Nothing Special   »   [go: up one dir, main page]

CN100491924C - Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors - Google Patents

Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors Download PDF

Info

Publication number
CN100491924C
CN100491924C CNB2007101568680A CN200710156868A CN100491924C CN 100491924 C CN100491924 C CN 100491924C CN B2007101568680 A CNB2007101568680 A CN B2007101568680A CN 200710156868 A CN200710156868 A CN 200710156868A CN 100491924 C CN100491924 C CN 100491924C
Authority
CN
China
Prior art keywords
fiber
raman
optical fiber
filter
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007101568680A
Other languages
Chinese (zh)
Other versions
CN101162158A (en
Inventor
张在宣
龚华平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Part Of China Weihai Optoelectronic Information Technical Concern Co
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CNB2007101568680A priority Critical patent/CN100491924C/en
Publication of CN101162158A publication Critical patent/CN101162158A/en
Application granted granted Critical
Publication of CN100491924C publication Critical patent/CN100491924C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention discloses super-far distributed fiber Raman and Brillouin photon sensors; by using the stimulated Raman scattering effect of fiber, the self Raman scattering effect of fiber, the Brillouin scattering effect of fiber and the light time-field reflection principle, distributed fiber Raman photon temperature sensors, distributed fiber Brillouin photon strain sensors and distributed fiber Raman amplifier are integrated together. Fiber consumption is overcome by using the gain of amplifier, and strengths of self Raman scattering light and Brillouin scattering light in fiber is enhanced, the signal to noise ratio of the system of distributed fiber Raman photon sensor and distributed fiber Brillouin photon strain sensor is enhanced, meanwhile, the transmission distances of distributed fiber Raman photon sensor and distributed fiber Brillouin photon strain sensor are increased, finally, the temperature and stress measuring accuracy is enhanced.

Description

超远程分布式光纤拉曼与布里渊光子传感器 Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors

技术领域 technical field

本发明涉及超远程分布式光纤拉曼与布里渊光子传感器,属于光纤传感器技术领域。The invention relates to an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor, belonging to the technical field of optical fiber sensors.

背景技术 Background technique

在分布式光纤传感器领域,国内外有利用光纤自发拉曼散射温度效应的分布式光纤拉曼光子温度传感器;国外有利用布里渊散射效应的分布式光纤应变、温度传感器(加拿大渥太华大学鲍晓毅Xiaoyi Bao,英国南安普敦大学Newson),也有集成光纤拉曼放大器的分布式光纤布里渊应变、温度传感器(英国南安普敦大学Newson)。虽然分布式光纤布里渊光子传感器具有广阔的应用市场,但由于光纤布里渊散射的光谱带宽很窄,因此,利用光纤布里渊散射光的强度比来测量应变和温度的精度很低。In the field of distributed optical fiber sensors, there are distributed optical fiber Raman photon temperature sensors using the temperature effect of spontaneous Raman scattering of optical fibers at home and abroad; there are distributed optical fiber strain and temperature sensors using the Brillouin scattering effect abroad (Xiaoyi Bao, University of Ottawa, Canada Bao, Newson, University of Southampton, UK), and distributed optical fiber Brillouin strain and temperature sensors with integrated fiber Raman amplifiers (Newson, University of Southampton, UK). Although distributed optical fiber Brillouin photon sensors have a broad application market, due to the narrow spectral bandwidth of optical fiber Brillouin scattering, the accuracy of measuring strain and temperature using the intensity ratio of optical fiber Brillouin scattering light is very low.

发明内容 Contents of the invention

本发明的目的是提供一种有利于提高测量距离和温度、应变测量精度的超远程分布式光纤拉曼与布里渊光子传感器。The purpose of the present invention is to provide an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor which is beneficial to improve the measurement distance, temperature and strain measurement accuracy.

为达到上述目的,本发明的技术方案是:超远程分布式光纤拉曼与布里渊光子传感器包括分布式光纤拉曼光子温度传感器,分布式光纤布里渊光子应变传感器,分布式光纤拉曼放大器和100km单模光纤,分布式光纤拉曼光子温度传感器由半导体脉冲激光器、合波器、单向器、1 x 2光纤双向耦合器、光纤光栅窄带反射滤波器、波分复用器、反斯托克斯拉曼散射光滤波器、斯托克斯拉曼散射光滤波器和光电直接检测系统组成,分布式光纤布里渊光子应变传感器由外腔半导体窄带脉冲光纤激光器、分波器、第一窄带光纤光栅滤光器、第二窄带光纤光栅滤光器、环行器和相干检测系统组成,分布式光纤拉曼放大器由泵浦光纤激光器和泵浦-信号光纤耦合器组成;半导体脉冲激光器与合波器的一个输入端相连,外腔半导体窄带脉冲光纤激光器与分波器的输入端相连,分波器输出的激光分二路,其中,一路与合波器的另一个输入端相连,另一路经第二窄带光纤光栅滤光器与环行器的一个输入端相连,合波器输出的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光经单向器与泵浦-信号光纤耦合器的一个输入端相连,泵浦-信号光纤耦合器的另一个输入端与泵浦光纤激光器相连,泵浦-信号光纤耦合器的输出端与1 x 2光纤双向耦合器的输入端相连,1 x 2光纤双向耦合器的一个输出端与100km单模光纤相连,光纤1 x 2双向耦合器的另一个输出端与光纤光栅窄带反射滤波器的输入端相连,光纤光栅窄带反射滤波器的输出端与波分复用器的输入端连接,波分复用器输出的光纤上各段的背向反斯托克斯拉曼散射光和斯托克斯拉曼散射光分别经反斯托克斯拉曼散射光滤波器和斯托克斯拉曼散射光滤波器与光电直接检测系统相连,波分复用器输出的光纤上各段的背向布里渊散射光经过第一窄带光纤光栅滤光器与环行器的另一个输入端相连,由环行器将来自第一窄带光纤光栅滤光器的本地光和来自第二窄带光纤光栅滤光器的信号光进行拍频后输入相干检测系统。In order to achieve the above object, the technical solution of the present invention is: the ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor includes distributed optical fiber Raman photon temperature sensor, distributed optical fiber Brillouin photon strain sensor, distributed optical fiber Raman Amplifier and 100km single-mode fiber, distributed fiber Raman photon temperature sensor consists of semiconductor pulse laser, multiplexer, one-way device, 1 x 2 fiber bidirectional coupler, fiber grating narrow-band reflection filter, wavelength division multiplexer, reflection Composed of Stokes Raman scattered light filter, Stokes Raman scattered light filter and photoelectric direct detection system, distributed optical fiber Brillouin photonic strain sensor consists of external cavity semiconductor narrowband pulsed fiber laser, wave splitter, Composed of the first narrowband fiber grating filter, the second narrowband fiber grating filter, a circulator and a coherent detection system, the distributed fiber Raman amplifier is composed of a pump fiber laser and a pump-signal fiber coupler; a semiconductor pulse laser It is connected to one input end of the wave combiner, and the external cavity semiconductor narrow-band pulsed fiber laser is connected to the input end of the wave splitter. The laser output from the wave splitter is divided into two paths, one of which is connected to the other input end of the wave combiner, The other path is connected to an input end of the circulator through the second narrow-band fiber grating filter, and the laser light of the semiconductor pulse laser output by the multiplexer and the laser light of the external-cavity semiconductor narrow-band pulse fiber laser pass through the one-way device and the pump-signal fiber One input end of the coupler is connected, the other input end of the pump-signal fiber coupler is connected to the pump fiber laser, the output end of the pump-signal fiber coupler is connected to the input end of the 1 x 2 fiber bidirectional coupler, One output end of the 1 x 2 fiber bidirectional coupler is connected to a 100km single-mode fiber, the other output end of the fiber 1 x 2 bidirectional coupler is connected to the input end of the fiber grating narrowband reflection filter, and the output of the fiber grating narrowband reflection filter is The end is connected to the input end of the wavelength division multiplexer, and the back anti-Stokes Raman scattered light and the Stokes Raman scattered light of each section of the optical fiber output by the wavelength division multiplexer are respectively passed through the anti-Stokes The Slarman scattered light filter and the Stokes Raman scattered light filter are connected to the photoelectric direct detection system, and the back Brillouin scattered light of each section of the optical fiber output by the wavelength division multiplexer passes through the first narrow-band fiber grating The optical filter is connected to the other input end of the circulator, and the circulator beats the local light from the first narrowband fiber grating filter and the signal light from the second narrowband fiber Bragg grating filter and then enters the coherent detection system .

工作原理如下:It works as follows:

半导体脉冲激光器,外腔半导体窄带脉冲光纤激光器和泵浦光纤激光器产生的激光经泵浦-信号光纤耦合器和1 x 2光纤双向耦合器耦合后输入100km单模光纤,100km单模光纤各段上产生的放大的背向瑞利散射光、背向布里渊散射光及斯托克斯和反斯托克斯背向拉曼散射光经1 x 2光纤双向耦合器输入到光纤光栅窄带反射滤波器,利用光纤光栅窄带反射滤波器抑制泵浦光纤激光器在100km单模光纤中产生的背向瑞利(Rayleigh)散射光,同时让100km单模光纤各段上产生的放大的自发拉曼散射光和布里渊散射光通过,并进入到光纤波分复用器。这里,泵浦光纤激光器与泵浦-信号光纤耦合器和100km单模光纤组合成一只增益可调的分布式光纤拉曼放大器,将光纤中传输的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光进行放大,同时增强了光纤上各段的背向自发拉曼散射光和背向布里渊散射光。波分复用器输出的光纤上各段的背向自发拉曼散射光分成两路,一路为反斯托克斯拉曼散射光,经过反斯托克斯散射光滤波器输入光电直接检测系统,另一路为斯托克斯拉曼散射光,经过斯托克斯拉曼散射光滤波器输入光电直接检测系统,由光电直接检测系统将测得的背向反斯托克斯拉曼散射光经光电转换,转换成电信号Va,将测得的背向斯托光斯拉曼散射光经光电转换,转换成电信号Vs,通过测量两者的比值从电信号的比值

Figure C200710156868D00052
与温度的关系(见式1),可以得到光纤上各段处的温度,从而获得空间的温度场分布T。The laser generated by semiconductor pulse laser, external cavity semiconductor narrow-band pulse fiber laser and pump fiber laser is coupled by pump-signal fiber coupler and 1 x 2 fiber bidirectional coupler, and then input into 100km single-mode fiber, each section of 100km single-mode fiber The generated amplified back Rayleigh scattered light, back Brillouin scattered light and Stokes and anti-Stokes back Raman scattered light are input to fiber grating narrowband reflection filter through 1 x 2 fiber bidirectional coupler The device uses fiber grating narrow-band reflection filters to suppress the back Rayleigh scattered light generated by the pump fiber laser in the 100km single-mode fiber, and at the same time allows the amplified spontaneous Raman scattered light generated on each section of the 100km single-mode fiber and Brillouin scattered light passes through and enters the fiber optic wavelength division multiplexer. Here, the pump fiber laser is combined with the pump-signal fiber coupler and 100km single-mode fiber to form a distributed fiber Raman amplifier with adjustable gain. The laser light of the laser is amplified, and at the same time, the back spontaneous Raman scattered light and the back Brillouin scattered light of each segment on the fiber are enhanced. The back spontaneous Raman scattered light of each section of the optical fiber output by the wavelength division multiplexer is divided into two paths, one is anti-Stokes Raman scattered light, which is input to the photoelectric direct detection system through the anti-Stokes scattered light filter , the other way is the Stokes Raman scattered light, which is input to the photoelectric direct detection system through the Stokes Raman scattered light filter, and the back anti-Stokes Raman scattered light measured by the photoelectric direct detection system After photoelectric conversion, it is converted into an electrical signal V a , and the measured back-to-Stowe Raman scattered light is converted into an electrical signal V s through photoelectric conversion. By measuring the ratio of the two Ratio from electrical signal
Figure C200710156868D00052
The relationship with temperature (see formula 1), the temperature at each section of the optical fiber can be obtained, so as to obtain the spatial temperature field distribution T.

11 TT == kk hΔvhΔv [[ lnln VV aa (( TT )) VV sthe s (( TT )) ++ 44 (( vv sthe s vv aa )) ]] -- -- -- -- -- -- -- -- -- -- -- (( 11 ))

va=v0+Δvv a =v 0 +Δv

vs=v0-Δvv s =v 0 -Δv

式中k为波尔兹曼常数,h为普朗克常数,va、vs分别为反斯托克斯和斯托克斯拉曼散射频率,v0为半导体脉冲激光器的激光,Δv为光纤分子振动能级的频率。In the formula, k is Boltzmann's constant, h is Planck's constant, v a and v s are anti-Stokes and Stokes Raman scattering frequencies respectively, v 0 is the laser of semiconductor pulsed laser, Δv is The frequency of the fiber's molecular vibrational levels.

波分复用器输出的光纤上各段经应变、温度调制的的背向布里渊散射光经过第一窄带光纤光栅滤光器滤波,输出信号光至环行器,由环行器将信号光与通过分波器和第二窄带光纤光栅滤光器的外腔半导体窄带光纤激光器的本地光拍频,输入相干检测系统进行相干检测,测量布里渊散射光的频移量Δv,得到光纤各段的应变信息。光纤背向布里渊散射线的频移受到光纤应变和温度的调制,光纤上各段所受的应变和温度不同,它的布里渊散射光的频移量Δv也不同,The strain- and temperature-modulated Brillouin backscattered light of each segment of the optical fiber output by the wavelength division multiplexer is filtered by the first narrow-band fiber grating filter, and the signal light is output to the circulator, and the signal light is combined with the circulator. The local light beat frequency of the external-cavity semiconductor narrow-band fiber laser passing through the wave splitter and the second narrow-band fiber grating filter is input to the coherent detection system for coherent detection, and the frequency shift Δv of the Brillouin scattered light is measured to obtain each section of the optical fiber strain information. The frequency shift of the fiber back to the Brillouin scattered light is modulated by the strain and temperature of the fiber. The strain and temperature of each segment of the fiber are different, and the frequency shift Δv of the Brillouin scattered light is also different.

ΔvΔv == 22 nvnv λλ pp

式中λp为外腔半导体窄带脉冲光纤激光器的激光波长,n为泵浦波长处光纤的折射率,v为光纤中弹性波的速度,光纤温度与应力的改变均能引起速度的变化。where λp is the laser wavelength of the external-cavity semiconductor narrow-band pulsed fiber laser, n is the refractive index of the fiber at the pump wavelength, v is the velocity of the elastic wave in the fiber, and changes in fiber temperature and stress can cause changes in the velocity.

100km单模光纤的自发拉曼散射光强度受到温度的调制,光纤上各段的温度不同,它的拉曼散射光强度也不同,因此可以利用光纤的自发拉曼散射温度效应和光纤时域反射(OTDR)原理来制造分布式光纤拉曼光子温度传感器,通过它来测量光纤上各段的温度,从而得知光纤所处空间的温度分布。The intensity of spontaneous Raman scattered light of a 100km single-mode fiber is modulated by temperature. The temperature of each section of the fiber is different, and the intensity of Raman scattered light is also different. Therefore, the spontaneous Raman scattering temperature effect of the fiber and the time domain reflection of the fiber can be used (OTDR) principle to manufacture a distributed optical fiber Raman photon temperature sensor, through which to measure the temperature of each section of the optical fiber, so as to know the temperature distribution of the space where the optical fiber is located.

本发明通过分布式光纤拉曼光子温度传感器确定光纤上各段的温度,由分布式光纤布里渊光子应变传感器测量光纤各段的频移量来得到光纤上各段的应变,由光纤时域反射(OTDR)原理对各段光纤的位置进行定位,通过测量光纤上各段的应变得到光纤所处空间的应力分布。本发明中专门设置了光纤光栅窄带反射滤波器来抑制背向瑞利散射光,可以避免分布式光纤拉曼放大器泵浦光所引起的背向瑞利散射光影响光纤拉曼光子温度传感器的正常工作。The present invention determines the temperature of each segment on the optical fiber by a distributed optical fiber Raman photon temperature sensor, measures the frequency shift of each segment of the optical fiber by a distributed optical fiber Brillouin photon strain sensor to obtain the strain of each segment on the optical fiber, and obtains the strain of each segment on the optical fiber by the optical fiber time domain The principle of reflection (OTDR) locates the position of each segment of optical fiber, and obtains the stress distribution of the space where the optical fiber is located by measuring the strain of each segment on the optical fiber. In the present invention, a fiber grating narrow-band reflection filter is specially set to suppress the back Rayleigh scattered light, which can avoid the back Rayleigh scattered light caused by the pump light of the distributed optical fiber Raman amplifier from affecting the normal operation of the optical fiber Raman photon temperature sensor. Work.

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明利用分布式光纤拉曼放大器在光纤中产生光的放大,使分布式光纤拉曼光子温度传感器中半导体脉冲激光和分布式光纤布里渊光子应变传感器中的外腔半导体窄带脉冲光纤激光器不断地获得分布式光纤拉曼放大器的增益,由于放大器的增益克服了光纤损耗,同时增强了光纤上各段中背向自发拉曼散射光的强度和布里渊散射光,提高了分布式光纤拉曼光子温度传感器和分布式光纤布里渊光子应变传感器系统的信噪比,增大了分布式光纤拉曼光子温度传感器和分布式光纤布里渊光子应变传感器的传输距离,提高了温度和应变的测量精度。本发明巧妙地利用了光纤受激拉曼散射效应,光纤自发拉曼散射,光纤布里渊散射效应和光时域反射原理将分布式光纤拉曼放大器与分布式光纤拉曼温度传感器,分布式光纤布里渊光子应变传感器技术融合在一起,由光纤时域反射(OTDR)原理对各段光纤的位置进行定位,实现了超远程分布式光纤拉曼与布里渊光子传感器。The invention utilizes the distributed optical fiber Raman amplifier to generate light amplification in the optical fiber, so that the semiconductor pulse laser in the distributed optical fiber Raman photon temperature sensor and the external cavity semiconductor narrowband pulsed optical fiber laser in the distributed optical fiber Brillouin photon strain sensor continuously The gain of the distributed fiber Raman amplifier can be effectively obtained, because the gain of the amplifier overcomes the fiber loss, and at the same time enhances the intensity of the back spontaneous Raman scattered light and the Brillouin scattered light in each section of the fiber, and improves the distributed fiber Raman The signal-to-noise ratio of the photonic temperature sensor and the distributed optical fiber Brillouin photonic strain sensor system increases the transmission distance of the distributed optical fiber Raman photonic temperature sensor and the distributed optical fiber Brillouin photonic strain sensor, and improves the temperature and strain. measurement accuracy. The invention skillfully utilizes the stimulated Raman scattering effect of optical fiber, spontaneous Raman scattering of optical fiber, Brillouin scattering effect of optical fiber and optical time domain reflection principle to combine distributed optical fiber Raman amplifier with distributed optical fiber Raman temperature sensor, distributed optical fiber Brillouin photonic strain sensor technology is fused together, and the position of each section of optical fiber is positioned by the principle of optical fiber time domain reflection (OTDR), realizing an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor.

附图说明 Description of drawings

图1是本发明的超远程分布式光纤拉曼与布里渊光子传感器的构成示意图。Fig. 1 is a schematic diagram of the composition of the ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor of the present invention.

具体实施方式 Detailed ways

参照图1,发明的超远程分布式光纤拉曼与布里渊光子传感器,包括分布式光纤拉曼光子温度传感器,分布式光纤布里渊光子应变传感器,分布式光纤拉曼放大器和100km单模光纤19,分布式光纤拉曼光子温度传感器由半导体脉冲激光器11、合波器14、单向器15、1 x 2光纤双向耦合器18、光纤光栅窄带反射滤波器20、波分复用器21、反斯托克斯散射光滤波器22、斯托克斯拉曼散射光滤波器23和光电直接检测系统24组成,分布式光纤布里渊光子应变传感器由外腔半导体窄带脉冲光纤激光器12、分波器13、第一窄带光纤光栅滤光器25、第二窄带光纤光栅滤光器26、环行器27和相干检测系统28组成,分布式光纤拉曼放大器由泵浦光纤激光器16和泵浦-信号光纤耦合器17组成;半导体脉冲激光器11与合波器14的一个输入端相连,外腔半导体窄带脉冲光纤激光器12与分波器13的输入端相连,分波器13输出的激光分二路,其中,一路与合波器14的另一个输入端相连,另一路经第二窄带光纤光栅滤光器26与环行器27的一个输入端相连,合波器14输出的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光经单向器15与泵浦-信号光纤耦合器17的一个输入端相连,泵浦光纤激光器16与泵浦-信号光纤耦合器17的另一个输入端相连,泵浦-信号光纤耦合器17的输出端与1 x 2光纤双向耦合器18的输入端相连,1 x 2光纤双向耦合器18的一个输出端与100km单模光纤19相连,光纤1 x 2双向耦合器18的另一个输出端与光纤光栅窄带反射滤波器20的输入端相连,光纤光栅窄带反射滤波器20的输出端与波分复用器21的输入端连接,波分复用器21输出的光纤上各段的反斯托克斯拉曼散射光和斯托克斯拉曼散射光分别经反斯托克斯散射光滤波器22和斯托克斯拉曼散射光滤波器23与光电直接检测系统24相连,波分复用器21输出的光纤上各段的背向布里渊散射光经过第一窄带光纤光栅滤光器25与环行器27的另一个输入端相连,由环行器27将来自第一窄带光纤光栅滤光器25的本地光和来自第二窄带光纤光栅滤光器26的信号光进行拍频后输入相干检测系统28。Referring to Figure 1, the invented ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor includes distributed optical fiber Raman photon temperature sensor, distributed optical fiber Brillouin photon strain sensor, distributed optical fiber Raman amplifier and 100km single-mode Optical fiber 19, distributed optical fiber Raman photon temperature sensor consists of semiconductor pulse laser 11, multiplexer 14, one-way device 15, 1 x 2 fiber bidirectional coupler 18, fiber grating narrow-band reflection filter 20, wavelength division multiplexer 21 , an anti-Stokes scattered light filter 22, a Stokes Raman scattered light filter 23 and a photoelectric direct detection system 24, the distributed optical fiber Brillouin photonic strain sensor consists of an external cavity semiconductor narrowband pulsed fiber laser 12, The wave splitter 13, the first narrowband fiber grating filter 25, the second narrowband fiber grating filter 26, the circulator 27 and the coherent detection system 28 are composed, and the distributed fiber Raman amplifier is composed of a pumping fiber laser 16 and a pumping -The signal fiber coupler 17 is composed; the semiconductor pulse laser 11 is connected to an input end of the multiplexer 14, the external cavity semiconductor narrowband pulsed fiber laser 12 is connected to the input end of the wave splitter 13, and the laser light output by the wave splitter 13 is divided into two Road, wherein, one road is connected with the other input end of the wave combiner 14, and the other road is connected with an input end of the circulator 27 through the second narrowband fiber grating optical filter 26, the laser light of the semiconductor pulse laser of the wave combiner 14 output The laser of the external cavity semiconductor narrowband pulsed fiber laser is connected to one input end of the pump-signal fiber coupler 17 through the one-way device 15, and the pump fiber laser 16 is connected to the other input end of the pump-signal fiber coupler 17 , the output end of the pump-signal fiber coupler 17 is connected with the input end of the 1 x 2 fiber bidirectional coupler 18, and an output port of the 1 x 2 fiber bidirectional coupler 18 is connected with the 100km single-mode fiber 19, and the optical fiber 1 x 2 Another output end of the bidirectional coupler 18 is connected with the input end of the fiber grating narrowband reflective filter 20, and the output end of the fiber grating narrowband reflective filter 20 is connected with the input end of the wavelength division multiplexer 21, and the wavelength division multiplexer 21 The anti-Stokes Raman scattered light and the Stokes Raman scattered light of each section on the output optical fiber pass through the anti-Stokes scattered light filter 22 and the Stokes Raman scattered light filter 23 respectively. The photoelectric direct detection system 24 is connected, and the Brillouin scattered light of each segment on the optical fiber output by the wavelength division multiplexer 21 is connected with the other input end of the circulator 27 through the first narrow-band fiber grating filter 25, and is connected by the circulator. The detector 27 beats the local light from the first narrowband fiber grating filter 25 and the signal light from the second narrowband fiber grating filter 26 and then inputs it into the coherent detection system 28 .

本发明中,所说的半导体脉冲光纤激光器11可以采用脉冲宽度小于30ns,波长为1550nm的半导体法布利-白洛(FP)腔的高功率光纤激光器。In the present invention, the semiconductor pulsed fiber laser 11 can be a high-power fiber laser with a pulse width less than 30ns and a wavelength of 1550nm with a semiconductor Fabry-Peilow (FP) cavity.

本发明中,所说的外腔半导体窄带脉冲光纤激光器12可以采用光谱宽度为10MHz,波长为1555nm的外腔半导体脉冲光纤激光器。In the present invention, the external-cavity semiconductor narrow-band pulsed fiber laser 12 can be an external-cavity semiconductor pulsed fiber laser with a spectral width of 10 MHz and a wavelength of 1555 nm.

本发明中,所说的泵浦光纤激光器16可以采用波长为1455nm的高功率可调光纤拉曼激光器。In the present invention, the pumping fiber laser 16 can be a high-power tunable fiber Raman laser with a wavelength of 1455 nm.

本发明中,所说的光纤光栅窄带反射滤波器20可以采用反射率>99.5%、隔离度>35dB的波长为1455m、窄带光谱间隔为1nm的光纤光栅滤波器。In the present invention, the fiber grating narrow-band reflective filter 20 can be a fiber grating filter with a reflectivity>99.5%, an isolation degree>35dB, a wavelength of 1455m, and a narrow-band spectral interval of 1nm.

本发明中,所说的反斯托克斯拉曼散射波滤波器22可以采用波长为1450nm、带宽>30nm、隔离度>30dB的滤波器。In the present invention, the anti-Stokes Raman scattering wave filter 22 can be a filter with a wavelength of 1450nm, a bandwidth >30nm, and an isolation >30dB.

本发明中,所说的斯托克斯拉曼散射波的滤波器23可以采用波长为1660nm、带宽>30nm、隔离度>30dB的滤波器。In the present invention, the Stokes Raman scattered wave filter 23 can be a filter with a wavelength of 1660nm, a bandwidth >30nm, and an isolation >30dB.

Claims (7)

1.超远程分布式光纤拉曼与布里渊光子传感器,其特征是包括分布式光纤拉曼光子温度传感器,分布式光纤布里渊光子应变传感器,分布式光纤拉曼放大器和100km单模光纤(19),分布式光纤拉曼光子温度传感器由半导体脉冲激光器(11)、合波器(14)、单向器(15)、1x2光纤双向耦合器(18)、光纤光栅窄带反射滤波器(20)、波分复用器(21)、反斯托克斯拉曼散射光滤波器(22)、斯托克斯拉曼散射光滤波器(23)和光电直接检测系统(24)组成,分布式光纤布里渊光子应变传感器由外腔半导体窄带脉冲光纤激光器(12)、分波器(13)、第一窄带光纤光栅滤光器(25)、第二窄带光纤光栅滤光器(26)、环行器(27)和相干检测系统(28)组成,分布式光纤拉曼放大器由泵浦光纤激光器(16)和泵浦-信号光纤耦合器(17)组成;半导体脉冲激光器(11)与合波器(14)的一个输入端相连,外腔半导体窄带脉冲光纤激光器(12)与分波器(13)的输入端相连,分波器(13)输出的激光分二路,其中,一路与合波器(14)的另一个输入端相连,另一路经第二窄带光纤光栅滤光器(26)与环行器(27)的一个输入端相连,合波器(14)输出的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光经单向器(15)与泵浦-信号光纤耦合器(17)的一个输入端相连,泵浦-信号光纤耦合器(17)的另一个输入端与泵浦光纤激光器(16)相连,泵浦-信号光纤耦合器(17)的输出端与1x2光纤双向耦合器(18)的输入端相连,1x2光纤双向耦合器(18)的一个输出端与100km单模光纤(19)相连,光纤1x2双向耦合器(18)的另一个输出端与光纤光栅窄带反射滤波器(20)的输入端相连,光纤光栅窄带反射滤波器(20)的输出端与波分复用器(21)的输入端连接,波分复用器(21)输出的光纤上各段的背向反斯托克斯拉曼散射光和斯托克斯拉曼散射光分别经反斯托克斯拉曼散射光滤波器(22)和斯托克斯拉曼散射光滤波器(23)与光电直接检测系统(24)相连,波分复用器(21)输出的光纤上各段的背向布里渊散射光经过第一窄带光纤光栅滤光器(25)与环行器(27)的另一个输入端相连,由环行器(27)将来自第一窄带光纤光栅滤光器(25)的本地光和来自第二窄带光纤光栅滤光器(26)的信号光进行拍频后输入相干检测系统(28)。1. Ultra-long-range distributed optical fiber Raman and Brillouin photon sensor, which is characterized by distributed optical fiber Raman photon temperature sensor, distributed optical fiber Brillouin photon strain sensor, distributed optical fiber Raman amplifier and 100km single-mode optical fiber (19), the distributed optical fiber Raman photon temperature sensor consists of a semiconductor pulse laser (11), a multiplexer (14), a one-way device (15), a 1x2 fiber bidirectional coupler (18), a fiber grating narrowband reflection filter ( 20), a wavelength division multiplexer (21), an anti-Stokes Raman scattering filter (22), a Stokes Raman scattering filter (23) and a photoelectric direct detection system (24), The distributed optical fiber Brillouin photonic strain sensor consists of an external cavity semiconductor narrowband pulse fiber laser (12), a wave splitter (13), a first narrowband fiber grating filter (25), a second narrowband fiber grating filter (26 ), a circulator (27) and a coherent detection system (28), the distributed fiber Raman amplifier is made up of a pump fiber laser (16) and a pump-signal fiber coupler (17); the semiconductor pulse laser (11) and One input end of the multiplexer (14) is connected, and the external cavity semiconductor narrow-band pulse fiber laser (12) is connected with the input end of the wave splitter (13), and the laser light output by the wave splitter (13) is divided into two paths, wherein, one path Be connected with the other input end of multiplexer (14), another way is connected with an input end of circulator (27) through the second narrow-band fiber grating optical filter (26), the semiconductor pulse of multiplexer (14) output The laser of the laser and the laser of the external cavity semiconductor narrow-band pulsed fiber laser are connected to one input end of the pump-signal fiber coupler (17) through the one-way device (15), and the other of the pump-signal fiber coupler (17) The input end is connected with the pump fiber laser (16), the output end of the pump-signal fiber coupler (17) is connected with the input end of the 1x2 fiber bidirectional coupler (18), and an output of the 1x2 fiber bidirectional coupler (18) end is connected with 100km single-mode optical fiber (19), the other output end of optical fiber 1x2 bidirectional coupler (18) is connected with the input end of fiber grating narrow-band reflection filter (20), and the output of fiber grating narrow-band reflection filter (20) end is connected with the input end of the wavelength division multiplexer (21), the back anti-Stokes Raman scattered light and the Stokes Raman scattered light of each section on the optical fiber of the wavelength division multiplexer (21) output Respectively through anti-Stokes Raman scattered light filter (22) and Stokes Raman scattered light filter (23) to be connected with photoelectric direct detection system (24), the wavelength division multiplexer (21) output The Brillouin backscattered light of each section on the optical fiber is connected with the other input end of the circulator (27) through the first narrow-band fiber grating filter (25), and the light from the first narrow-band fiber grating is connected by the circulator (27). The local light of the optical filter (25) and the signal light from the second narrowband fiber grating optical filter (26) are frequency-beated and then input into the coherent detection system (28). 2.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于半导体脉冲光纤激光器(11)是脉冲宽度小于30ns,波长为1550nm的半导体法布利-白洛腔的高功率光纤激光器。2. ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, it is characterized in that semiconductor pulse fiber laser (11) is that pulse width is less than 30ns, and wavelength is the semiconductor Fabry-Bailuo of 1550nm Cavity high power fiber lasers. 3.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于外腔半导体窄带脉冲光纤激光器(12)是光谱宽度为10MHz,波长为1555nm的外腔半导体脉冲光纤激光器。3. ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, it is characterized in that external cavity semiconductor narrowband pulse fiber laser (12) is that spectral width is 10MHz, and wavelength is the external cavity semiconductor pulse of 1555nm fiber-optic laser. 4.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于泵浦光纤激光器(16)是波长为1455nm的高功率可调光纤拉曼激光器。4. The ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, characterized in that the pumping optical fiber laser (16) is a high-power tunable optical fiber Raman laser with a wavelength of 1455nm. 5.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于光纤光栅窄带反射滤波器(20)是反射率>99.5%、隔离度>35dB的波长为1455nm、窄带光谱间隔为1nm的光纤光栅滤波器。5. ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, it is characterized in that fiber grating narrow-band reflection filter (20) is that the wavelength of reflectivity>99.5%, isolation degree>35dB is 1455nm , Fiber Bragg grating filter with narrow-band spectral interval of 1nm. 6.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于反斯托克斯拉曼散射波滤波器(22)是波长为1450nm、宽带>30nm、隔离度>30dB的滤波器。6. ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, it is characterized in that anti-Stokes Raman scattering wave filter (22) is that wavelength is 1450nm, broadband > 30nm, isolation filter with degree>30dB. 7.根据权利要求1所述的超远程分布式光纤拉曼与布里渊光子传感器,其特征在于斯托克斯拉曼散射波的滤波器(23)是波长为1660nm、带宽>30nm、隔离度>30dB的滤波器。7. ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor according to claim 1, it is characterized in that the filter (23) of Stokes Raman scattering wave is that wavelength is 1660nm, bandwidth > 30nm, isolation filter with degree>30dB.
CNB2007101568680A 2007-11-15 2007-11-15 Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors Expired - Fee Related CN100491924C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101568680A CN100491924C (en) 2007-11-15 2007-11-15 Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101568680A CN100491924C (en) 2007-11-15 2007-11-15 Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors

Publications (2)

Publication Number Publication Date
CN101162158A CN101162158A (en) 2008-04-16
CN100491924C true CN100491924C (en) 2009-05-27

Family

ID=39297115

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101568680A Expired - Fee Related CN100491924C (en) 2007-11-15 2007-11-15 Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors

Country Status (1)

Country Link
CN (1) CN100491924C (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592475B (en) * 2009-06-08 2010-09-29 中国计量学院 Fully Distributed Optical Fiber Rayleigh and Raman Scattering Photon Strain and Temperature Sensors
GB201000743D0 (en) * 2010-01-18 2010-03-03 Univ Manchester Graphene polymer composite
CN101806735A (en) * 2010-03-30 2010-08-18 南昌航空大学 Device and method for simultaneously detecting stimulated Brillouin scattering threshold and Raman scattering threshold of laser transmitted in water
CN101852655B (en) * 2010-04-13 2012-04-18 中国计量学院 Distributed fiber Raman/Brillouin scattering sensor
CN101893802A (en) * 2010-06-25 2010-11-24 上海华魏光纤传感技术有限公司 Photo-sensing relay amplifier and method thereof
CN101949743B (en) * 2010-08-09 2012-08-08 宁波诺驰光电科技发展有限公司 Novel Brillouin time domain analyzer
CN101950913A (en) * 2010-08-12 2011-01-19 上海拜安实业有限公司 Fiber laser source based on pulse seed source amplification and fiber sensing system
CN102062648A (en) * 2010-11-11 2011-05-18 金海新源电气江苏有限公司 Wavelength division multiplexing device for distributed optical fiber temperature sensor
CN102109362B (en) * 2010-11-26 2012-05-23 中国计量学院 Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter
CN102080954B (en) * 2010-11-26 2012-11-07 中国计量学院 Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor
CN102176684B (en) * 2011-03-23 2013-12-25 东南大学 Distributed optical fiber sensor for simultaneously monitoring engineering structure entirety and local strain
CN102226703B (en) * 2011-03-29 2013-09-25 宁波诺驰光电科技发展有限公司 Distributed fiber multi-parameter sensor and multi-parameter measuring method
RU2458325C1 (en) * 2011-04-28 2012-08-10 Общество с ограниченной ответственностью "ПетроФайбер" Method of measuring temperature distribution and device for realising said method
CN102322886A (en) * 2011-08-09 2012-01-18 中国计量学院 Pulse coding extra-long distance fully-distributed fiber Rayleigh and Raman scattering sensor of fusion fiber Raman frequency shift device
CN102322808B (en) * 2011-08-09 2013-03-27 中国计量学院 Very long range pulse coding distribution type Fiber Raman and Brillouin photon sensor
CN102322883B (en) * 2011-08-09 2013-06-05 中国计量学院 Pulse coding distribution-type fiber Raman and Brillouin scattering sensor
WO2013020276A1 (en) * 2011-08-10 2013-02-14 中国计量学院 Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier
CN102313568B (en) * 2011-08-30 2016-08-24 武汉康特圣思光电技术有限公司 The distribution type optical fiber sensing equipment that a kind of Brillouin and Raman detect simultaneously
CN102506912A (en) * 2011-09-29 2012-06-20 北京航空航天大学 Optical fiber distributed disturbance sensor
CN102506915B (en) * 2011-11-02 2014-12-10 电子科技大学 Three-order Raman amplification technology-based Brillouin optical time domain analysis system
CN102538985B (en) * 2011-12-27 2013-10-23 中国计量学院 Sensing signal detection device and method based on fiber optic Brillouin ring laser
CN103376124A (en) * 2012-04-17 2013-10-30 扬州森斯光电科技有限公司 Brillouin optical time domain analyzer
CN102799044B (en) * 2012-09-06 2015-04-29 杭州欧忆光电科技有限公司 Method and device for amplifying signal light of optical time-domain reflectometer of fusion Raman amplifier
CN103148793B (en) * 2013-02-01 2016-06-01 西安理工大学 Based on the super multiple spot antiradar reflectivity fiber grating sensing system of photon counting
CN103199920B (en) * 2013-04-02 2016-06-08 上海波汇科技股份有限公司 A kind of light time domain reflectometer system
CN104344840B (en) * 2013-08-05 2019-04-30 上海华魏光纤传感技术有限公司 Optical fiber signal enhancement device
CN103674110B (en) * 2013-11-26 2016-06-01 北京航天时代光电科技有限公司 A kind of distribution type fiber-optic temperature strain sensor based on Brillouin's light amplification detection
CN103674117B (en) * 2013-12-20 2016-06-01 武汉理工大学 Measure entirely method and device with weak optical fiber Bragg grating temperature and strain based on Raman scattering simultaneously
CN104269723A (en) * 2014-09-03 2015-01-07 电子科技大学 Partitioning type distributed optical fiber signal amplification method
CN105067146B (en) * 2015-03-20 2019-09-03 深圳市迅捷光通科技有限公司 Stimulated Raman scattering inhibits apparatus and method and distributed optical fiber sensing system
EP3370307B1 (en) * 2015-10-30 2021-09-22 Fujikura Ltd. Fiber laser system, reflection resistance evaluation method and reflection resistance improvement method for same, and fiber laser
CN108020250A (en) * 2017-12-28 2018-05-11 浙江杰昆科技有限公司 A kind of distributed fiber optic temperature and strain sensing device
CN111121873A (en) * 2019-12-30 2020-05-08 武汉奥旭正源电力科技有限公司 Distributed optical fiber sensing device
CN111473952B (en) * 2020-04-08 2022-03-11 武汉光迅信息技术有限公司 Optical fiber sensing device
CN112097811A (en) * 2020-09-02 2020-12-18 中国计量大学 A nonlinear interferometric dual-parameter sensor based on correlated injection scheme
CN112038878B (en) * 2020-09-22 2021-09-07 上海波汇科技有限公司 Distributed optical fiber acoustic wave sensing system based on far pump amplifier and Raman amplifier
CN113551803A (en) * 2021-06-09 2021-10-26 上海交通大学 Superconducting tape temperature and stress monitoring method and system
CN114614768B (en) * 2022-05-12 2022-07-26 武汉新能源研究院有限公司 Photovoltaic cell panel hot spot fault monitoring and alarming system and method

Also Published As

Publication number Publication date
CN101162158A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
CN100491924C (en) Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors
CN101324424B (en) Fiber Brillouin Optical Time Domain Analyzer
US8785859B2 (en) Distributed optical fiber sensor based on Raman and Brillouin scattering
CN201680924U (en) Distributive optical fiber Raman and Brillouin scattering sensor
KR100930342B1 (en) Distribution fiber optic sensor system
CN102322810B (en) Chaotic laser related Brillouin optical time domain analyzer integrated with optical fiber Raman amplifier
CN101162175A (en) Ultra-remote distributed fiber raman photons temperature sensor integrated with raman amplifier
CN101639388B (en) Raman related double-wavelength light source self-correction distributed optical fiber Raman temperature sensor
CN102322808B (en) Very long range pulse coding distribution type Fiber Raman and Brillouin photon sensor
CN102840929B (en) Long-distance Raman distributed temperature sensing system
CN201104243Y (en) Ultra-long range distributed optical fiber Raman and Brillouin photon sensor
CN101825498A (en) Distributed optical fiber Raman temperature sensor (DOFRTS) with self-correction of dispersion and loss spectra
CN100507455C (en) A Multiplexing Method for Intensity Modulated Fiber Optic Sensors
CN104111086B (en) Apparatus and method based on the optical time domain reflectometer of low Brillouin scattering threshold-sensitive optical fiber
CN104568019A (en) Multimode fiber-based method and multimode fiber-based system for simultaneously measuring temperature and strain
CN102359830B (en) Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor
KR101310783B1 (en) Distributed optical fiber sensor and sensing method using simultaneous sensing of brillouin gain and loss
CN201107131Y (en) An ultra-long-range distributed fiber optic Raman photonic temperature sensor with integrated Raman amplifier
CN202195825U (en) Extra-long distance pulse-coding distributed optical fiber Raman and Brillouin photon sensor
WO2013123656A1 (en) Fully distributed optical fiber sensor for optical fiber raman frequency shifter of fused raman amplification effect
CN201885732U (en) Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter
RU2552222C1 (en) Method of measuring temperature distribution and device for realising said method
CN201233225Y (en) Novel optical fiber Brillouin optical time-domain analyser
CN102116684A (en) Self-correcting fully-distributed optical fiber Raman scattering sensor
CN207215172U (en) For detecting the temperature of fully distributed fiber and the sensor of vibration position

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HANGZHOU OUYI OPTOELECTRONICS CO., LTD.

Free format text: FORMER OWNER: CHINA METROLOGY COLLEGE

Effective date: 20100325

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 310018 XUEYUAN STREET, XIASHA HIGHER EDUCATION PARK ZONE, HANGZHOU CITY, ZHEJIANG PROVINCE TO: 310018 NO.258, XUEYUAN STREET, XIASHA HIGHER EDUCATION PARK ZONE, HANGZHOU CITY

TR01 Transfer of patent right

Effective date of registration: 20100325

Address after: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou

Patentee after: Hangzhou OE Photoelectric Technology Co., Ltd.

Address before: 310018 Xiasha Higher Education Park, Zhejiang, Hangzhou

Patentee before: China Jiliang University

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151113

Address after: 264209 -6, Torch Road 159, hi tech Zone, Shandong, Weihai, six - Seven

Patentee after: The northeast part of China, Weihai optoelectronic information technical concern company

Address before: No. 258 School Street, Xiasha Higher Education Zone, Hangzhou

Patentee before: Hangzhou OE Photoelectric Technology Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090527

Termination date: 20181115

CF01 Termination of patent right due to non-payment of annual fee