CN108761949A - A kind of solid ionic conducting shell and the solid-state electrochromic device containing the solid ionic conducting shell - Google Patents
A kind of solid ionic conducting shell and the solid-state electrochromic device containing the solid ionic conducting shell Download PDFInfo
- Publication number
- CN108761949A CN108761949A CN201810535285.7A CN201810535285A CN108761949A CN 108761949 A CN108761949 A CN 108761949A CN 201810535285 A CN201810535285 A CN 201810535285A CN 108761949 A CN108761949 A CN 108761949A
- Authority
- CN
- China
- Prior art keywords
- solid
- layer
- film
- aluminum oxide
- conducting shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title claims description 34
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 claims abstract description 62
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910001936 tantalum oxide Inorganic materials 0.000 claims abstract description 52
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 135
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 26
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 238000004544 sputter deposition Methods 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 229910052786 argon Inorganic materials 0.000 claims description 13
- 239000001989 lithium alloy Substances 0.000 claims description 12
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 claims description 11
- 229910001148 Al-Li alloy Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 6
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical group O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical group [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- 239000006104 solid solution Substances 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 239000013077 target material Substances 0.000 claims description 3
- FCVHBUFELUXTLR-UHFFFAOYSA-N [Li].[AlH3] Chemical compound [Li].[AlH3] FCVHBUFELUXTLR-UHFFFAOYSA-N 0.000 claims 2
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229910010199 LiAl Inorganic materials 0.000 abstract description 14
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 118
- 238000002834 transmittance Methods 0.000 description 27
- 239000010409 thin film Substances 0.000 description 26
- 150000002500 ions Chemical class 0.000 description 24
- 239000002356 single layer Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000006138 lithiation reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 229910017073 AlLi Inorganic materials 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- -1 LiAlO 2 Chemical compound 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical group [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910010092 LiAlO2 Inorganic materials 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012803 optimization experiment Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1525—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供一种固态离子传导层及含该固态离子传导层的固态电致变色器件,所述固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAlxOy,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。
The invention provides a solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer. The solid-state ion-conducting layer is a multilayer film formed by alternately laminating lithium aluminum oxide films and tantalum oxide films. The chemical formula of lithium aluminum oxide film is LiAl x O y , wherein 0.4≤x≤1.2, preferably 0.44≤x≤1, more preferably 0.45≤x≤0.67; 0.5≤y≤3, preferably 0.5≤y≤2.5, more preferably 0.5≤y≤2.
Description
技术领域technical field
本发明涉及材料技术领域,特别涉及一种具有特殊多层膜结构的固态离子传导层及含有该固态离子传导层的固态电致变色器件,可用于电致变色玻璃、显示器等技术领域。The invention relates to the field of material technology, in particular to a solid-state ion conduction layer with a special multilayer film structure and a solid-state electrochromic device containing the solid-state ion conduction layer, which can be used in technical fields such as electrochromic glass and displays.
背景技术Background technique
电致变色器件可在外界电场作用下可逆改变其透反射率等光学性能,可广泛应用于建筑玻璃以及汽车,列车,船舶,飞机等交通工具的窗口,达到舒适节能目的。同时,也可以用于各种显示器等半导体产品行业。在各种形式的电致变色器件中,结构中各膜层均为固态无机材料的全固态电致变色器件,由于调节效率高,稳定性好,因而具有最广泛的应用前景。Electrochromic devices can reversibly change their optical properties such as transmittance and reflectance under the action of an external electric field, and can be widely used in architectural glass and windows of vehicles, trains, ships, airplanes and other vehicles to achieve the purpose of comfort and energy saving. At the same time, it can also be used in semiconductor product industries such as various displays. Among various forms of electrochromic devices, all-solid-state electrochromic devices in which each film layer in the structure is made of solid inorganic materials have the most extensive application prospects due to their high regulation efficiency and good stability.
典型的固态电致变色器件一般由透明基材及在透明基材上依次形成的第一透明导电层,第一电致变色层,离子传导层(或称电解质层)、第二电致变色层,第二透明导电层,和保护层构成。其中,离子传导层担负着电场作用下着色粒子移动的快速通道,其结构与制备工艺是保证器件性能最重要的技术之一。理所当然,全固态电致变色器件中的离子传导层也必须是无机固态物质。A typical solid-state electrochromic device generally consists of a transparent substrate and a first transparent conductive layer sequentially formed on the transparent substrate, a first electrochromic layer, an ion-conducting layer (or electrolyte layer), a second electrochromic layer , a second transparent conductive layer, and a protective layer. Among them, the ion-conducting layer is responsible for the fast channel for the coloring particles to move under the action of the electric field, and its structure and preparation process are one of the most important technologies to ensure the performance of the device. Of course, the ion-conducting layer in the all-solid-state electrochromic device must also be an inorganic solid material.
