途,
Figure FDA0003299847790000031
其中,R1、R2和n如权利要求1所定义。
16.根据权利要求15所述的用途,其中,所述造孔剂用于对极片的极片材料层造孔。
17.根据权利要求16所述的用途,其中,所述极片为负极极片。
18.一种二次电池,其包括权利要求1-6中任一项所述的极片或通过权利要求7-14中任一项所述的制备方法得到的极片。
19.一种电池模块,其包括权利要求18所述的二次电池。
20.一种电池包,其包括权利要求19所述的电池模块。
21.一种用电装置,其包括选自权利要求18所述的二次电池、权利要求19所述的电池模块或权利要求20所述的电池包中的至少一种。
CN202111186045.9A 2021-10-12 2021-10-12 一种极片及其制备方法 Active CN115832295B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111186045.9A CN115832295B (zh) 2021-10-12 2021-10-12 一种极片及其制备方法
PCT/CN2022/118742 WO2023061136A1 (zh) 2021-10-12 2022-09-14 一种极片及其制备方法
EP22880078.5A EP4239729A1 (en) 2021-10-12 2022-09-14 Electrode plate and preparation method therefor
US18/330,093 US20230317948A1 (en) 2021-10-12 2023-06-06 Electrode plate and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111186045.9A CN115832295B (zh) 2021-10-12 2021-10-12 一种极片及其制备方法

Publications (2)

Publication Number Publication Date
CN115832295A true CN115832295A (zh) 2023-03-21
CN115832295B CN115832295B (zh) 2023-10-20

Family

ID=85515405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111186045.9A Active CN115832295B (zh) 2021-10-12 2021-10-12 一种极片及其制备方法

Country Status (4)

Country Link
US (1) US20230317948A1 (zh)
EP (1) EP4239729A1 (zh)
CN (1) CN115832295B (zh)
WO (1) WO2023061136A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048505A1 (en) * 2012-09-28 2014-04-03 Entonik Holding Ag Lithium- ion battery
CN105932320A (zh) * 2016-05-18 2016-09-07 河南田园新能源科技有限公司 一种石墨改性制备复合负极材料的方法
CN108172837A (zh) * 2018-01-24 2018-06-15 广州鹏辉能源科技股份有限公司 锂离子电池负极材料、锂离子电池负极片及其制备方法和锂离子电池
CN109192910A (zh) * 2018-09-11 2019-01-11 江苏清陶能源科技有限公司 一种油性涂层与纳米陶瓷纤维复合隔膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894001B2 (ja) * 2012-05-01 2016-03-23 Jsr株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極の製造方法
CN108192290A (zh) * 2017-12-29 2018-06-22 浙江鸿安建设有限公司 一种建筑外墙用环保型保温材料及其制备方法
CN111333866B (zh) * 2020-03-20 2023-03-24 浙江理工大学 一种单层水凝胶、制备方法及用作柔性抓手的应用
CN111575833B (zh) * 2020-05-18 2022-10-04 湖北工程学院 一种二氧化钛纳米纤维负极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048505A1 (en) * 2012-09-28 2014-04-03 Entonik Holding Ag Lithium- ion battery
CN105932320A (zh) * 2016-05-18 2016-09-07 河南田园新能源科技有限公司 一种石墨改性制备复合负极材料的方法
CN108172837A (zh) * 2018-01-24 2018-06-15 广州鹏辉能源科技股份有限公司 锂离子电池负极材料、锂离子电池负极片及其制备方法和锂离子电池
CN109192910A (zh) * 2018-09-11 2019-01-11 江苏清陶能源科技有限公司 一种油性涂层与纳米陶瓷纤维复合隔膜及其制备方法

Also Published As

Publication number Publication date
US20230317948A1 (en) 2023-10-05
EP4239729A1 (en) 2023-09-06
CN115832295B (zh) 2023-10-20
WO2023061136A1 (zh) 2023-04-20

Similar Documents

Publication Publication Date Title
CN217768423U (zh) 负极极片、二次电池、电池模块、电池包和用电装置
CN115966842A (zh) 一种隔离膜、含有其的二次电池和用电装置
WO2023050414A1 (zh) 二次电池及包含其的电池模块、电池包和用电装置
CN117747952A (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023071807A1 (zh) 隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
CN115832295B (zh) 一种极片及其制备方法
KR20230106127A (ko) 이차 전지 및 이를 포함하는 전기 장치
CN118888681A (zh) 正极极片及其制备方法、二次电池、电池模块、电池包及用电装置
CN115810874A (zh) 一种隔离膜、其制备方法及包含其的二次电池和用电装置
CN115842127A (zh) 负极添加剂、含有其的负极极片和二次电池
CN116470047A (zh) 负极极片、二次电池、电池模块、电池包和用电装置
CN115529847A (zh) 电池组、电池包、用电装置以及电池组的制造方法及制造设备
WO2023193166A1 (zh) 电极组件以及包含其的二次电池、电池模块、电池包及用电装置
WO2023123088A1 (zh) 一种水系正极极片及包含该极片的二次电池及用电装置
CN116888759B (zh) 二次电池、电池模块、电池包和用电装置
CN117080362B (zh) 负极极片、二次电池及用电装置
WO2023045369A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2023130976A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2024174170A1 (zh) 隔离膜、二次电池及用电装置
WO2023142121A1 (zh) 电池包和用电装置
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置
WO2023133881A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
CN116759531A (zh) 负极极片、电池单体、电池和用电装置
CN118738265A (zh) 正极极片及包含其的二次电池、用电装置
CN118613933A (zh) 功能聚合物、电极浆料、电极极片、电池及用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant