CN115422362B - 一种基于人工智能的文本匹配方法 - Google Patents
一种基于人工智能的文本匹配方法 Download PDFInfo
- Publication number
- CN115422362B CN115422362B CN202211226353.4A CN202211226353A CN115422362B CN 115422362 B CN115422362 B CN 115422362B CN 202211226353 A CN202211226353 A CN 202211226353A CN 115422362 B CN115422362 B CN 115422362B
- Authority
- CN
- China
- Prior art keywords
- text
- representing
- layer
- dimension
- matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 13
- 230000006870 function Effects 0.000 claims abstract description 16
- 238000007781 pre-processing Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 41
- 238000013528 artificial neural network Methods 0.000 claims description 16
- 125000004122 cyclic group Chemical group 0.000 claims description 15
- 238000012512 characterization method Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000000049 pigment Substances 0.000 claims description 9
- 238000011176 pooling Methods 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000003058 natural language processing Methods 0.000 abstract description 3
- 238000012549 training Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/35—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Machine Translation (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211226353.4A CN115422362B (zh) | 2022-10-09 | 2022-10-09 | 一种基于人工智能的文本匹配方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211226353.4A CN115422362B (zh) | 2022-10-09 | 2022-10-09 | 一种基于人工智能的文本匹配方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115422362A CN115422362A (zh) | 2022-12-02 |
CN115422362B true CN115422362B (zh) | 2023-10-31 |
Family
ID=84205630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211226353.4A Active CN115422362B (zh) | 2022-10-09 | 2022-10-09 | 一种基于人工智能的文本匹配方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115422362B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117520786B (zh) * | 2024-01-03 | 2024-04-02 | 卓世科技(海南)有限公司 | 基于nlp和循环神经网络的大语言模型构建方法 |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109299262A (zh) * | 2018-10-09 | 2019-02-01 | 中山大学 | 一种融合多粒度信息的文本蕴含关系识别方法 |
CN110516055A (zh) * | 2019-08-16 | 2019-11-29 | 西北工业大学 | 一种结合bert的用于教学任务的跨平台智能问答实现方法 |
CN110866117A (zh) * | 2019-10-25 | 2020-03-06 | 西安交通大学 | 一种基于语义增强与多层次标签嵌入的短文本分类方法 |
CN111310438A (zh) * | 2020-02-20 | 2020-06-19 | 齐鲁工业大学 | 基于多粒度融合模型的中文句子语义智能匹配方法及装置 |
CN111414481A (zh) * | 2020-03-19 | 2020-07-14 | 哈尔滨理工大学 | 基于拼音和bert嵌入的中文语义匹配方法 |
CN111914067A (zh) * | 2020-08-19 | 2020-11-10 | 苏州思必驰信息科技有限公司 | 中文文本匹配方法及系统 |
CN112632997A (zh) * | 2020-12-14 | 2021-04-09 | 河北工程大学 | 基于BERT和Word2Vec向量融合的中文实体识别方法 |
CN112949285A (zh) * | 2020-10-13 | 2021-06-11 | 广州市百果园网络科技有限公司 | 语句文本检测方法、系统、电子设备及存储介质 |
CN113011186A (zh) * | 2021-01-25 | 2021-06-22 | 腾讯科技(深圳)有限公司 | 命名实体识别方法、装置、设备及计算机可读存储介质 |
EP3842988A1 (en) * | 2019-12-27 | 2021-06-30 | Beijing Baidu Netcom Science And Technology Co. Ltd. | Method and apparatus for processing questions and answers, electronic device and storage medium |
CN113220887A (zh) * | 2021-05-31 | 2021-08-06 | 华南师范大学 | 一种利用目标知识增强模型的情感分类方法和装置 |
CN113378547A (zh) * | 2021-06-16 | 2021-09-10 | 武汉大学 | 一种基于gcn的汉语复句隐式关系分析方法及装置 |
CN113901840A (zh) * | 2021-09-15 | 2022-01-07 | 昆明理工大学 | 一种基于多粒度特征的文本生成评价方法 |
WO2022015730A1 (en) * | 2020-07-13 | 2022-01-20 | Ai21 Labs | Controllable reading guides and natural language generation |
