Nothing Special   »   [go: up one dir, main page]

CN103785860B - 3d打印机用的金属粉末及其制备方法 - Google Patents

3d打印机用的金属粉末及其制备方法 Download PDF

Info

Publication number
CN103785860B
CN103785860B CN201410028642.2A CN201410028642A CN103785860B CN 103785860 B CN103785860 B CN 103785860B CN 201410028642 A CN201410028642 A CN 201410028642A CN 103785860 B CN103785860 B CN 103785860B
Authority
CN
China
Prior art keywords
micron
metal
metal dust
powder
printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410028642.2A
Other languages
English (en)
Other versions
CN103785860A (zh
Inventor
陈钢强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Bo Move New Materials Ltd By Share Ltd
Original Assignee
NINGBO GUANGBO NEW NANOMATERIALS STOCK CO Ltd
Jiangsu Boqian New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO GUANGBO NEW NANOMATERIALS STOCK CO Ltd, Jiangsu Boqian New Materials Co Ltd filed Critical NINGBO GUANGBO NEW NANOMATERIALS STOCK CO Ltd
Priority to CN201410028642.2A priority Critical patent/CN103785860B/zh
Priority to US15/113,055 priority patent/US10065240B2/en
Priority to PCT/CN2014/074722 priority patent/WO2015109658A1/zh
Publication of CN103785860A publication Critical patent/CN103785860A/zh
Application granted granted Critical
Publication of CN103785860B publication Critical patent/CN103785860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/084Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种3D打印机用的金属粉末。其金属粉末是由许多亚微米级的金属颗粒通过造粒工艺团聚成10-50微米的金属粉末。由于本金属粉末是由亚微米金属颗粒组合,它的熔点低和熔融速度快,可以提高金属3D打印机的打印速度以及打印构件的精度。同时金属粉末的平均粒径又与现有的3D打印机用的雾化金属粉相当,具有良好的分散性和输送性,可以适用于现有的3D打印机设备。

Description

3D打印机用的金属粉末及其制备方法
技术领域:
本发明涉及3D打印机所有原料技术领域,具体涉及一种用于3D打印机用的金属粉末及其制备方法。该金属粉末是由许多亚微米级的金属粒子组成的平均粒径为10-50微米的金属粉末。
背景技术:
3D打印技术目前已成为全球最关注的新兴技术之一。这种新型的生产方式与其他数字化生产模式一起将推动第三次工业革命的实现。制约3D打印技术迅速发展的其中一大瓶颈是打印材料,特别是金属打印材料。研发和生产性能更好和通用性更强的金属材料是提升3D打印技术的关键。在高性能金属构件直接采用3D打印技术制造方面,需要粒径细、粒径均匀、高球形度、低氧含量的各类金属粉末。目前高端的金属粉末主要依赖进口。而国外厂商常将原材料与设备捆绑高价销量,极大地制约了我国的金属3D打印技术的发展。
金属粉末的制备方法主要有雾化法、旋转电极法等。其中采用真空雾化法制备的金属粉末具有球形度高、成分均匀、氧含量低等特点,受到广泛应用。雾化法制备的金属粉末的平均粒径受到限制,平均粒径在10-50微米,并且细粉得率低,目前还无法采用雾化法来制备亚微米级金属粉末。一般来讲,金属粉末粒径越小,熔融速度越快,可以提高打印速度和精度。但当金属粉末粒径达到亚微米级(粒度直径100nm~1.0μm)时,金属粉末的分散性变差,导致金属粉末输送困难,限制了亚微米级的金属粉末在3D打印制造中的应用。如何获得一种适合于3D打印制造中的金属粉是3D打印技术的关键问题之一。
发明内容:
本发明针对现有技术的上述不足,提供一种使金属粉末既具有亚微米粒子的各种优点,又具有雾化金属粉末的分散性和输送性的3D打印机用的金属粉末。
为了解决上述技术问题,本发明采用的技术方案为:一种3D打印机用的金属粉末,该金属粉末为先采用物理气相沉积法或化学气相沉积法制备亚微米级金属粉末,所得的亚微米级金属粉末的平均粒径为0.1-3微米;该平均粒径为0.1-3微米的亚微米级金属粉末通过造粒团聚成平均粒径10-50微米3D打印机用的的金属粉末。
本发明上述的3D打印机用的金属粉末种类可以是金属单质粉或合金粉。
本发明还提供一种3D打印机用的金属粉末的制备方法,具体制备步骤包括:
(1)先采用物理气相沉积法或化学气相沉积法制备出亚微米级金属粉末,所得的亚微米级金属粉末的平均粒径为0.1-3微米;
(2)将步骤(1)所得的平均粒径为0.1-3微米的亚微米级金属粉末与液体混合、配制成金属粉浆料;上述金属粉浆料的亚微米级金属粉末与液体的重量比(即固液重量比)为0.25-2.0:1;
(3)在步骤(2)所得的金属粉浆料中加入亚微米级金属粉末(固体)重量0.1-10%的有机粘合剂,搅拌混合均匀;
(4)将步骤(3)搅拌混合均匀的浆料通过离心喷雾造粒机(离心喷雾造粒器或称离心造粒喷雾干燥机)或压力喷雾造粒机(压力喷雾造粒器或称压力喷雾干燥造粒机)制备成球形、平均粒径为10-50微米的3D打印用的金属粉末。
上述步骤(4)3D打印用的金属粉末的平均直径的获得可以通过调节离心喷雾的转速或压力喷雾的压力和其他控制参数以及浆料的固液比等得到所需的金属粉末大小;为了实现上述粒径的产品,本发明步骤(4)所述的离心喷雾造粒机的转速控制在10000-40000转/分;压力喷雾造粒机的压力为6-30kg/cm2(即0.6-3兆帕);对上述二种造粒机器涉及到的工艺参数即操作参数(即压力喷雾造粒机和离心喷雾造粒机均适用的操作参数)可控制在:干燥空气的进口温度为200-350℃、干燥空气的出口温度为80-150℃;干燥空气的流量为100-300Nm3/h(标方每小时即指标准状况下的体积流量);金属粉浆料在压力喷雾造粒机或离心喷雾造粒机的进料速度为5-20kg/h。
作为优选,本发明步骤(1)所述的亚微米级金属粉末的平均粒径为0.5-2微米,采用该粒径的金属粉,再进行造粒工艺团聚过程,更利于各亚微米级金属粉末彼此之间的团聚,结构更加稳固。
作为优选,本发明步骤(4)所述的3D打印机用的金属粉末其平均粒径为20-30微米,采用该粒径范围的金属粉末,更利于在3D打印机上的应用。
作为优选,本发明所述的金属粉末可以为钛、镍、铜粉等,也可以是镍基合金粉,钛基合金粉,铝基合金粉,铁基合金粉等以及可用于3D打印的其他金属粉。
本发明上述步骤(2)中所述的液体可以是水、乙醇或者其他有机溶液(如异丙醇,甲醇等)。
本发明上述的有机粘合剂如聚乙烯醇、乙基纤维素或者专用的金属矿粉造粒粘合剂等(如保定京素生物科技有限公司生产的型号为:HY-1的冶金矿粉球团粘合剂、型号:G-S的钢渣粉球团粘合剂等)。
本发明的优点和有益效果:
1.本发明3D打印机用的金属粉末,采用的是将亚微米级(粒径为0.1-3微米)金属粉末通过造粒工艺团聚成平均粒径10-50微米的金属粉末而成,不是一个完整的一体化的金属粉末,而是由多个亚微米级的金属粉末彼此粘结团聚而成,因此,该3D打印机用的金属粉末既具有亚微米粒子的各种优点(如球形度高、成分均匀、氧含量低),又具有雾化金属粉末的分散性和输送性,因此,解决了亚微米级金属粉末在3D打印中分散和输送困难的问题,使亚微米级的金属粉末在3D打印技术中的应用成为可能,本发明的实施使得3D打印技术得到进一步的发展。
2.本发明3D打印机用的金属粉末的制备方法,采用在金属粉浆料里添加固体重量0.1-5%的有机粘合剂,金属粉浆料通过离心喷雾造粒机、压力喷雾造粒机或其他造粒设备制备成球形状的、平均直径在10-50微米的金属粉末工艺。金属粉末的平均直径可以通过调节离心喷雾的转速或压力喷雾的压力以及浆料的固液比得到所需的金属粉末大小。特别是调节浆料的固液比,可以得到较小的金属粉末。经过本发明实验可得在相同的离心喷雾的转速下或相同的压力喷雾的压力下,固液比小的金属粉浆料可以得到较小金属粉末,这是因为在相同的转速下,喷出的液滴直径相当,由于在液滴中的金属粉粒含量少,液滴经过干燥,较少的金属粉粒收缩成较小直径的金属粉末因此,本发明选用0.25-2.0的固液比成功实现制备上述平均直径在10-50微米金属粉体的技术效果。通过这种造粒方法,可以得到比雾化的金属粉更小的粉末。然后金属粉末通过分筛机,除去未成团的散粉和超大的粉团,得到所需大小的金属粉末。这种金属粉末既具有亚微米粒子的各种优点,又具有雾化金属粉末的分散性和输送性,能够使亚微米的金属粉在现有3D打印设备得到应用。
附图说明
图1亚微米级金属粉末的扫描电镜图。
图23D打印机用的金属粉末(I)扫描电镜图。
图3平均粒径1.0微米的铜基合金粉扫描电镜图。
图4平均粒径40微米的铜基合金粉末扫描电镜图。
图5平均粒径0.5微米的钛基合金粉扫描电镜图。
图6平均粒径45微米的钛基合金粉末扫描电镜图。
图7平均粒径0.25微米的镍基合金粉扫描电镜图。
图8平均粒径30微米的镍基合金粉末扫描电镜图。
图9平均粒径0.5微米的纯金属镍粉扫描电镜图。
图10平均粒径40微米的纯金属镍粉末扫描电镜图。
图113D打印机用的金属粉末(II)扫描电镜图。
具体实施方式
下面通过实施例进一步详细描述本发明,但本发明不仅仅局限于以下实施例。
本发明涉及到的设备如压力喷雾造粒机或离心喷雾造粒机等均为市售产品,各种原料均为行业常规原料;具体工作原理为:料液通过泵输入,喷出雾状液滴,然后同热空气(干燥空气)并流下降,粉粒由塔底排料口收集,废气及其微小粉末经过旋风分离器分离,废气由抽风机排出,粉末由设在旋风分离器下端的粉筒收集,风机出口处还可装备二级除尘装置,按产品规格要求调节压力、流量、喷孔的大小,得到所需的按一定大小比例的球形颗粒。
实施例1