氧化钽(Ta2O5)由于具有低泄漏电流,高介电常数,快离子输送,以及较高的热力学和化学稳定性,是迄今电致变色器件中应用最广泛的无机离子传导膜。由于Ta2O5薄膜的制备可以使用金属钽靶材通过反应性直流磁控溅射实现,因而具有靶材制备容易,沉积效率高,适合大规模连续镀膜生产的优点。但是,Ta2O5离子传导层也存在若干不足,如:1)可见光透过率低;2)需采取锂化等附加工艺额外引入锂离子;3)若采用直接溅射钽酸锂的引入锂离子的工艺,则需采用钽酸锂陶瓷靶材进行射频磁控溅射,靶材复杂,沉积效率低,等等,对电致变色大规模器件制备工艺产生不良影响。Tantalum oxide (Ta 2 O 5 ) is the most widely used inorganic ion-conducting membrane in electrochromic devices so far due to its low leakage current, high dielectric constant, fast ion transport, and high thermodynamic and chemical stability. Since the preparation of Ta 2 O 5 thin films can be realized by reactive DC magnetron sputtering using metal tantalum targets, it has the advantages of easy target preparation, high deposition efficiency, and is suitable for large-scale continuous coating production. However, the Ta 2 O 5 ion-conducting layer also has some disadvantages, such as: 1) low visible light transmittance; 2) additional lithium ions need to be introduced by additional processes such as lithiation; 3) if the introduction of lithium tantalate by direct sputtering Lithium-ion technology requires the use of lithium tantalate ceramic targets for radio frequency magnetron sputtering. The targets are complex and the deposition efficiency is low, etc., which have a negative impact on the large-scale electrochromic device preparation process.
针对现有上述问题,专利文献1(中国专利申请号:201710333624.9)提供了一种采用氧化铝锂陶瓷靶材和钽金属靶材通过共溅射方式获得一种含锂铝双离子的固态电解质(离子传导)层。但显而易见,采用共溅射的方式所形成的是一种混合物,其组成和结构难以控制;其次,共溅射中使用了氧化铝锂陶瓷靶材,因而不得不使用射频电源进行磁控溅射,沉积速率极低;并且,共溅射的方式是无法应用在大规模器件镀膜工艺上。In view of the above existing problems, Patent Document 1 (Chinese Patent Application No.: 201710333624.9) provides a solid electrolyte containing lithium-aluminum double ions ( ion-conducting layer. However, it is obvious that what is formed by co-sputtering is a mixture whose composition and structure are difficult to control; secondly, a lithium alumina ceramic target is used in co-sputtering, so a radio frequency power supply has to be used for magnetron sputtering , the deposition rate is extremely low; and the co-sputtering method cannot be applied to the large-scale device coating process.
类似地,专利文献2(中国专利申请号:201710240528.X)提供了一种离子传导层及其制备方法,包括制备无机固态介质层,并且制备单独的锂合金层,经通电使锂掺入无机固态介质层中(通电锂化)以形成含锂的离子传导层。但是,这种方式需要进行后续锂化工程,增加了工艺复杂性,其次,通电锂化并伴随锂合金层的消失,使含锂的离子传导层整体结构缺乏一致性和均匀性;并且,由于这种最终形成的离子传导层只能是一种化合物或混合物的单一膜层,其光学性能,如可见光透过率等,无法达到最佳的性能效果。Similarly, Patent Document 2 (Chinese Patent Application No.: 201710240528.X) provides an ion-conducting layer and its preparation method, including preparing an inorganic solid-state medium layer, and preparing a separate lithium alloy layer, and doping lithium into the inorganic In the solid-state dielectric layer (electrical lithiation) to form a lithium-containing ion-conducting layer. However, this method requires follow-up lithiation engineering, which increases the complexity of the process. Secondly, lithiation is accompanied by the disappearance of the lithium alloy layer, which makes the overall structure of the ion-conducting layer containing lithium lack of consistency and uniformity; and, due to The finally formed ion conducting layer can only be a single film layer of a compound or mixture, and its optical properties, such as visible light transmittance, cannot achieve the best performance effect.
