Nothing Special   »   [go: up one dir, main page]

CN103605284A - Dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method - Google Patents

Dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method Download PDF

Info

Publication number
CN103605284A
CN103605284A CN201310567638.9A CN201310567638A CN103605284A CN 103605284 A CN103605284 A CN 103605284A CN 201310567638 A CN201310567638 A CN 201310567638A CN 103605284 A CN103605284 A CN 103605284A
Authority
CN
China
Prior art keywords
mtr
mtd
mrow
msub
controlled object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310567638.9A
Other languages
Chinese (zh)
Other versions
CN103605284B (en
Inventor
薛安克
张日东
陈华杰
郭云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201310567638.9A priority Critical patent/CN103605284B/en
Publication of CN103605284A publication Critical patent/CN103605284A/en
Application granted granted Critical
Publication of CN103605284B publication Critical patent/CN103605284B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

Disclosed in the invention is a dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method. The method comprises the following steps that: on the basis of step response data of a waste plastic cracking furnace pressure object, a mode of the furnace pressure object is established and a basic object characteristic is dug out; on the basis of the characteristic of dynamic matrix control, a parameter of a corresponding proportional-integral (PI) controller set; and PI controlling is carried out on a waste plastic cracking furnace temperature object. According to the dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method, good controlling performances of the PI controlling and the dynamic matrix control are combined, thereby effectively overcoming defects of the traditional controlling method. And meanwhile, the development and application of the advanced control algorithm can be promoted.

Description

Dynamic matrix control optimized waste plastic cracking furnace pressure control method
Technical Field
The invention belongs to the technical field of automation, and relates to a waste plastic cracking furnace pressure Proportional Integral (PI) control method based on Dynamic Matrix Control (DMC) optimization.
Background
With the upsizing and complication of modern industrial processes, some traditional control methods are increasingly difficult to meet the actual demands of the industry. Although some advanced process control technologies can greatly improve the production efficiency in theory, the advanced process control technologies are difficult to apply due to the aspects of hardware, cost, implementation difficulty and the like, so that the PID control still occupies the mainstream at present. The current waste plastic cracking furnace hearth pressure control usually adopts Proportional Integral (PI) control. The dynamic matrix control is one of the advanced control methods, the requirement on the model is low, the calculated amount is small, and the method for processing the time delay is simple and easy to implement.
Disclosure of Invention
The invention aims to provide a waste plastic cracking furnace pressure PI control method based on dynamic matrix control optimization aiming at the application defects of the existing advanced control method so as to obtain better actual control performance. The method combines dynamic matrix control and PI control to obtain a PI control method with dynamic matrix control performance. The method not only inherits the excellent performance of dynamic matrix control, but also has simple form and can meet the requirement of actual industrial process.
Firstly, establishing a model of a furnace pressure object based on step response data of the waste plastic cracking furnace pressure object, and excavating basic object characteristics; then, setting parameters of a corresponding PI controller according to the characteristics of dynamic matrix control; and finally, PI control is carried out on the waste plastic cracking furnace temperature object.
The technical scheme of the invention is that a PI control method based on dynamic matrix control optimization is established by means of data acquisition, dynamic matrix establishment, prediction model establishment, prediction mechanism, optimization and the like, and the method can effectively improve the control precision and stability.
The method comprises the following steps:
step (1), establishing a model of a controlled object through real-time step response data of a process object, wherein the specific method comprises the following steps:
a. and (4) giving a step input signal to the controlled object, and recording a step response curve of the controlled object.
b. C, filtering the step response curve obtained in the step a, fitting the step response curve into a smooth curve, and recording step response data corresponding to each sampling moment on the smooth curve, wherein the first sampling moment is TsThe time interval between two adjacent sampling time is TsThe sampling time sequence is Ts、2Ts、3Ts… …, respectively; the step response of the controlled object will be at a certain time tNAfter NT, it tends to be stable when ai(i > N) and aNWhen the error of (a) and the measurement error are of the same order of magnitude, a can be regarded asNApproximately equal to the steady state value of the step response. Establishing a model vector a of an object:
a=[a1,a2,…aN]Τ
and T is a transposed symbol of the matrix, and N is a modeling time domain.
Step (2), designing a PI controller of a controlled object, wherein the specific method comprises the following steps:
a. and establishing a dynamic matrix of the controlled object by using the model vector a obtained above, wherein the dynamic matrix is in the form of:
A = a 1 0 . . . 0 a 2 a 1 . . . 0 . . . . . . . . . . . . a P a P - 1 . . . a P - M + 1
where A is a dynamic matrix of order P × M of the controlled object, aiIs data of step response, P is optimized time domain of dynamic matrix control algorithm, and M is control of dynamic matrix control algorithmTime domain, M < P < N.
b. Establishing a model prediction initial response value y of the controlled object at the current k momentM(k)
Firstly, obtaining a model predicted value y after adding a control increment delta u (k-1) at the moment of k-1p(k-1):
yP(k-1)=yM(k-1)+A0Δu(k-1)
Wherein,
y P ( k - 1 ) = y 1 ( k | k - 1 ) y 1 ( k + 1 | k - 1 ) . . . y 1 ( k + N - 1 | k - 1 ) , A 0 = a 1 a 2 . . . a N , y M ( k ) = y 0 ( k | k - 1 ) y 0 ( k + 1 | k - 1 ) . . . y 0 ( k + N - 1 | k - 1 )
y1(k|k-1),y1(k+1|k-1),…,y1(k + N-1| k-1) respectively represents the model predicted value of the controlled object after adding the control increment delta u (k-1) to k, k +1, …, k + N-1 at the time k-1, y0(k|k-1),y0(k|k-1),…y0(k + N-1| k-1) represents the initial predicted value at time k-1 versus time k, k +1, …, k + N-1, A0For the matrix established for the step response data, Δ u (k-1) is the input control increment at time k-1.
Then obtaining a model prediction error value e (k) of the controlled object at the moment k:
e(k)=y(k)-y1(k|k-1)
where y (k) represents the actual output value of the controlled object measured at time k.
Further obtaining a correction value y output by the k-time modelcor(k):
ycor(k)=yM(k-1)+h*e(k)
Wherein,
<math> <mrow> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
ycor(k|k),ycor(k+1|k),…ycorand (k + N-1| k) respectively represents the corrected value of the controlled object model at the moment k, h is a weight matrix for error compensation, and alpha is an error correction coefficient.
Finally obtaining the initial response value y of the model prediction at the moment kM(k):
yM(k)=Sycor(k)
Wherein S is a state transition matrix of NxN order,
Figure BDA0000413811580000031
c. calculating the predicted output value y of the controlled object under M continuous control increments delta u (k), … and delta u (k + M-1)PMThe specific method comprises the following steps:
yPM(k)=yp0(k)+AΔuM(k)
<math> <mrow> <msub> <mi>y</mi> <mi>PM</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>P</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, yP0(k) Is yM(k) The first P term, yM(k+1|k),yM(k+2|k),…,yM(k + P | k) is the model predicted output value at time k versus time k +1, k +2, …, k + P.
d. Let the control time domain M =1 of the controlled object, select the objective function j (k) of the controlled object, the form is as follows:
minJ(k)=Q(ref(k)-yPM(k))2+rΔu2(k)=Q(ref(k)-yP0(k)-AΔu(k))2+rΔu2(k)
ref(k)=[ref1(k),ref2(k),…,refP(k)]Τ
refi(k)=βiy(k)+(1-βi)c(k),Q=diag(q1,q2,…,qP)
wherein Q is an error weighting matrix, Q1,q2,…,qPIs the parameter value of the weighting matrix; beta is softening coefficient, c (k) is set value; r ═ diag (r)1,r2,…rM) To control the weighting matrix, r1,r2,…rMFor controlling the parameters of the weighting matrix, ref (k) is the reference trajectory of the system, refi(k) Is the value of the ith reference point in the reference track.
e. Converting the control quantity u (k):
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)
e(k)=c(k)-y(k)
substituting u (k) into the objective function in the step d to solve the parameters in the PI controller to obtain:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k)]Τ
w1(k)=Kp(k)+Ki(k),w2(k)=-Kp(k)
E(k)=[e1(k),e1(k-1)]Τ
wherein Kp (K), Ki(k) Proportional and differential parameters of the PI controller at the time k, e1(k) T is the transposed symbol of the matrix for the error between the reference trajectory value and the actual output value at time k.
By combining the above formulas, the following can be obtained:
w ( k ) = ( ref ( k ) - y P 0 ( k ) ) T QAE ( A T QA + r ) E T E
further, it is possible to obtain:
Kp(k)=-w2(k)
Ki(k)=w1(k)-KP(k)
f. obtaining parameter K of PI controllerp(k)、Ki(k) The control amount u (K) is applied to the controlled object, and u (K) is equal to u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)。
h. At the next moment, the solution of the new parameter k of the PI controller is continued according to the steps from b to fP(k+1)、kiThe values of (k +1) are cycled through in sequence.
The invention provides a waste plastic cracking furnace temperature PI control method based on dynamic matrix control optimization, which combines good control performance of PI control and dynamic matrix control, effectively improves the defects of the traditional control method, and promotes the development and application of an advanced control algorithm.
Detailed Description
Taking the control of the pressure process of the waste plastic cracking furnace hearth as an example:
the waste plastic cracking furnace hearth pressure object is a process with hysteresis, and the adjusting means adopts the opening degree of a flue damper.
Step (1), establishing a model of a controlled object through real-time step response data of a waste plastic cracking furnace hearth pressure object, wherein the specific method comprises the following steps:
a. and (3) giving a step input signal to the waste plastic cracking furnace hearth, and recording a step response curve.
b. Filtering the corresponding step response curve, fitting the corresponding step response curve into a smooth curve, and recording the step response data corresponding to each sampling time on the smooth curve, wherein the first sampling time is TsThe time interval between two adjacent sampling time is TsThe sampling time sequence is Ts、2Ts、3Ts… …, respectively; response value a of the shutter openingiWill be at a certain time tNAfter NT, it tends to be stable when ai(i > N) and aNWhen the error of (a) and the measurement error are of the same order of magnitude, a can be regarded asNApproximately equal to the step response steady state value. Establishing a model vector a of an object:
a=[a1,a2,…aN]Τ
where T is the transposed symbol of the matrix and N is the modeled time domain.
Step (2) designing a PI controller of waste plastic cracking furnace pressure, wherein the specific method comprises the following steps:
a. and establishing a dynamic matrix of the waste plastic cracking furnace pressure by using the model vector a obtained above, wherein the form of the dynamic matrix is as follows:
A = a 1 0 . . . 0 a 2 a 1 . . . 0 . . . . . . . . . . . . a P a P - 1 . . . a P - M + 1
wherein A is a P multiplied by M order dynamic matrix of the waste plastic cracking furnace hearth pressure, aiThe data is the data of the opening degree of the baffle of the waste plastic cracking furnace hearth pressure, P is the optimization time domain of the dynamic matrix control algorithm, M is the control time domain of the dynamic matrix control algorithm, and M is more than P and less than N.
b. Establishing an initial predicted value y of the current k moment of the waste plastic cracking furnace hearth pressureM(k)
Firstly, obtaining a model predicted value y after the baffle opening is increased by delta u (k-1) at the moment of k-1p(k-1):
yP(k-1)=yM(k-1)+A0Δu(k-1)
Wherein,
y P ( k - 1 ) = y 1 ( k | k - 1 ) y 1 ( k + 1 | k - 1 ) . . . y 1 ( k + N - 1 | k - 1 ) , A 0 = a 1 a 2 . . . a N , y M ( k ) = y 0 ( k | k - 1 ) y 0 ( k + 1 | k - 1 ) . . . y 0 ( k + N - 1 | k - 1 )
y1(k|k-1),y1(k+1|k-1),…,y1(k + N-1| k-1) represents the model prediction value of the waste plastic cracking furnace hearth pressure at the time of k-1 after adding delta u (k-1) to the time of k, k +1, …, k + N-1, y0(k|k-1),y0(k|k-1),…y0(k + N-1. sub. k-1) represents an initial predicted value of the waste plastic cracking furnace hearth pressure at the time of k-1 versus the time of k, k +1, …, k + N-1, A0In order to establish a matrix from the waste plastic cracking furnace pressure step response data, Δ u (k-1) is the damper opening control increment of the waste plastic cracking furnace pressure at the time of k-1.
Then obtaining a model prediction error value e (k) of the pressure of the waste plastic cracking furnace at the time k:
e(k)=y(k)-y1(k|k-1)
wherein y (k) represents an actual output value of the waste plastic cracking furnace pressure measured at time k.
Further obtaining a corrected value y of model output of the waste plastic cracking furnace pressure at the time kcor(k):
ycor(k)=yM(k-1)+h*e(k)
Wherein,
<math> <mrow> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
ycor(k|k),ycor(k+1|k),…ycorand (k + N-1| k) respectively represents the corrected value of the model of the waste plastic cracking furnace hearth pressure at the time k, h is a weight matrix of error compensation, and alpha is an error correction coefficient.
Finally obtaining the initial predicted value y of the model of the waste plastic cracking furnace hearth pressure at the time kM(k):
yM(k)=Sycor(k)
Wherein S is a state transition matrix of NxN order,
Figure BDA0000413811580000053
c. calculating the predicted output value y of the waste plastic cracking furnace hearth pressure under M continuous control increments of delta u (k), …, delta u (k + M-1)PMThe specific method comprises the following steps:
yPM(k)=yP0(k)+AΔuM(k)
wherein,
<math> <mrow> <msub> <mi>y</mi> <mi>PM</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>P</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
yP0(k) is yM(k) The first P term, yM(k+1|k),yM(k+2|k),…,yM(k + P | k) is the pressure of the waste plastic cracking furnace hearth at the time of kThe output values are predicted for the model at time k +1, k +2, …, k + P.
d. Let the control time domain M be 1, and select an objective function J (k) of the waste plastic cracking furnace hearth pressure, the form is as follows:
minJ(k)=Q(ref(k)-yPM(k))2+rΔu2(k)=Q(ref(k)-yP0(k)-AΔu(k))2+rΔu2(k)
ref(k)=[ref1(k),ref2(k),…,refP(k)]Τ
refi(k)=βiy(k)+(1-βi)c(k),Q=diag(q1,q2,…,qP)
wherein Q is an error weighting matrix, Q1,q2,…,qPThe parameter values of the error weighting matrix; beta is softening coefficient, c (k) is set value of waste plastic cracking furnace hearth pressure; r ═ diag (r)1,r2,…rM) To control the weighting matrix, r1,r2,…rMFor controlling the parameters of the weighting matrix, ref (k) is a reference trajectory of the waste plastic cracking furnace hearth pressure, refi(k) Is the value of the ith reference point in the reference track.
e. Changing the opening control quantity u (k) of a flue damper of a waste plastic cracking furnace hearth:
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)
e(k)=c(k)-y(k)
and substituting u (k) into the objective function in the step d, further solving the parameters in the PI controller of the waste plastic cracking furnace hearth pressure, and obtaining:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k)]Τ
w1(k)=Kp(k)+Ki(k),w2(k)=-Kp(k)
E(k)=[e1(k),e1(k-1)]Τ
wherein, Kp(k)、Ki(k) Proportional and differential parameters, e, of the PI controller, respectively1(k) T is the transposed symbol of the matrix for the error between the reference trajectory value and the actual output value at time k.
By combining the above formulas, the following can be obtained:
w ( k ) = ( ref ( k ) - y P 0 ( k ) ) T QAE ( A T QA + r ) E T E
further, it is possible to obtain:
Kp(k)=-w2(k)
Ki(k)=w1(k)-KP(k)
f. obtaining parameter K of PI controllerp(k)、Ki(k) Then, the control amount u (K) of the opening degree of the flue damper is u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k) Acting on the waste plastic cracking furnace hearth.
g. At the next moment, the solution of the new parameter K of the PI controller is continued according to the steps from b to fp(k+1)、Ki(k +1) and are cycled sequentially.