采用物理气相沉积法:将作为原料的铜基合金在坩埚中溶解,气体(氢气、氩气、氮气等)从等离子体转移弧炬中的进气管进入、通过外加电源被等离子化,在坩埚和等离子体转移弧炬之间产生等离子体转移弧(即等离子体转移弧炬产生的等离子体转移弧下端与坩埚中的金属液面相接);金属通过等离子体转移弧被蒸发、汽化;金属蒸气通过聚冷管道,将室温的惰性气体或氮气高速加入到金属蒸气中,使金属蒸气温度降到300℃以下,得到平均粒径为1.0微米的铜基合金粉(图3)(上述物理气相沉积法为行业常规方法,在此步骤详细赘述);然后与乙醇配成固液比为1.5:1的金属粉浆料。有机粘合剂(聚乙烯醇)的重量为固体重量的2%。通过离心喷雾造粒器把金属粉浆料制备成球形状的金属粉末。离心喷雾造粒器的转速控制在12000转/分,离心喷雾造粒器的干燥空气的进口温度为200℃,出口温度为90℃,干燥空气流量为220Nm3/h。金属粉浆料的进料速度为12kg/h。干燥造粒后的金属粉末通过旋风器收集,超细的金属粉末通过滤袋收集。旋风器收集的金属粉末用振动筛分级,得到平均粒径为40微米的金属粉末(图4)。滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
实施例2:
采用物理气相沉积法生产的平均粒径为0.5微米的钛基合金粉(图5),与水配成固液比为2:1的金属粉浆料。有机粘合剂(乙基纤维素)的重量为固体重量的1.5%。通过离心喷雾造粒器把金属粉浆料制备成球形状的金属粉末。离心喷雾造粒机的转速控制在12000转/分,干燥空气的进口温度为350℃,出口温度为120℃,干燥空气流量为250Nm3/h。金属粉浆料的进料速度为10kg/h。干燥造粒后的金属粉末通过旋风器收集,超细的金属粉末通过滤袋收集。旋风器收集的金属粉末用振动筛分级,得到平均粒径为45微米的金属粉末(图6)。滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
实施例3:
采用物理气相沉积法生产的平均粒径为0.25微米的镍基合金粉(图7),与乙醇配成固液比为1:1的金属粉浆料。有机粘合剂(保定京素生物科技有限公司生产的型号为:HY-1的冶金矿粉球团粘合剂)的重量为固体重量的1.5%。通过离心喷雾造粒器把金属粉浆料制备成球形状的金属粉末。离心喷雾的转速控制在25000转/分,干燥空气的进口温度为200℃,出口温度为90℃,干燥空气流量为220Nm3/h。金属粉浆料的进料速度为10kg/h。干燥造粒后的金属粉末通过旋风器收集,超细的金属粉末通过滤袋收集。旋风器收集的金属粉末用振动筛分级,得到平均粒径为30微米的金属粉末(图8)。滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
实施例4:
采用物理气相沉积法生产的平均粒径为0.5微米的纯金属镍粉(图9),与甲醇配成固液比为1.5:1的金属粉浆料。有机粘合剂的重量为固体重量的1.0%。通过压力喷雾造粒器把金属粉浆料制备成球形状的金属粉末。压力喷雾的压力控制在15kg/cm2,干燥空气的进口温度为250℃,出口温度为95℃,干燥空气流量为250Nm3/h。金属粉浆料的进料速度为12kg/h。干燥造粒后的金属粉末通过旋风器收集,超细的金属粉末通过滤袋收集。旋风器收集的金属粉末用振动筛分级,得到平均粒径为40微米的金属粉末(图10)。滤袋收集的金属粉末和分筛踢除的金属粉末回收再制备成金属粉浆料。
上述实施例制备的3D打印机用金属粉末,从附图可以得知,其结构不是一个完整的一体化的金属粉末,而是有多个亚微米级的金属粉末彼此粘结团聚而成,因此,该3D打印机用的金属粉末既具有亚微米粒子的各种优点(如球形度高、成分均匀、氧含量低),又具有雾化金属粉末的分散性和输送性。
将上述实施例制备的3D打印机用金属粉末用于3D打印,3D打印机用金属粉末通过3D打印机的喷嘴喷撒到具有防护性气体的防护室中的加热模型工作台上逐层打印,形成3D打印产品;在喷嘴喷撒过程具有分散性好,金属粉末输送顺利优的点,在逐层打印过程充分保证相接处的每层金属粉末的接触面积增大,粘结紧固。

Claims (9)

1.一种3D打印机用的金属粉末,其特征在于:该金属粉末为先采用物理气相沉积法或化学气相沉积法制备成平均粒径为0.1-3微米的亚微米级金属粉末,该平均粒径为0.1-3微米的金属粉末通过造粒团聚成平均粒径10-50微米3D打印机用的金属粉末;所述的3D打印机用的金属粉末为金属单质粉或合金粉。
2.根据权利要求1所述的3D打印机用的金属粉末,其特征在于:所述的亚微米级金属粉末的平均粒径为0.5-2微米;所述的3D打印机用的金属粉末其平均粒径为20-30微米。
3.一种3D打印机用的金属粉末的制备方法,其特征在于:具体制备步骤包括:
(1)先采用物理气相沉积法或化学气相沉积法制备出亚微米级金属粉末,所得的亚微米级金属粉末的平均粒径为0.1-3微米;
(2)将步骤(1)所得的平均粒径为0.1-3微米的亚微米级金属粉末与液体混合、配制成金属粉浆料;上述金属粉浆料的亚微米级金属粉末与液体的重量比为0.25-2.0:1;
(3)在步骤(2)所得的金属粉浆料中加入亚微米级金属粉末重量0.1-10%的有机粘合剂,搅拌混合均匀;
(4)将步骤(3)搅拌混合均匀的浆料通过离心喷雾造粒机或压力喷雾造粒机制备成球形状的、平均粒径为10-50微米的3D打印用的金属粉末。
4.根据权利要求3所述的3D打印机用的金属粉末的制备方法,其特征在于:步骤(1)所述的亚微米级金属粉末的平均粒径为0.5-2微米。
5.根据权利要求4所述的3D打印机用的金属粉末的制备方法,其特征在于:步骤(4)所述的3D打印机用的金属粉末其平均粒径为20-30微米。
6.根据权利要求3所述的3D打印机用的金属粉末的制备方法,其特征在于:所述的3D打印机用的金属粉末为钛、镍或铜粉,或者是镍基合金粉、钛基合金粉、铝基合金粉或铁基合金粉。
7.根据权利要求3所述的3D打印机用的金属粉末的制备方法,其特征在于:步骤(2)中所述的液体为水、乙醇、异丙醇或甲醇。
8.根据权利要求3所述的3D打印机用的金属粉末的制备方法,其特征在于:步骤(3)中所述的有机粘合剂为聚乙烯醇、乙基纤维素或者金属矿粉造粒粘合剂。
9.根据权利要求3所述的3D打印机用的金属粉末的制备方法,其特征在于:步骤(4)所述的离心喷雾造粒机的转速控制在10000-40000转/分;压力喷雾造粒机的压力为6-30kg/cm2;上述压力喷雾造粒机或离心喷雾造粒机其他操作参数控制在:干燥空气的进口温度为200-350℃和出口温度为80-150℃;干燥空气的流量为100-300Nm3/h;金属粉浆料在压力喷雾造粒机或离心喷雾造粒机的进料速度为5-20kg/h。
CN201410028642.2A 2014-01-22 2014-01-22 3d打印机用的金属粉末及其制备方法 Active CN103785860B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410028642.2A CN103785860B (zh) 2014-01-22 2014-01-22 3d打印机用的金属粉末及其制备方法
US15/113,055 US10065240B2 (en) 2014-01-22 2014-04-03 Metal powder for 3D printers and preparation method for metal powder
PCT/CN2014/074722 WO2015109658A1 (zh) 2014-01-22 2014-04-03 3d打印机用的金属粉末及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410028642.2A CN103785860B (zh) 2014-01-22 2014-01-22 3d打印机用的金属粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN103785860A CN103785860A (zh) 2014-05-14
CN103785860B true CN103785860B (zh) 2016-06-15

Family

ID=50662150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410028642.2A Active CN103785860B (zh) 2014-01-22 2014-01-22 3d打印机用的金属粉末及其制备方法

Country Status (3)

Country Link
US (1) US10065240B2 (zh)
CN (1) CN103785860B (zh)
WO (1) WO2015109658A1 (zh)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505058B2 (en) * 2014-05-16 2016-11-29 Xerox Corporation Stabilized metallic nanoparticles for 3D printing
US20170189960A1 (en) * 2014-06-20 2017-07-06 Fujimi Incorporated Powder material for powder additive manufacturing and powder additive manufacturing method using same
CN106661766B (zh) * 2014-07-08 2019-09-06 埃默里油脂化学有限公司 用于3d打印设备中的能烧结的进料
CN104475742A (zh) * 2014-12-04 2015-04-01 南京大学 一种铁基非晶软磁合金球形粉末的制造方法
US10144061B2 (en) 2014-12-30 2018-12-04 Delavan Inc. Particulates for additive manufacturing techniques
CN105801012A (zh) * 2014-12-31 2016-07-27 优克材料科技股份有限公司 浆料
CN104668552B (zh) * 2015-01-30 2016-09-07 成都新柯力化工科技有限公司 一种用于3d打印的铝粉及其制备方法
CN104772473B (zh) * 2015-04-03 2016-09-14 北京工业大学 一种3d打印用细颗粒球形钛粉的制备方法
EP3296043A4 (en) * 2015-05-15 2018-04-25 Konica Minolta, Inc. Powder material, method for producing three-dimensional molded article, and three-dimensional molding device
CN104942300B (zh) * 2015-06-15 2017-04-26 江苏博迁新材料股份有限公司 空心或实心球形金属粉体的制备方法
WO2017104234A1 (ja) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 粉末材料、立体造形物の製造方法および立体造形装置
HUE065423T2 (hu) 2015-12-16 2024-05-28 6K Inc Eljárás szferoidális dehidrogénezett titánötvözet részecskék elõállítására
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
JP6764228B2 (ja) * 2015-12-22 2020-09-30 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
JP6656911B2 (ja) * 2015-12-22 2020-03-04 株式会社フジミインコーポレーテッド 粉末積層造形に用いるための造形用材料
CN106925770A (zh) * 2015-12-30 2017-07-07 西门子公司 3d打印用粉末及3d打印方法
WO2017180095A1 (en) 2016-04-11 2017-10-19 Hewlett-Packard Development Company, L.P. Particulate build material
CN105880612B (zh) * 2016-06-28 2018-07-06 浙江亚通焊材有限公司 一种增材制造用活性金属粉末制备方法
CN106077620A (zh) * 2016-08-24 2016-11-09 江苏星火特钢有限公司 一种用于3d打印的不锈钢金属粉体及其制备方法
CN106216705B (zh) * 2016-09-19 2018-04-27 北京工业大学 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN106270541A (zh) * 2016-09-29 2017-01-04 柳州增程材料科技有限公司 高强度增材制造材料的加工方法
CN106346011A (zh) * 2016-09-29 2017-01-25 柳州增程材料科技有限公司 3d打印用复合金属粉末的制备方法
CN106166616A (zh) * 2016-09-29 2016-11-30 柳州增程材料科技有限公司 一种3d打印用金属粉末的制备方法
CN106216698A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 一种3d打印用合金粉末的制备工艺
CN106216697A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 3d打印用合金粉末的制备方法
CN106392087A (zh) * 2016-09-29 2017-02-15 柳州增程材料科技有限公司 一种高强度3d打印金属材料的制备方法
CN106346010A (zh) * 2016-09-29 2017-01-25 柳州增程材料科技有限公司 一种增材制造材料的制备方法
CN106216699A (zh) * 2016-09-29 2016-12-14 柳州增程材料科技有限公司 一种3d打印用金属粉末制备工艺
CN106270520A (zh) * 2016-09-29 2017-01-04 柳州增程材料科技有限公司 高强度高模量3d打印材料的制备方法
CN106424743A (zh) * 2016-09-29 2017-02-22 柳州增程材料科技有限公司 一种高强度高模量增材制造材料的制备方法
CN106238741A (zh) * 2016-09-30 2016-12-21 柳州增程材料科技有限公司 汽车用铝镁合金材料的制备方法
CN106346012A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 汽车变速箱用铝镁合金的制备方法
CN106148777A (zh) * 2016-09-30 2016-11-23 柳州增程材料科技有限公司 汽车发动机用铝镁合金的加工方法
CN106216700A (zh) * 2016-09-30 2016-12-14 柳州增程材料科技有限公司 一种变速箱用铝镁合金粉末的制备工艺
CN106216701A (zh) * 2016-09-30 2016-12-14 柳州增程材料科技有限公司 铝镁合金粉末的制备方法
CN106346013A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 汽车发动机用铝镁合金粉末的制备方法
CN106392086A (zh) * 2016-09-30 2017-02-15 柳州增程材料科技有限公司 一种铝镁合金粉末的制备工艺
CN106346014A (zh) * 2016-09-30 2017-01-25 柳州增程材料科技有限公司 变速箱用铝镁合金的加工方法
CN106636844A (zh) * 2016-11-23 2017-05-10 武汉华智科创高新技术有限公司 一种适用于激光3d打印的铌合金粉末及其制备方法
CN108262473A (zh) * 2016-12-30 2018-07-10 西门子公司 3d打印用复合粉末、打印设有嵌入的元器件的部件的方法及该部件和其打印模型
CN106890995A (zh) * 2017-02-23 2017-06-27 深圳市卡德姆科技有限公司 一种金属注塑成型烧结用催化脱脂型喂料的制作方法
JP6862917B2 (ja) * 2017-02-28 2021-04-21 セイコーエプソン株式会社 三次元造形物製造用組成物および三次元造形物の製造方法
CN106903303A (zh) * 2017-03-15 2017-06-30 铜陵元精工机械有限公司 一种应用于选择性激光烧结技术的高强度金属粉末及其工艺
CN107116224A (zh) * 2017-04-25 2017-09-01 上海材料研究所 一种用于3D打印技术的18Ni‑300模具钢粉末的制备方法
WO2019045733A1 (en) * 2017-08-31 2019-03-07 Desktop Metal, Inc. PARTICLE AGGLOMERATION FOR THE ADDITIVE MANUFACTURE OF METAL
CN107695338B (zh) * 2017-09-21 2019-11-12 北京宝航新材料有限公司 一种AlSi7Mg粉末材料及其制备方法和其应用
WO2019083515A1 (en) 2017-10-24 2019-05-02 Hewlett-Packard Development Company, L.P. SUSPENSION OF CONSTRUCTION MATERIAL
US10982306B2 (en) 2017-10-30 2021-04-20 GM Global Technology Operations LLC Additive manufacturing process and powder material therefor
CN109795987B (zh) * 2017-11-16 2023-11-07 上海镁源动力科技有限公司 制备氢化镁粉末的一体化装置及制备氢化镁粉末的方法
US11273601B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
US11273496B2 (en) 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
CN110405218B (zh) * 2018-04-26 2022-07-08 广东正德材料表面科技有限公司 一种高球形度纳米结构不锈钢粉末及其制备方法
WO2019246257A1 (en) 2018-06-19 2019-12-26 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
US20210260652A1 (en) * 2018-06-20 2021-08-26 Desktop Metal, Inc. Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
CN110893465A (zh) * 2018-08-22 2020-03-20 西门子股份公司 3d打印金属粉末、3d打印及制备3d打印金属粉末的方法
US20200164963A1 (en) 2018-11-26 2020-05-28 Embraer S.A. Thermally configurable structural elements especially useful for aircraft components
US11868124B2 (en) 2018-12-06 2024-01-09 Jabil Inc. Apparatus, system and method of forming polymer microspheres for use in additive manufacturing
CN109365803B (zh) * 2018-12-20 2021-02-09 哈尔滨工业大学 一种粉末表面稀土改性的铝合金复杂构件增材制造方法
US11787108B2 (en) 2019-01-10 2023-10-17 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2020223374A1 (en) 2019-04-30 2020-11-05 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
JP2022530648A (ja) 2019-04-30 2022-06-30 シックスケー インコーポレイテッド 機械的に合金化された粉末原料
CN113924177B (zh) * 2019-05-02 2024-07-02 泰科纳等离子系统有限公司 具有改进的物理特性的增材制造粉末、其制造方法及其用途
CN110164677B (zh) * 2019-06-11 2020-11-06 莱芜职业技术学院 一种制备用于3d打印的铁基软磁复合材料丝材
EP4058265A4 (en) * 2019-11-15 2024-01-10 Holo, Inc. THREE-DIMENSIONAL PRINTING COMPOSITIONS AND PROCESSES
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN110961619A (zh) * 2019-12-23 2020-04-07 北京科技大学 一种低成本3d打印钛制品的方法
CN111112635A (zh) * 2020-01-16 2020-05-08 深圳市金中瑞通讯技术有限公司 一种钛合金粉及其制备方法
KR20230029836A (ko) 2020-06-25 2023-03-03 6케이 인크. 마이크로복합 합금 구조
CN116547068A (zh) 2020-09-24 2023-08-04 6K有限公司 用于启动等离子体的系统、装置及方法
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11668314B2 (en) 2020-11-10 2023-06-06 Greenheck Fan Corporation Efficient fan assembly
CN112692294B (zh) * 2020-12-22 2022-12-09 厦门钨业股份有限公司 一种高比重钨合金粉末及其制备方法
EP4313449A1 (en) 2021-03-31 2024-02-07 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
CN113319273B (zh) * 2021-07-05 2022-12-09 北京科技大学顺德研究生院 一种铜锡复合球形颗粒粉末及其制备方法
CN113564545B (zh) * 2021-07-27 2022-02-22 杭州阿凡达光电科技有限公司 一种环保型氧化铌靶材的加工工艺及其装置
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
WO2024044498A1 (en) 2022-08-25 2024-02-29 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip)
CN116217206A (zh) * 2023-02-27 2023-06-06 共享智能装备有限公司 一种打印用固废粉料制备方法及3d打印方法
US20240335890A1 (en) 2023-04-10 2024-10-10 Embraer S.A. Additively manufactured geometry optimized drilling jigs and methods of making and using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188650A1 (en) * 2003-04-16 2006-08-24 Hartmut Sauer Rapid prototyping process
CN1907602A (zh) * 2006-08-02 2007-02-07 南昌航空工业学院 一种选区激光烧结快速制造金属模具的方法
CN1954022A (zh) * 2004-03-21 2007-04-25 丰田赛车有限公司 用于快速原型的粉末及其制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611616B2 (ja) * 1992-12-18 1997-05-21 日本新金属株式会社 均粒微細な金属タングステン粉末の製造法
US5328763A (en) 1993-02-03 1994-07-12 Kennametal Inc. Spray powder for hardfacing and part with hardfacing
CN1230561C (zh) * 2001-07-20 2005-12-07 上海天嘉应用生物技术有限公司 一种化学气相沉积球形还原铁
JP3743980B2 (ja) * 2002-03-28 2006-02-08 同和鉱業株式会社 低融点金属粉末及びその製造方法
JP4119667B2 (ja) * 2002-04-12 2008-07-16 トーカロ株式会社 複合サーメット粉末およびその製造方法
DE102005061965A1 (de) * 2005-12-23 2007-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oxidische Agglomeratpartikel, Verfahren zur Herstellung von Nanokompositen sowie deren Verwendung
CN101884892B (zh) * 2010-06-25 2012-09-05 北京工业大学 一种超细及纳米WC-Co复合粉的团聚造粒方法
CN102218533B (zh) * 2011-05-17 2013-06-19 陈钢强 银包镍合金粉
WO2012169255A1 (ja) * 2011-06-08 2012-12-13 株式会社東芝 モリブデン造粒粉の製造方法およびモリブデン造粒粉
EP3009210B1 (en) * 2013-06-13 2019-05-22 Ishihara Chemical Co., Ltd. Production method of beta tantalum powder, granulated tantalum powder, used thereof in solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188650A1 (en) * 2003-04-16 2006-08-24 Hartmut Sauer Rapid prototyping process
CN1954022A (zh) * 2004-03-21 2007-04-25 丰田赛车有限公司 用于快速原型的粉末及其制造方法
CN1907602A (zh) * 2006-08-02 2007-02-07 南昌航空工业学院 一种选区激光烧结快速制造金属模具的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
三维快速成型打印技术成型材料及粘结剂研制;王位;《中国知网中国优秀硕士学位论文(工程科技Ⅱ辑)》;20130115;第12-14页 *
纳米铜粉的研究进展;文瑾等;《金属功能材料》;20110228;第18卷(第1期);第55-59页 *
超细镍粉化学气相法制备过程中温度的影响;张淑英等;《湖南工业大学学报》;20101117;第24卷(第4期);第14-16页 *

Also Published As

Publication number Publication date
WO2015109658A1 (zh) 2015-07-30
US10065240B2 (en) 2018-09-04
US20170008082A1 (en) 2017-01-12
CN103785860A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
CN103785860B (zh) 3d打印机用的金属粉末及其制备方法
CN104475743B (zh) 一种微细球形钛及钛合金粉末的制备方法
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
CN103480854B (zh) 一种制备超细金属粉末的方法
JP2023156421A (ja) 粗くて角張った粉末供給物質から微細な球状粉末を製造するための方法および装置
CN104209526B (zh) 一种微细球形钛合金粉体的制备方法
CN111819018B (zh) 微粒子的制造方法及微粒子
JPS63243212A (ja) 細分された球状高融点金属基粉末を製造するための湿式冶金方法
CN106216703A (zh) 一种3d打印用球形铝合金粉末的制备方法
CN104942300B (zh) 空心或实心球形金属粉体的制备方法
CN106216702B (zh) 一种球形钛或钛合金粉的制备方法
TWI588092B (zh) 碳化鈦微粒子之製造方法
CN107008916A (zh) 一种球形镍铼合金粉末及其制备方法、应用
JPWO2015015795A1 (ja) SiOX粉末製造法及びSiOX粉末製造装置
KR102546750B1 (ko) 고융점 금속 또는 합금 분말의 미립화 제조 방법
CN108356274A (zh) 一种热喷涂用TiB2-Ni基金属陶瓷复合结构喂料及其制备方法
CN108393499A (zh) 一种高能高速等离子制备球形金属粉末的装置和方法
JP2004183049A (ja) ガスアトマイズ法による微細金属粉末の製造方法及び微細金属粉末の製造装置
Liu et al. Preparation of Al2O3 magnetic abrasives by combining plasma molten metal powder with sprayed abrasive powder
CN111687425A (zh) 一种核壳结构纳米材料及其制备方法
CN108274011B (zh) 一种适用于3d打印的具有双峰分布金属粉末的制备方法
JP2011174161A (ja) 溶射粉末の再生方法及び再生溶射粉末
JP2004315871A (ja) 金属超微粒子の製造方法およびその製造装置
CN208322127U (zh) 一种高能高速等离子制备球形金属粉末的装置
JPS63307201A (ja) 細分された鉄基粉末を製造するための湿式冶金方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20161221

Address after: 223801 Suqian province high tech Development Zone, Jiangshan Road, No. 23, No.

Patentee after: Jiangsu Bo move new materials Limited by Share Ltd

Address before: Yinzhou District Zhejiang city in Ningbo province where 315153 broad industrial park spring news site

Patentee before: Ningbo Guangbo New Nanomaterials Stock Co.,Ltd.

Patentee before: Jiangsu Boqian New Materials Co., Ltd.