发明内容Contents of the invention
针对上述问题,本发明的目的在于提供一种由高低折射率材料交替而成的离子传导多层膜结构,通过结构优化设计可获得最佳光学效果,在成膜过程中直接导入锂离子而无需后续锂化工艺,多层膜形成工艺均使用金属靶材通过直流或中频磁控溅射方式得以实现,沉积速率快效率高,满足大规模快速镀膜需求。In view of the above problems, the object of the present invention is to provide an ion-conducting multilayer film structure alternately formed by high and low refractive index materials, the best optical effect can be obtained through structural optimization design, and lithium ions are directly introduced in the film forming process without Subsequent lithiation process and multi-layer film formation process are all realized by DC or intermediate frequency magnetron sputtering using metal targets. The deposition rate is fast and the efficiency is high, meeting the needs of large-scale rapid coating.
具体而言,本发明提供了一种所述固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAlxOy,其中0.4≤x≤1.2,优选 0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。Specifically, the present invention provides a multilayer film in which the solid-state ion-conducting layer is alternately laminated with lithium aluminum oxide thin films and tantalum oxide thin films. The chemical formula of the lithium aluminum oxide thin films is LiAl x O y , Wherein 0.4≤x≤1.2, preferably 0.44≤x≤1, more preferably 0.45≤x≤0.67; 0.5≤y≤3, preferably 0.5≤y≤2.5, more preferably 0.5≤y≤2.
采用锂铝氧化物作为固态离子传导层(例如锂铝氧化物LiAlO2等),是因为其本身为一种含锂透明离子导体,通过控制多层膜中的锂的成分比完全可以满足器件对电致变色性能的要求。同时,由于锂铝氧化物折射率相对较低(例如LiAlO2,n≈1.62),除具有较高的可见光透过率外,并且可根据多层膜增透原理,与折射率较高的氧化钽(Ta2O5,n≈2.15)形成具有交替高低折射率物质的多层膜结构,获得比任一种单独薄膜更高的可见光透过率。其中,选择所述锂铝氧化物薄膜的化学式为LiAlxOy,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2。而所述氧化钽薄膜为Ta2O5。应注意,如果需要引入较多的锂离子,LiAlxOy中x值应越小越好。但是,由于金属锂熔点低并具有极强的化学活泼型,其金属靶材很难制备;而若x值过高,虽然合金靶材稳定性高容易制备,但不能为结构提供足够的锂离子。y取值范围根据x范围而定,主要考虑实现膜层的可见光透过率等最佳光学性能。Lithium aluminum oxide is used as the solid-state ion-conducting layer (such as lithium aluminum oxide LiAlO2, etc.), because it is a lithium-containing transparent ion conductor, and the device can be fully satisfied by controlling the composition ratio of lithium in the multilayer film. Electrochromic performance requirements. At the same time, due to the relatively low refractive index of lithium aluminum oxide (such as LiAlO 2 , n≈1.62), in addition to having high visible light transmittance, it can be compared with oxides with higher refractive index according to the principle of antireflection of multilayer films. Tantalum (Ta 2 O 5 , n≈2.15) forms a multi-layer film structure with alternating high and low refractive index materials, and obtains a higher visible light transmittance than any single film. Wherein, the chemical formula of the lithium aluminum oxide thin film is selected as LiAl x O y , wherein 0.4≤x≤1.2, preferably 0.44≤x≤1, more preferably 0.45≤x≤0.67; 0.5≤y≤3, preferably 0.5≤y ≤2.5, more preferably 0.5≤y≤2. The tantalum oxide film is Ta 2 O 5 . It should be noted that if more lithium ions need to be introduced, the value of x in LiAl x O y should be as small as possible. However, due to the low melting point and strong chemical activity of metal lithium, its metal target is difficult to prepare; and if the x value is too high, although the alloy target has high stability and is easy to prepare, it cannot provide enough lithium ions for the structure. . The value range of y depends on the range of x, and the main consideration is to achieve the best optical performance such as the visible light transmittance of the film layer.
较佳地,为同时实现锂离子的供给并产生可见光增透效应,所述固态离子传导层至少包含一个锂铝氧化物薄膜和一个氧化钽薄膜(两者位置可以互换)。Preferably, in order to simultaneously realize the supply of lithium ions and produce the anti-reflection effect of visible light, the solid ion conduction layer includes at least one lithium aluminum oxide film and one tantalum oxide film (the positions of the two can be interchanged).
又,较佳地,所述多层膜至少包含一个锂铝氧化物薄膜并夹在两个氧化钽薄膜之间,或一个氧化钽薄膜夹在两个锂铝氧化物薄膜之间,根据多层膜干涉原理,多层膜可获得更好的增透效应。Also, preferably, the multilayer film comprises at least one lithium aluminum oxide film sandwiched between two tantalum oxide films, or one tantalum oxide film is sandwiched between two lithium aluminum oxide films, according to the multilayer Based on the principle of film interference, multi-layer film can obtain better anti-reflection effect.
较佳地,所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数为2~20,优选3~15,更优选3~5。当然,采用3层以上的多层膜结构可进一步提高多层膜的可见光增透效果并使锂离子扩散更加均匀。但考虑到实现大规模生产的工艺可行性,所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数限定为2~20,优选3~15,更优选3~ 5。因为,膜层过多将增加设备和工艺的复杂性,膜层过少则增透效果不明显。Preferably, the total number of layers of the multilayer film formed by alternately stacking the lithium aluminum oxide thin film and the tantalum oxide thin film is 2-20, preferably 3-15, more preferably 3-5. Certainly, adopting a multilayer film structure of more than 3 layers can further improve the visible light anti-reflection effect of the multilayer film and make the diffusion of lithium ions more uniform. However, in consideration of the technological feasibility of realizing large-scale production, the total number of layers of the multilayer film formed by alternately stacking the lithium aluminum oxide thin film and the tantalum oxide thin film is limited to 2-20, preferably 3-15, more preferably 3-5 . Because, too much film layer will increase the complexity of equipment and process, and too few film layers will have no obvious anti-reflection effect.
较佳地,所述固态离子传导层总厚度设计为100nm~1000nm,优选200nm~ 600nm。因为,总厚度过大,则沉积时间长效率低;过小,不能起到足够的离子储存与传导效应。在对各层膜厚进行结构设计时,应同时满足提供足够的锂离子及实现最大光学效果的需求。Preferably, the total thickness of the solid ion conducting layer is designed to be 100nm-1000nm, preferably 200nm-600nm. Because if the total thickness is too large, the deposition time will be long and the efficiency will be low; if the total thickness is too small, sufficient ion storage and conduction effects cannot be achieved. When designing the structure of the film thickness of each layer, the requirements of providing sufficient lithium ions and achieving the maximum optical effect should be met at the same time.
较佳地,所述锂铝氧化物薄膜的厚度为10~500nm,优选为50~400nm;所述氧化钽薄膜的厚度为50~500nm,优选为50~200nm。Preferably, the thickness of the lithium aluminum oxide film is 10-500 nm, preferably 50-400 nm; the thickness of the tantalum oxide film is 50-500 nm, preferably 50-200 nm.
依据多层膜增透原理,所述具有多层膜结构的固态离子传导层,其可见光透过率高于同等膜厚的锂铝氧化物单层膜或氧化钽单层膜;同时,结构充分利用氧化钽优异的离子传导性和稳定性;同时,结构提供了足够的锂离子,满足器件的变色需求;最后,多层膜均可使用金属靶材实现高效率制备。According to the anti-reflection principle of multi-layer film, the visible light transmittance of the solid-state ion-conducting layer with multi-layer film structure is higher than that of lithium aluminum oxide single-layer film or tantalum oxide single-layer film with the same film thickness; at the same time, the structure is sufficient Utilize the excellent ion conductivity and stability of tantalum oxide; at the same time, the structure provides enough lithium ions to meet the discoloration requirements of the device; finally, multilayer films can be prepared with high efficiency using metal targets.
较佳地,所述固态离子传导层(多层膜固态离子传导层)中的锂铝氧化物薄膜使用铝锂合金靶材通过反应性磁控溅射方式制备,所述铝锂合金靶材为AlLix组成的固溶体、Al2Li3晶相、和Al4Li9晶相中的至少一种。也就是说,铝锂合金靶材可采用组成为AlLix (例如,x可≈1)的固溶体合金,或组成为Al2Li3或Al4Li9的合金中的任何一种,或其中两种以上的混合合金。Preferably, the lithium aluminum oxide thin film in the solid-state ion-conducting layer (multilayer film solid-state ion-conducting layer) is prepared by reactive magnetron sputtering using an aluminum-lithium alloy target, and the aluminum-lithium alloy target is At least one of a solid solution composed of AlLix , an Al 2 Li 3 crystal phase, and an Al 4 Li 9 crystal phase. That is to say, the aluminum-lithium alloy target can be a solid solution alloy composed of AlLi x (for example, x can be ≈1), or any one of the alloys composed of Al 2 Li 3 or Al 4 Li 9 , or both of them. