CN100491924C - Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors - Google Patents
Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors Download PDFInfo
- Publication number
- CN100491924C CN100491924C CNB2007101568680A CN200710156868A CN100491924C CN 100491924 C CN100491924 C CN 100491924C CN B2007101568680 A CNB2007101568680 A CN B2007101568680A CN 200710156868 A CN200710156868 A CN 200710156868A CN 100491924 C CN100491924 C CN 100491924C
- Authority
- CN
- China
- Prior art keywords
- fiber
- raman
- optical fiber
- filter
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 85
- 239000000835 fiber Substances 0.000 claims abstract description 134
- 239000013307 optical fiber Substances 0.000 claims description 84
- 239000004065 semiconductor Substances 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 17
- 230000002457 bidirectional effect Effects 0.000 claims description 14
- 230000001427 coherent effect Effects 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 235000021197 fiber intake Nutrition 0.000 abstract 1
- 230000002269 spontaneous effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002277 temperature effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000035559 beat frequency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Images
Landscapes
- Optical Transform (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
技术领域 technical field
本发明涉及超远程分布式光纤拉曼与布里渊光子传感器,属于光纤传感器技术领域。The invention relates to an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor, belonging to the technical field of optical fiber sensors.
背景技术 Background technique
在分布式光纤传感器领域,国内外有利用光纤自发拉曼散射温度效应的分布式光纤拉曼光子温度传感器;国外有利用布里渊散射效应的分布式光纤应变、温度传感器(加拿大渥太华大学鲍晓毅Xiaoyi Bao,英国南安普敦大学Newson),也有集成光纤拉曼放大器的分布式光纤布里渊应变、温度传感器(英国南安普敦大学Newson)。虽然分布式光纤布里渊光子传感器具有广阔的应用市场,但由于光纤布里渊散射的光谱带宽很窄,因此,利用光纤布里渊散射光的强度比来测量应变和温度的精度很低。In the field of distributed optical fiber sensors, there are distributed optical fiber Raman photon temperature sensors using the temperature effect of spontaneous Raman scattering of optical fibers at home and abroad; there are distributed optical fiber strain and temperature sensors using the Brillouin scattering effect abroad (Xiaoyi Bao, University of Ottawa, Canada Bao, Newson, University of Southampton, UK), and distributed optical fiber Brillouin strain and temperature sensors with integrated fiber Raman amplifiers (Newson, University of Southampton, UK). Although distributed optical fiber Brillouin photon sensors have a broad application market, due to the narrow spectral bandwidth of optical fiber Brillouin scattering, the accuracy of measuring strain and temperature using the intensity ratio of optical fiber Brillouin scattering light is very low.
发明内容 Contents of the invention
本发明的目的是提供一种有利于提高测量距离和温度、应变测量精度的超远程分布式光纤拉曼与布里渊光子传感器。The purpose of the present invention is to provide an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor which is beneficial to improve the measurement distance, temperature and strain measurement accuracy.
为达到上述目的,本发明的技术方案是:超远程分布式光纤拉曼与布里渊光子传感器包括分布式光纤拉曼光子温度传感器,分布式光纤布里渊光子应变传感器,分布式光纤拉曼放大器和100km单模光纤,分布式光纤拉曼光子温度传感器由半导体脉冲激光器、合波器、单向器、1 x 2光纤双向耦合器、光纤光栅窄带反射滤波器、波分复用器、反斯托克斯拉曼散射光滤波器、斯托克斯拉曼散射光滤波器和光电直接检测系统组成,分布式光纤布里渊光子应变传感器由外腔半导体窄带脉冲光纤激光器、分波器、第一窄带光纤光栅滤光器、第二窄带光纤光栅滤光器、环行器和相干检测系统组成,分布式光纤拉曼放大器由泵浦光纤激光器和泵浦-信号光纤耦合器组成;半导体脉冲激光器与合波器的一个输入端相连,外腔半导体窄带脉冲光纤激光器与分波器的输入端相连,分波器输出的激光分二路,其中,一路与合波器的另一个输入端相连,另一路经第二窄带光纤光栅滤光器与环行器的一个输入端相连,合波器输出的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光经单向器与泵浦-信号光纤耦合器的一个输入端相连,泵浦-信号光纤耦合器的另一个输入端与泵浦光纤激光器相连,泵浦-信号光纤耦合器的输出端与1 x 2光纤双向耦合器的输入端相连,1 x 2光纤双向耦合器的一个输出端与100km单模光纤相连,光纤1 x 2双向耦合器的另一个输出端与光纤光栅窄带反射滤波器的输入端相连,光纤光栅窄带反射滤波器的输出端与波分复用器的输入端连接,波分复用器输出的光纤上各段的背向反斯托克斯拉曼散射光和斯托克斯拉曼散射光分别经反斯托克斯拉曼散射光滤波器和斯托克斯拉曼散射光滤波器与光电直接检测系统相连,波分复用器输出的光纤上各段的背向布里渊散射光经过第一窄带光纤光栅滤光器与环行器的另一个输入端相连,由环行器将来自第一窄带光纤光栅滤光器的本地光和来自第二窄带光纤光栅滤光器的信号光进行拍频后输入相干检测系统。In order to achieve the above object, the technical solution of the present invention is: the ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor includes distributed optical fiber Raman photon temperature sensor, distributed optical fiber Brillouin photon strain sensor, distributed optical fiber Raman Amplifier and 100km single-mode fiber, distributed fiber Raman photon temperature sensor consists of semiconductor pulse laser, multiplexer, one-way device, 1 x 2 fiber bidirectional coupler, fiber grating narrow-band reflection filter, wavelength division multiplexer, reflection Composed of Stokes Raman scattered light filter, Stokes Raman scattered light filter and photoelectric direct detection system, distributed optical fiber Brillouin photonic strain sensor consists of external cavity semiconductor narrowband pulsed fiber laser, wave splitter, Composed of the first narrowband fiber grating filter, the second narrowband fiber grating filter, a circulator and a coherent detection system, the distributed fiber Raman amplifier is composed of a pump fiber laser and a pump-signal fiber coupler; a semiconductor pulse laser It is connected to one input end of the wave combiner, and the external cavity semiconductor narrow-band pulsed fiber laser is connected to the input end of the wave splitter. The laser output from the wave splitter is divided into two paths, one of which is connected to the other input end of the wave combiner, The other path is connected to an input end of the circulator through the second narrow-band fiber grating filter, and the laser light of the semiconductor pulse laser output by the multiplexer and the laser light of the external-cavity semiconductor narrow-band pulse fiber laser pass through the one-way device and the pump-signal fiber One input end of the coupler is connected, the other input end of the pump-signal fiber coupler is connected to the pump fiber laser, the output end of the pump-signal fiber coupler is connected to the input end of the 1 x 2 fiber bidirectional coupler, One output end of the 1 x 2 fiber bidirectional coupler is connected to a 100km single-mode fiber, the other output end of the fiber 1 x 2 bidirectional coupler is connected to the input end of the fiber grating narrowband reflection filter, and the output of the fiber grating narrowband reflection filter is The end is connected to the input end of the wavelength division multiplexer, and the back anti-Stokes Raman scattered light and the Stokes Raman scattered light of each section of the optical fiber output by the wavelength division multiplexer are respectively passed through the anti-Stokes The Slarman scattered light filter and the Stokes Raman scattered light filter are connected to the photoelectric direct detection system, and the back Brillouin scattered light of each section of the optical fiber output by the wavelength division multiplexer passes through the first narrow-band fiber grating The optical filter is connected to the other input end of the circulator, and the circulator beats the local light from the first narrowband fiber grating filter and the signal light from the second narrowband fiber Bragg grating filter and then enters the coherent detection system .
工作原理如下:It works as follows:
半导体脉冲激光器,外腔半导体窄带脉冲光纤激光器和泵浦光纤激光器产生的激光经泵浦-信号光纤耦合器和1 x 2光纤双向耦合器耦合后输入100km单模光纤,100km单模光纤各段上产生的放大的背向瑞利散射光、背向布里渊散射光及斯托克斯和反斯托克斯背向拉曼散射光经1 x 2光纤双向耦合器输入到光纤光栅窄带反射滤波器,利用光纤光栅窄带反射滤波器抑制泵浦光纤激光器在100km单模光纤中产生的背向瑞利(Rayleigh)散射光,同时让100km单模光纤各段上产生的放大的自发拉曼散射光和布里渊散射光通过,并进入到光纤波分复用器。这里,泵浦光纤激光器与泵浦-信号光纤耦合器和100km单模光纤组合成一只增益可调的分布式光纤拉曼放大器,将光纤中传输的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光进行放大,同时增强了光纤上各段的背向自发拉曼散射光和背向布里渊散射光。波分复用器输出的光纤上各段的背向自发拉曼散射光分成两路,一路为反斯托克斯拉曼散射光,经过反斯托克斯散射光滤波器输入光电直接检测系统,另一路为斯托克斯拉曼散射光,经过斯托克斯拉曼散射光滤波器输入光电直接检测系统,由光电直接检测系统将测得的背向反斯托克斯拉曼散射光经光电转换,转换成电信号Va,将测得的背向斯托光斯拉曼散射光经光电转换,转换成电信号Vs,通过测量两者的比值从电信号的比值与温度的关系(见式1),可以得到光纤上各段处的温度,从而获得空间的温度场分布T。The laser generated by semiconductor pulse laser, external cavity semiconductor narrow-band pulse fiber laser and pump fiber laser is coupled by pump-signal fiber coupler and 1 x 2 fiber bidirectional coupler, and then input into 100km single-mode fiber, each section of 100km single-mode fiber The generated amplified back Rayleigh scattered light, back Brillouin scattered light and Stokes and anti-Stokes back Raman scattered light are input to fiber grating narrowband reflection filter through 1 x 2 fiber bidirectional coupler The device uses fiber grating narrow-band reflection filters to suppress the back Rayleigh scattered light generated by the pump fiber laser in the 100km single-mode fiber, and at the same time allows the amplified spontaneous Raman scattered light generated on each section of the 100km single-mode fiber and Brillouin scattered light passes through and enters the fiber optic wavelength division multiplexer. Here, the pump fiber laser is combined with the pump-signal fiber coupler and 100km single-mode fiber to form a distributed fiber Raman amplifier with adjustable gain. The laser light of the laser is amplified, and at the same time, the back spontaneous Raman scattered light and the back Brillouin scattered light of each segment on the fiber are enhanced. The back spontaneous Raman scattered light of each section of the optical fiber output by the wavelength division multiplexer is divided into two paths, one is anti-Stokes Raman scattered light, which is input to the photoelectric direct detection system through the anti-Stokes scattered light filter , the other way is the Stokes Raman scattered light, which is input to the photoelectric direct detection system through the Stokes Raman scattered light filter, and the back anti-Stokes Raman scattered light measured by the photoelectric direct detection system After photoelectric conversion, it is converted into an electrical signal V a , and the measured back-to-Stowe Raman scattered light is converted into an electrical signal V s through photoelectric conversion. By measuring the ratio of the two Ratio from electrical signal The relationship with temperature (see formula 1), the temperature at each section of the optical fiber can be obtained, so as to obtain the spatial temperature field distribution T.
va=v0+Δvv a =v 0 +Δv
vs=v0-Δvv s =v 0 -Δv
式中k为波尔兹曼常数,h为普朗克常数,va、vs分别为反斯托克斯和斯托克斯拉曼散射频率,v0为半导体脉冲激光器的激光,Δv为光纤分子振动能级的频率。In the formula, k is Boltzmann's constant, h is Planck's constant, v a and v s are anti-Stokes and Stokes Raman scattering frequencies respectively, v 0 is the laser of semiconductor pulsed laser, Δv is The frequency of the fiber's molecular vibrational levels.
波分复用器输出的光纤上各段经应变、温度调制的的背向布里渊散射光经过第一窄带光纤光栅滤光器滤波,输出信号光至环行器,由环行器将信号光与通过分波器和第二窄带光纤光栅滤光器的外腔半导体窄带光纤激光器的本地光拍频,输入相干检测系统进行相干检测,测量布里渊散射光的频移量Δv,得到光纤各段的应变信息。光纤背向布里渊散射线的频移受到光纤应变和温度的调制,光纤上各段所受的应变和温度不同,它的布里渊散射光的频移量Δv也不同,The strain- and temperature-modulated Brillouin backscattered light of each segment of the optical fiber output by the wavelength division multiplexer is filtered by the first narrow-band fiber grating filter, and the signal light is output to the circulator, and the signal light is combined with the circulator. The local light beat frequency of the external-cavity semiconductor narrow-band fiber laser passing through the wave splitter and the second narrow-band fiber grating filter is input to the coherent detection system for coherent detection, and the frequency shift Δv of the Brillouin scattered light is measured to obtain each section of the optical fiber strain information. The frequency shift of the fiber back to the Brillouin scattered light is modulated by the strain and temperature of the fiber. The strain and temperature of each segment of the fiber are different, and the frequency shift Δv of the Brillouin scattered light is also different.
式中λp为外腔半导体窄带脉冲光纤激光器的激光波长,n为泵浦波长处光纤的折射率,v为光纤中弹性波的速度,光纤温度与应力的改变均能引起速度的变化。where λp is the laser wavelength of the external-cavity semiconductor narrow-band pulsed fiber laser, n is the refractive index of the fiber at the pump wavelength, v is the velocity of the elastic wave in the fiber, and changes in fiber temperature and stress can cause changes in the velocity.
100km单模光纤的自发拉曼散射光强度受到温度的调制,光纤上各段的温度不同,它的拉曼散射光强度也不同,因此可以利用光纤的自发拉曼散射温度效应和光纤时域反射(OTDR)原理来制造分布式光纤拉曼光子温度传感器,通过它来测量光纤上各段的温度,从而得知光纤所处空间的温度分布。The intensity of spontaneous Raman scattered light of a 100km single-mode fiber is modulated by temperature. The temperature of each section of the fiber is different, and the intensity of Raman scattered light is also different. Therefore, the spontaneous Raman scattering temperature effect of the fiber and the time domain reflection of the fiber can be used (OTDR) principle to manufacture a distributed optical fiber Raman photon temperature sensor, through which to measure the temperature of each section of the optical fiber, so as to know the temperature distribution of the space where the optical fiber is located.
本发明通过分布式光纤拉曼光子温度传感器确定光纤上各段的温度,由分布式光纤布里渊光子应变传感器测量光纤各段的频移量来得到光纤上各段的应变,由光纤时域反射(OTDR)原理对各段光纤的位置进行定位,通过测量光纤上各段的应变得到光纤所处空间的应力分布。本发明中专门设置了光纤光栅窄带反射滤波器来抑制背向瑞利散射光,可以避免分布式光纤拉曼放大器泵浦光所引起的背向瑞利散射光影响光纤拉曼光子温度传感器的正常工作。The present invention determines the temperature of each segment on the optical fiber by a distributed optical fiber Raman photon temperature sensor, measures the frequency shift of each segment of the optical fiber by a distributed optical fiber Brillouin photon strain sensor to obtain the strain of each segment on the optical fiber, and obtains the strain of each segment on the optical fiber by the optical fiber time domain The principle of reflection (OTDR) locates the position of each segment of optical fiber, and obtains the stress distribution of the space where the optical fiber is located by measuring the strain of each segment on the optical fiber. In the present invention, a fiber grating narrow-band reflection filter is specially set to suppress the back Rayleigh scattered light, which can avoid the back Rayleigh scattered light caused by the pump light of the distributed optical fiber Raman amplifier from affecting the normal operation of the optical fiber Raman photon temperature sensor. Work.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明利用分布式光纤拉曼放大器在光纤中产生光的放大,使分布式光纤拉曼光子温度传感器中半导体脉冲激光和分布式光纤布里渊光子应变传感器中的外腔半导体窄带脉冲光纤激光器不断地获得分布式光纤拉曼放大器的增益,由于放大器的增益克服了光纤损耗,同时增强了光纤上各段中背向自发拉曼散射光的强度和布里渊散射光,提高了分布式光纤拉曼光子温度传感器和分布式光纤布里渊光子应变传感器系统的信噪比,增大了分布式光纤拉曼光子温度传感器和分布式光纤布里渊光子应变传感器的传输距离,提高了温度和应变的测量精度。本发明巧妙地利用了光纤受激拉曼散射效应,光纤自发拉曼散射,光纤布里渊散射效应和光时域反射原理将分布式光纤拉曼放大器与分布式光纤拉曼温度传感器,分布式光纤布里渊光子应变传感器技术融合在一起,由光纤时域反射(OTDR)原理对各段光纤的位置进行定位,实现了超远程分布式光纤拉曼与布里渊光子传感器。The invention utilizes the distributed optical fiber Raman amplifier to generate light amplification in the optical fiber, so that the semiconductor pulse laser in the distributed optical fiber Raman photon temperature sensor and the external cavity semiconductor narrowband pulsed optical fiber laser in the distributed optical fiber Brillouin photon strain sensor continuously The gain of the distributed fiber Raman amplifier can be effectively obtained, because the gain of the amplifier overcomes the fiber loss, and at the same time enhances the intensity of the back spontaneous Raman scattered light and the Brillouin scattered light in each section of the fiber, and improves the distributed fiber Raman The signal-to-noise ratio of the photonic temperature sensor and the distributed optical fiber Brillouin photonic strain sensor system increases the transmission distance of the distributed optical fiber Raman photonic temperature sensor and the distributed optical fiber Brillouin photonic strain sensor, and improves the temperature and strain. measurement accuracy. The invention skillfully utilizes the stimulated Raman scattering effect of optical fiber, spontaneous Raman scattering of optical fiber, Brillouin scattering effect of optical fiber and optical time domain reflection principle to combine distributed optical fiber Raman amplifier with distributed optical fiber Raman temperature sensor, distributed optical fiber Brillouin photonic strain sensor technology is fused together, and the position of each section of optical fiber is positioned by the principle of optical fiber time domain reflection (OTDR), realizing an ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor.
附图说明 Description of drawings
图1是本发明的超远程分布式光纤拉曼与布里渊光子传感器的构成示意图。Fig. 1 is a schematic diagram of the composition of the ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor of the present invention.
具体实施方式 Detailed ways
参照图1,发明的超远程分布式光纤拉曼与布里渊光子传感器,包括分布式光纤拉曼光子温度传感器,分布式光纤布里渊光子应变传感器,分布式光纤拉曼放大器和100km单模光纤19,分布式光纤拉曼光子温度传感器由半导体脉冲激光器11、合波器14、单向器15、1 x 2光纤双向耦合器18、光纤光栅窄带反射滤波器20、波分复用器21、反斯托克斯散射光滤波器22、斯托克斯拉曼散射光滤波器23和光电直接检测系统24组成,分布式光纤布里渊光子应变传感器由外腔半导体窄带脉冲光纤激光器12、分波器13、第一窄带光纤光栅滤光器25、第二窄带光纤光栅滤光器26、环行器27和相干检测系统28组成,分布式光纤拉曼放大器由泵浦光纤激光器16和泵浦-信号光纤耦合器17组成;半导体脉冲激光器11与合波器14的一个输入端相连,外腔半导体窄带脉冲光纤激光器12与分波器13的输入端相连,分波器13输出的激光分二路,其中,一路与合波器14的另一个输入端相连,另一路经第二窄带光纤光栅滤光器26与环行器27的一个输入端相连,合波器14输出的半导体脉冲激光器的激光和外腔半导体窄带脉冲光纤激光器的激光经单向器15与泵浦-信号光纤耦合器17的一个输入端相连,泵浦光纤激光器16与泵浦-信号光纤耦合器17的另一个输入端相连,泵浦-信号光纤耦合器17的输出端与1 x 2光纤双向耦合器18的输入端相连,1 x 2光纤双向耦合器18的一个输出端与100km单模光纤19相连,光纤1 x 2双向耦合器18的另一个输出端与光纤光栅窄带反射滤波器20的输入端相连,光纤光栅窄带反射滤波器20的输出端与波分复用器21的输入端连接,波分复用器21输出的光纤上各段的反斯托克斯拉曼散射光和斯托克斯拉曼散射光分别经反斯托克斯散射光滤波器22和斯托克斯拉曼散射光滤波器23与光电直接检测系统24相连,波分复用器21输出的光纤上各段的背向布里渊散射光经过第一窄带光纤光栅滤光器25与环行器27的另一个输入端相连,由环行器27将来自第一窄带光纤光栅滤光器25的本地光和来自第二窄带光纤光栅滤光器26的信号光进行拍频后输入相干检测系统28。Referring to Figure 1, the invented ultra-long-distance distributed optical fiber Raman and Brillouin photon sensor includes distributed optical fiber Raman photon temperature sensor, distributed optical fiber Brillouin photon strain sensor, distributed optical fiber Raman amplifier and 100km single-mode
本发明中,所说的半导体脉冲光纤激光器11可以采用脉冲宽度小于30ns,波长为1550nm的半导体法布利-白洛(FP)腔的高功率光纤激光器。In the present invention, the semiconductor pulsed
本发明中,所说的外腔半导体窄带脉冲光纤激光器12可以采用光谱宽度为10MHz,波长为1555nm的外腔半导体脉冲光纤激光器。In the present invention, the external-cavity semiconductor narrow-band pulsed
本发明中,所说的泵浦光纤激光器16可以采用波长为1455nm的高功率可调光纤拉曼激光器。In the present invention, the pumping
本发明中,所说的光纤光栅窄带反射滤波器20可以采用反射率>99.5%、隔离度>35dB的波长为1455m、窄带光谱间隔为1nm的光纤光栅滤波器。In the present invention, the fiber grating narrow-band reflective filter 20 can be a fiber grating filter with a reflectivity>99.5%, an isolation degree>35dB, a wavelength of 1455m, and a narrow-band spectral interval of 1nm.
本发明中,所说的反斯托克斯拉曼散射波滤波器22可以采用波长为1450nm、带宽>30nm、隔离度>30dB的滤波器。In the present invention, the anti-Stokes Raman scattering wave filter 22 can be a filter with a wavelength of 1450nm, a bandwidth >30nm, and an isolation >30dB.
本发明中,所说的斯托克斯拉曼散射波的滤波器23可以采用波长为1660nm、带宽>30nm、隔离度>30dB的滤波器。In the present invention, the Stokes Raman
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101568680A CN100491924C (en) | 2007-11-15 | 2007-11-15 | Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101568680A CN100491924C (en) | 2007-11-15 | 2007-11-15 | Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101162158A CN101162158A (en) | 2008-04-16 |
CN100491924C true CN100491924C (en) | 2009-05-27 |
Family
ID=39297115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101568680A Expired - Fee Related CN100491924C (en) | 2007-11-15 | 2007-11-15 | Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100491924C (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101592475B (en) * | 2009-06-08 | 2010-09-29 | 中国计量学院 | Fully Distributed Optical Fiber Rayleigh and Raman Scattering Photon Strain and Temperature Sensors |
GB201000743D0 (en) * | 2010-01-18 | 2010-03-03 | Univ Manchester | Graphene polymer composite |
CN101806735A (en) * | 2010-03-30 | 2010-08-18 | 南昌航空大学 | Device and method for simultaneously detecting stimulated Brillouin scattering threshold and Raman scattering threshold of laser transmitted in water |
CN101852655B (en) * | 2010-04-13 | 2012-04-18 | 中国计量学院 | Distributed fiber Raman/Brillouin scattering sensor |
CN101893802A (en) * | 2010-06-25 | 2010-11-24 | 上海华魏光纤传感技术有限公司 | Photo-sensing relay amplifier and method thereof |
CN101949743B (en) * | 2010-08-09 | 2012-08-08 | 宁波诺驰光电科技发展有限公司 | Novel Brillouin time domain analyzer |
CN101950913A (en) * | 2010-08-12 | 2011-01-19 | 上海拜安实业有限公司 | Fiber laser source based on pulse seed source amplification and fiber sensing system |
CN102062648A (en) * | 2010-11-11 | 2011-05-18 | 金海新源电气江苏有限公司 | Wavelength division multiplexing device for distributed optical fiber temperature sensor |
CN102109362B (en) * | 2010-11-26 | 2012-05-23 | 中国计量学院 | Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter |
CN102080954B (en) * | 2010-11-26 | 2012-11-07 | 中国计量学院 | Ultra-long range 100km decentralized optical fiber Rayleigh and Raman scattering sensor |
CN102176684B (en) * | 2011-03-23 | 2013-12-25 | 东南大学 | Distributed optical fiber sensor for simultaneously monitoring engineering structure entirety and local strain |
CN102226703B (en) * | 2011-03-29 | 2013-09-25 | 宁波诺驰光电科技发展有限公司 | Distributed fiber multi-parameter sensor and multi-parameter measuring method |
RU2458325C1 (en) * | 2011-04-28 | 2012-08-10 | Общество с ограниченной ответственностью "ПетроФайбер" | Method of measuring temperature distribution and device for realising said method |
CN102322886A (en) * | 2011-08-09 | 2012-01-18 | 中国计量学院 | Pulse coding extra-long distance fully-distributed fiber Rayleigh and Raman scattering sensor of fusion fiber Raman frequency shift device |
CN102322808B (en) * | 2011-08-09 | 2013-03-27 | 中国计量学院 | Very long range pulse coding distribution type Fiber Raman and Brillouin photon sensor |
CN102322883B (en) * | 2011-08-09 | 2013-06-05 | 中国计量学院 | Pulse coding distribution-type fiber Raman and Brillouin scattering sensor |
WO2013020276A1 (en) * | 2011-08-10 | 2013-02-14 | 中国计量学院 | Brillouin optical time domain analyzer of chaotic laser-related integrated optical fiber raman amplifier |
CN102313568B (en) * | 2011-08-30 | 2016-08-24 | 武汉康特圣思光电技术有限公司 | The distribution type optical fiber sensing equipment that a kind of Brillouin and Raman detect simultaneously |
CN102506912A (en) * | 2011-09-29 | 2012-06-20 | 北京航空航天大学 | Optical fiber distributed disturbance sensor |
CN102506915B (en) * | 2011-11-02 | 2014-12-10 | 电子科技大学 | Three-order Raman amplification technology-based Brillouin optical time domain analysis system |
CN102538985B (en) * | 2011-12-27 | 2013-10-23 | 中国计量学院 | Sensing signal detection device and method based on fiber optic Brillouin ring laser |
CN103376124A (en) * | 2012-04-17 | 2013-10-30 | 扬州森斯光电科技有限公司 | Brillouin optical time domain analyzer |
CN102799044B (en) * | 2012-09-06 | 2015-04-29 | 杭州欧忆光电科技有限公司 | Method and device for amplifying signal light of optical time-domain reflectometer of fusion Raman amplifier |
CN103148793B (en) * | 2013-02-01 | 2016-06-01 | 西安理工大学 | Based on the super multiple spot antiradar reflectivity fiber grating sensing system of photon counting |
CN103199920B (en) * | 2013-04-02 | 2016-06-08 | 上海波汇科技股份有限公司 | A kind of light time domain reflectometer system |
CN104344840B (en) * | 2013-08-05 | 2019-04-30 | 上海华魏光纤传感技术有限公司 | Optical fiber signal enhancement device |
CN103674110B (en) * | 2013-11-26 | 2016-06-01 | 北京航天时代光电科技有限公司 | A kind of distribution type fiber-optic temperature strain sensor based on Brillouin's light amplification detection |
CN103674117B (en) * | 2013-12-20 | 2016-06-01 | 武汉理工大学 | Measure entirely method and device with weak optical fiber Bragg grating temperature and strain based on Raman scattering simultaneously |
CN104269723A (en) * | 2014-09-03 | 2015-01-07 | 电子科技大学 | Partitioning type distributed optical fiber signal amplification method |
CN105067146B (en) * | 2015-03-20 | 2019-09-03 | 深圳市迅捷光通科技有限公司 | Stimulated Raman scattering inhibits apparatus and method and distributed optical fiber sensing system |
EP3370307B1 (en) * | 2015-10-30 | 2021-09-22 | Fujikura Ltd. | Fiber laser system, reflection resistance evaluation method and reflection resistance improvement method for same, and fiber laser |
CN108020250A (en) * | 2017-12-28 | 2018-05-11 | 浙江杰昆科技有限公司 | A kind of distributed fiber optic temperature and strain sensing device |
CN111121873A (en) * | 2019-12-30 | 2020-05-08 | 武汉奥旭正源电力科技有限公司 | Distributed optical fiber sensing device |
CN111473952B (en) * | 2020-04-08 | 2022-03-11 | 武汉光迅信息技术有限公司 | Optical fiber sensing device |
CN112097811A (en) * | 2020-09-02 | 2020-12-18 | 中国计量大学 | A nonlinear interferometric dual-parameter sensor based on correlated injection scheme |
CN112038878B (en) * | 2020-09-22 | 2021-09-07 | 上海波汇科技有限公司 | Distributed optical fiber acoustic wave sensing system based on far pump amplifier and Raman amplifier |
CN113551803A (en) * | 2021-06-09 | 2021-10-26 | 上海交通大学 | Superconducting tape temperature and stress monitoring method and system |
CN114614768B (en) * | 2022-05-12 | 2022-07-26 | 武汉新能源研究院有限公司 | Photovoltaic cell panel hot spot fault monitoring and alarming system and method |
-
2007
- 2007-11-15 CN CNB2007101568680A patent/CN100491924C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101162158A (en) | 2008-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100491924C (en) | Ultra-long-range distributed fiber-optic Raman and Brillouin photonic sensors | |
CN101324424B (en) | Fiber Brillouin Optical Time Domain Analyzer | |
US8785859B2 (en) | Distributed optical fiber sensor based on Raman and Brillouin scattering | |
CN201680924U (en) | Distributive optical fiber Raman and Brillouin scattering sensor | |
KR100930342B1 (en) | Distribution fiber optic sensor system | |
CN102322810B (en) | Chaotic laser related Brillouin optical time domain analyzer integrated with optical fiber Raman amplifier | |
CN101162175A (en) | Ultra-remote distributed fiber raman photons temperature sensor integrated with raman amplifier | |
CN101639388B (en) | Raman related double-wavelength light source self-correction distributed optical fiber Raman temperature sensor | |
CN102322808B (en) | Very long range pulse coding distribution type Fiber Raman and Brillouin photon sensor | |
CN102840929B (en) | Long-distance Raman distributed temperature sensing system | |
CN201104243Y (en) | Ultra-long range distributed optical fiber Raman and Brillouin photon sensor | |
CN101825498A (en) | Distributed optical fiber Raman temperature sensor (DOFRTS) with self-correction of dispersion and loss spectra | |
CN100507455C (en) | A Multiplexing Method for Intensity Modulated Fiber Optic Sensors | |
CN104111086B (en) | Apparatus and method based on the optical time domain reflectometer of low Brillouin scattering threshold-sensitive optical fiber | |
CN104568019A (en) | Multimode fiber-based method and multimode fiber-based system for simultaneously measuring temperature and strain | |
CN102359830B (en) | Multiple Raman scattering effect fused ultra remote fiber temperature measurement sensor | |
KR101310783B1 (en) | Distributed optical fiber sensor and sensing method using simultaneous sensing of brillouin gain and loss | |
CN201107131Y (en) | An ultra-long-range distributed fiber optic Raman photonic temperature sensor with integrated Raman amplifier | |
CN202195825U (en) | Extra-long distance pulse-coding distributed optical fiber Raman and Brillouin photon sensor | |
WO2013123656A1 (en) | Fully distributed optical fiber sensor for optical fiber raman frequency shifter of fused raman amplification effect | |
CN201885732U (en) | Distributed optical fiber Brillouin sensor integrating optical fiber Brillouin frequency shifter | |
RU2552222C1 (en) | Method of measuring temperature distribution and device for realising said method | |
CN201233225Y (en) | Novel optical fiber Brillouin optical time-domain analyser | |
CN102116684A (en) | Self-correcting fully-distributed optical fiber Raman scattering sensor | |
CN207215172U (en) | For detecting the temperature of fully distributed fiber and the sensor of vibration position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HANGZHOU OUYI OPTOELECTRONICS CO., LTD. Free format text: FORMER OWNER: CHINA METROLOGY COLLEGE Effective date: 20100325 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 310018 XUEYUAN STREET, XIASHA HIGHER EDUCATION PARK ZONE, HANGZHOU CITY, ZHEJIANG PROVINCE TO: 310018 NO.258, XUEYUAN STREET, XIASHA HIGHER EDUCATION PARK ZONE, HANGZHOU CITY |
|
TR01 | Transfer of patent right |
Effective date of registration: 20100325 Address after: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou Patentee after: Hangzhou OE Photoelectric Technology Co., Ltd. Address before: 310018 Xiasha Higher Education Park, Zhejiang, Hangzhou Patentee before: China Jiliang University |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20151113 Address after: 264209 -6, Torch Road 159, hi tech Zone, Shandong, Weihai, six - Seven Patentee after: The northeast part of China, Weihai optoelectronic information technical concern company Address before: No. 258 School Street, Xiasha Higher Education Zone, Hangzhou Patentee before: Hangzhou OE Photoelectric Technology Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090527 Termination date: 20181115 |
|
CF01 | Termination of patent right due to non-payment of annual fee |