CN113987179A (zh) * | 2021-10-27 | 2022-01-28 | 哈尔滨工业大学 | 基于知识增强和回溯损失的对话情绪识别网络模型、构建方法、电子设备及存储介质 |
CN114064931A (zh) * | 2021-11-29 | 2022-02-18 | 新疆大学 | 一种基于多模态知识图谱的急救知识问答方法及系统 |
CN114282592A (zh) * | 2021-11-15 | 2022-04-05 | 清华大学 | 一种基于深度学习的行业文本匹配模型方法及装置 |
CN114297380A (zh) * | 2021-12-22 | 2022-04-08 | 北京达佳互联信息技术有限公司 | 一种数据处理方法、装置、设备及存储介质 |
CN114723013A (zh) * | 2022-04-14 | 2022-07-08 | 西安邮电大学 | 一种多粒度知识增强的语义匹配方法 |
US11398226B1 (en) * | 2020-07-30 | 2022-07-26 | Amazon Technologies, Inc. | Complex natural language processing |
WO2022169656A1 (en) * | 2021-02-05 | 2022-08-11 | Nec Laboratories America, Inc. | Multi-faceted knowledge-driven pre-training for product representation learning |
CN115114432A (zh) * | 2022-04-29 | 2022-09-27 | 北京邮电大学 | 一种融合全局语义特征与拼接特征的标准内容文本分类方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8468244B2 (en) * | 2007-01-05 | 2013-06-18 | Digital Doors, Inc. | Digital information infrastructure and method for security designated data and with granular data stores |
US11837354B2 (en) * | 2020-12-30 | 2023-12-05 | London Health Sciences Centre Research Inc. | Contrast-agent-free medical diagnostic imaging |
-
2022
- 2022-10-09 CN CN202211226353.4A patent/CN115422362B/zh active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109299262A (zh) * | 2018-10-09 | 2019-02-01 | 中山大学 | 一种融合多粒度信息的文本蕴含关系识别方法 |
CN110516055A (zh) * | 2019-08-16 | 2019-11-29 | 西北工业大学 | 一种结合bert的用于教学任务的跨平台智能问答实现方法 |
CN110866117A (zh) * | 2019-10-25 | 2020-03-06 | 西安交通大学 | 一种基于语义增强与多层次标签嵌入的短文本分类方法 |
EP3842988A1 (en) * | 2019-12-27 | 2021-06-30 | Beijing Baidu Netcom Science And Technology Co. Ltd. | Method and apparatus for processing questions and answers, electronic device and storage medium |
CN111310438A (zh) * | 2020-02-20 | 2020-06-19 | 齐鲁工业大学 | 基于多粒度融合模型的中文句子语义智能匹配方法及装置 |
CN111414481A (zh) * | 2020-03-19 | 2020-07-14 | 哈尔滨理工大学 | 基于拼音和bert嵌入的中文语义匹配方法 |
WO2022015730A1 (en) * | 2020-07-13 | 2022-01-20 | Ai21 Labs | Controllable reading guides and natural language generation |
US11398226B1 (en) * | 2020-07-30 | 2022-07-26 | Amazon Technologies, Inc. | Complex natural language processing |
CN111914067A (zh) * | 2020-08-19 | 2020-11-10 | 苏州思必驰信息科技有限公司 | 中文文本匹配方法及系统 |
CN112949285A (zh) * | 2020-10-13 | 2021-06-11 | 广州市百果园网络科技有限公司 | 语句文本检测方法、系统、电子设备及存储介质 |
CN112632997A (zh) * | 2020-12-14 | 2021-04-09 | 河北工程大学 | 基于BERT和Word2Vec向量融合的中文实体识别方法 |
CN113011186A (zh) * | 2021-01-25 | 2021-06-22 | 腾讯科技(深圳)有限公司 | 命名实体识别方法、装置、设备及计算机可读存储介质 |
WO2022169656A1 (en) * | 2021-02-05 | 2022-08-11 | Nec Laboratories America, Inc. | Multi-faceted knowledge-driven pre-training for product representation learning |
CN113220887A (zh) * | 2021-05-31 | 2021-08-06 | 华南师范大学 | 一种利用目标知识增强模型的情感分类方法和装置 |
CN113378547A (zh) * | 2021-06-16 | 2021-09-10 | 武汉大学 | 一种基于gcn的汉语复句隐式关系分析方法及装置 |
CN113901840A (zh) * | 2021-09-15 | 2022-01-07 | 昆明理工大学 | 一种基于多粒度特征的文本生成评价方法 |
CN113987179A (zh) * | 2021-10-27 | 2022-01-28 | 哈尔滨工业大学 | 基于知识增强和回溯损失的对话情绪识别网络模型、构建方法、电子设备及存储介质 |
CN114282592A (zh) * | 2021-11-15 | 2022-04-05 | 清华大学 | 一种基于深度学习的行业文本匹配模型方法及装置 |
CN114064931A (zh) * | 2021-11-29 | 2022-02-18 | 新疆大学 | 一种基于多模态知识图谱的急救知识问答方法及系统 |
CN114297380A (zh) * | 2021-12-22 | 2022-04-08 | 北京达佳互联信息技术有限公司 | 一种数据处理方法、装置、设备及存储介质 |
CN114723013A (zh) * | 2022-04-14 | 2022-07-08 | 西安邮电大学 | 一种多粒度知识增强的语义匹配方法 |
CN115114432A (zh) * | 2022-04-29 | 2022-09-27 | 北京邮电大学 | 一种融合全局语义特征与拼接特征的标准内容文本分类方法 |
Non-Patent Citations (6)
Title |
---|
Fine-grained Interest Matching for Neural News Recommendation;Heyuan Wang;《Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 》;836–845 * |
Heyuan Wang.Fine-grained Interest Matching for Neural News Recommendation.《Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 》.2020,836–845. * |
MF-BERT: Multimodal Fusion in Pre-Trained BERT for Sentiment Analysis;Jiaxuan He;《 IEEE Signal Processing Letters》;第29卷;454 - 458 * |
基于图嵌入和区域注意力的多标签文本分类;王进;《江苏大学学报(自然科学版)》(第3期);310-318 * |
深度文本匹配与排 序的研究与实现;刘玮;《中国优秀硕士学位论文全文数据库 信息科技》;I138-1046 * |
深度文本匹配与排序的研究与实现;刘玮;《中国优秀硕士学位论文全文数据库 信息科技》;I138-1046 * |
Also Published As
Publication number | Publication date |
---|---|
CN115422362A (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110287320B (zh) | 一种结合注意力机制的深度学习多分类情感分析模型 | |
CN109284506B (zh) | 一种基于注意力卷积神经网络的用户评论情感分析系统及方法 | |
CN110245229B (zh) | 一种基于数据增强的深度学习主题情感分类方法 | |
CN108009148B (zh) | 基于深度学习的文本情感分类表示方法 | |
CN112487143A (zh) | 一种基于舆情大数据分析的多标签文本分类方法 | |
CN111401061A (zh) | 基于BERT及BiLSTM-Attention的涉案新闻观点句识别方法 | |
CN110502626B (zh) | 一种基于卷积神经网络的方面级情感分析方法 | |
CN110929034A (zh) | 一种基于改进lstm的商品评论细粒度情感分类方法 | |
CN111966812B (zh) | 一种基于动态词向量的自动问答方法和存储介质 | |
CN111444367A (zh) | 一种基于全局与局部注意力机制的图像标题生成方法 | |
CN114429132B (zh) | 一种基于混合格自注意力网络的命名实体识别方法和装置 | |
CN110287323A (zh) | 一种面向目标的情感分类方法 | |
CN112989830B (zh) | 一种基于多元特征和机器学习的命名实体识别方法 | |
CN110472245B (zh) | 一种基于层次化卷积神经网络的多标记情绪强度预测方法 | |
CN109766553A (zh) | 一种基于多正则化结合的胶囊模型的中文分词方法 | |
CN112434686B (zh) | 针对ocr图片的端到端含错文本分类识别仪 | |
CN112528989B (zh) | 一种图像语义细粒度的描述生成方法 | |
CN114386417A (zh) | 一种融入词边界信息的中文嵌套命名实体识别方法 | |
CN115422939B (zh) | 一种基于大数据的细粒度商品命名实体识别方法 | |
CN111046233A (zh) | 一种基于视频评论文本的视频标签确定方法 | |
CN112905736A (zh) | 一种基于量子理论的无监督文本情感分析方法 | |
CN115422362B (zh) | 一种基于人工智能的文本匹配方法 | |
CN116245110A (zh) | 基于图注意力网络的多维度信息融合用户立场检测方法 | |
CN116757218A (zh) | 一种基于上下句关系预测的短文本事件共指消解方法 | |
CN112528168B (zh) | 基于可形变自注意力机制的社交网络文本情感分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230928 Address after: 510700 room 801, No. 85, Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province (office only) Applicant after: Yami Technology (Guangzhou) Co.,Ltd. Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Applicant before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Effective date of registration: 20230928 Address after: 15th Floor, New Development Science and Technology Innovation Building, Intersection of Zhongxing South Road and Shangding Road, Zhengdong New District, Zhengzhou City, Henan Province, 450052 Applicant after: Zhengzhou Digital Intelligence Technology Research Institute Co.,Ltd. Applicant after: Zhengzhou Shuzhi Technology Group Co.,Ltd. Address before: 510700 room 801, No. 85, Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province (office only) Applicant before: Yami Technology (Guangzhou) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20221202 Assignee: Henan Weijiang Software Technology Co.,Ltd. Assignor: Zhengzhou Digital Intelligence Technology Research Institute Co.,Ltd. Contract record no.: X2024980014406 Denomination of invention: A Text Matching Method Based on Artificial Intelligence Granted publication date: 20231031 License type: Common License Record date: 20240909 |