Claims (1)

1. The method for controlling the pressure of the waste plastic cracking furnace hearth through dynamic matrix control optimization is characterized by comprising the following specific steps:
step (1), establishing a model of a controlled object through real-time step response data of a process object, wherein the specific method comprises the following steps:
1-a, giving a step input signal to a controlled object, and recording a step response curve of the controlled object;
1-b, filtering the step response curve obtained in the step 1-a, fitting the step response curve into a smooth curve, and recording each sample on the smooth curveStep response data corresponding to the time, wherein the first sampling time is TsThe time interval between two adjacent sampling time is TsThe sampling time sequence is Ts、2Ts、3Ts… …, respectively; the step response of the controlled object will be at a certain time tNAfter NT, it tends to be stable when aiI > N, and aNWhen the error of (a) and the measurement error are of the same order of magnitude, a can be regarded asNApproximately equal to the steady state value of the step response; establishing a model vector a of an object:
a=[a1,a2,…aN]Τ
t is a transposed symbol of the matrix, and N is a modeling time domain;
step (2), designing a PI controller of a controlled object, wherein the specific method comprises the following steps:
2-a, establishing a dynamic matrix of the controlled object by using the model vector a obtained above, wherein the dynamic matrix is in the form of:
A = a 1 0 . . . 0 a 2 a 1 . . . 0 . . . . . . . . . . . . a P a P - 1 . . . a P - M + 1
where A is a dynamic matrix of order P × M of the controlled object, aiThe method comprises the steps of obtaining data of step response, wherein P is an optimized time domain of a dynamic matrix control algorithm, M is a control time domain of the dynamic matrix control algorithm, and M is more than P and less than N;
2-b, establishing a model prediction initial response value y of the controlled object at the current k momentM(k)
Firstly, obtaining a model predicted value y after adding a control increment delta u (k-1) at the moment of k-1p(k-1):
yP(k-1)=yM(k-1)+A0Δu(k-1)
Wherein,
y P ( k - 1 ) = y 1 ( k | k - 1 ) y 1 ( k + 1 | k - 1 ) . . . y 1 ( k + N - 1 | k - 1 ) , A 0 = a 1 a 2 . . . a N , y M ( k ) = y 0 ( k | k - 1 ) y 0 ( k + 1 | k - 1 ) . . . y 0 ( k + N - 1 | k - 1 )
y1(k|k-1),y1(k+1|k-1),…,y1(k + N-1| k-1) respectively represents the model predicted value of the controlled object after adding the control increment delta u (k-1) to k, k +1, …, k + N-1 at the time k-1, y0(k|k-1),y0(k|k-1),…y0(k + N-1| k-1) represents the initial predicted value at time k-1 versus time k, k +1, …, k + N-1, A0A matrix is established for the step response data, and delta u (k-1) is an input control increment at the moment of k-1;
then obtaining a model prediction error value e (k) of the controlled object at the moment k:
e(k)=y(k)-y1(k|k-1)
wherein y (k) represents the actual output value of the controlled object measured at the time k;
further obtaining a correction value y output by the k-time modelcor(k):
ycor(k)=yM(k-1)+h*e(k)
Wherein,
<math> <mrow> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>cor</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
ycor(k|k),ycor(k+1|k),…ycor(k + N-1| k) respectively represents the corrected value of the controlled object at the moment k, h is a weight matrix of error compensation, and alpha is an error correction coefficient;
finally obtaining the initial response value y of the model prediction at the moment kM(k):
yM(k)=Sycor(k)
Wherein S is a state transition matrix of NxN order,
Figure FDA0000413811570000022
2-c, calculating the predicted output value y of the controlled object under M continuous control increments delta u (k), … and delta u (k + M-1)PMThe specific method comprises the following steps:
yPM(k)=yp0(k)+AΔuM(k)
<math> <mrow> <msub> <mi>y</mi> <mi>PM</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>P</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>|</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, yP0(k) Is yM(k) The first P term, yM(k+1|k),yM(k+2|k),…,yM(k + P | k) is a model prediction output value of the k moment to the k +1, k +2, … and k + P moment;
and 2-d, enabling the control time domain M =1 of the controlled object, and selecting a target function J (k) of the controlled object, wherein the form is as follows:
minJ(k)=Q(ref(k)-yPM(k))2+rΔu2(k)=Q(ref(k)-yP0(k)-AΔu(k))2+rΔu2(k)
ref(k)=[ref1(k),ref2(k),…,refP(k)]Τ
refi(k)=βiy(k)+(1-βi)c(k),Q=diag(q1,q2,…,qP)
wherein Q is an error weighting matrix, Q1,q2,…,qPIs the parameter value of the weighting matrix; beta is softening coefficient, c (k) is set value;r=diag(r1,r2,…rM) To control the weighting matrix, r1,r2,…rMFor controlling the parameters of the weighting matrix, ref (k) is the reference trajectory of the system, refi(k) Is the value of the ith reference point in the reference track;
transforming the control quantity u (k):
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)
e(k)=c(k)-y(k)
substituting u (k) into the objective function in the step d to solve the parameters in the PI controller to obtain:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k)]Τ
w1(k)=Kp(k)+Ki(k),w2(k)=-Kp(k)
E(k)=[e1(k),e1(k-1)]Τ
wherein Kp (K), Ki(k) Proportional and differential parameters of the PI controller at the time k, e1(k) For an error between a reference track value and an actual output value at the moment k, T is a transposed symbol of the matrix;
by combining the above formulas, the following can be obtained:
w ( k ) = ( ref ( k ) - y P 0 ( k ) ) T QAE ( A T QA + r ) E T E
further, it is possible to obtain:
Kp(k)=-w2(k)
Ki(k)=w1(k)-KP(k)
2-f, obtaining parameter K of PI controllerp(k)、Ki(k) The control amount u (K) is applied to the controlled object, and u (K) is equal to u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k);
At the next moment, continuing to solve the new parameter k of the PI controller according to the steps from 2-b to 2-fP(k+1)、kiThe values of (k +1) are cycled through in sequence.
CN201310567638.9A 2013-11-14 2013-11-14 The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized Active CN103605284B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310567638.9A CN103605284B (en) 2013-11-14 2013-11-14 The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310567638.9A CN103605284B (en) 2013-11-14 2013-11-14 The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized

Publications (2)

Publication Number Publication Date
CN103605284A true CN103605284A (en) 2014-02-26
CN103605284B CN103605284B (en) 2016-06-01

Family

ID=50123519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310567638.9A Active CN103605284B (en) 2013-11-14 2013-11-14 The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized

Country Status (1)

Country Link
CN (1) CN103605284B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296131A (en) * 2014-10-23 2015-01-21 东南大学 Multivariable cooperative control method for double-hearth circulating fluidized bed unit
CN104317321A (en) * 2014-09-23 2015-01-28 杭州电子科技大学 Coking furnace hearth pressure control method based on state-space predictive functional control optimization
CN105955014A (en) * 2016-05-11 2016-09-21 杭州电子科技大学 Method for controlling coke furnace chamber pressure based on distributed dynamic matrix control optimization
CN106200379A (en) * 2016-07-05 2016-12-07 杭州电子科技大学 A kind of distributed dynamic matrix majorization method of Nonself-regulating plant
CN113359460A (en) * 2021-06-24 2021-09-07 杭州司南智能技术有限公司 Integral object control method for constrained dynamic matrix control optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130920A (en) * 1989-09-15 1992-07-14 Eastman Kodak Company Adaptive process control system, especially for control of temperature of flowing fluids
EP1686437A1 (en) * 2005-01-31 2006-08-02 HONDA MOTOR CO., Ltd. Controller
CN103345150A (en) * 2013-07-19 2013-10-09 杭州电子科技大学 Waste plastic oil refining cracking furnace box temperature control method with optimized forecasting function control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130920A (en) * 1989-09-15 1992-07-14 Eastman Kodak Company Adaptive process control system, especially for control of temperature of flowing fluids
EP1686437A1 (en) * 2005-01-31 2006-08-02 HONDA MOTOR CO., Ltd. Controller
CN103345150A (en) * 2013-07-19 2013-10-09 杭州电子科技大学 Waste plastic oil refining cracking furnace box temperature control method with optimized forecasting function control

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彭辉: "具有PI结构的自校正动态矩阵加权控制算法", 《ELECTRICAL DRIVE AUTOMATION》, 30 November 1997 (1997-11-30) *
李金霞等: "动态矩阵控制及其改进方法的仿真研究", 《福州大学学报(自然科学版)》, vol. 32, no. 5, 31 October 2004 (2004-10-31) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317321A (en) * 2014-09-23 2015-01-28 杭州电子科技大学 Coking furnace hearth pressure control method based on state-space predictive functional control optimization
CN104296131A (en) * 2014-10-23 2015-01-21 东南大学 Multivariable cooperative control method for double-hearth circulating fluidized bed unit
CN104296131B (en) * 2014-10-23 2015-09-30 东南大学 A kind of multivariable cooperative control method of twin furnace Properties of CFB
CN105955014A (en) * 2016-05-11 2016-09-21 杭州电子科技大学 Method for controlling coke furnace chamber pressure based on distributed dynamic matrix control optimization
CN106200379A (en) * 2016-07-05 2016-12-07 杭州电子科技大学 A kind of distributed dynamic matrix majorization method of Nonself-regulating plant
CN106200379B (en) * 2016-07-05 2018-11-16 杭州电子科技大学 A kind of distributed dynamic matrix majorization method of Nonself-regulating plant
CN113359460A (en) * 2021-06-24 2021-09-07 杭州司南智能技术有限公司 Integral object control method for constrained dynamic matrix control optimization

Also Published As

Publication number Publication date
CN103605284B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN103616815B (en) The waste plastic oil-refining pyrolyzer fire box temperature control method that dynamic matrix control is optimized
CN103605284B (en) The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized
CN105892296B (en) A kind of fractional order dynamic matrix control method of industry heating furnace system
CN109557810B (en) Heating furnace temperature control method based on novel two-degree-of-freedom internal model PID
CN108489015B (en) Air conditioning system temperature control method based on pole allocation and Pade approximation
CN103116283A (en) Method for controlling dynamic matrix of non-self-balance object
CN109270835A (en) The prediction wisdom PI control method of Correction for Large Dead Time System
CN103389746B (en) The waste plastic oil-refining pyrolysis furnace hearth pressure control method that Predictive function control is optimized
CN105388764A (en) Electro-hydraulic servo PID control method and system based on dynamic matrix feed-forward prediction
CN105955014A (en) Method for controlling coke furnace chamber pressure based on distributed dynamic matrix control optimization
CN111123708B (en) Coking furnace hearth pressure control method based on distributed dynamic matrix control optimization
CN106483853A (en) The fractional order distributed dynamic matrix majorization method of Heat Loss in Oil Refining Heating Furnace furnace pressure
CN106814623A (en) A kind of multiple-objection optimization forecast Control Algorithm based on trapezoidal interval soft-constraint
CN114509949A (en) Control method for presetting performance of robot
CN101997471B (en) PID prediction function-based excitation control method
CN109143853B (en) Self-adaptive control method for liquid level of fractionating tower in petroleum refining process
CN103760931A (en) Oil-gas-water horizontal type three-phase separator pressure control method optimized through dynamic matrix control
CN103345150B (en) The waste plastic oil-refining pyrolysis furnace fire box temperature control method that Predictive function control is optimized
CN106338915A (en) Extended state space predictive function control based integral object control method
CN101968832A (en) Coal ash fusion temperature forecasting method based on construction-pruning mixed optimizing RBF (Radial Basis Function) network
CN107065541A (en) A kind of system ambiguous network optimization PID PFC control methods of coking furnace furnace pressure
CN111506037A (en) Dynamic matrix optimization distributed control method for industrial heating furnace system
CN103605381B (en) The fractionating column liquid level controlling method that dynamic matrix control optimizes
CN110673482A (en) Power station coal-fired boiler intelligent control method and system based on neural network prediction
CN111523700B (en) EAST fast control power supply output current prediction method based on improved gray GM (1,1) model prediction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant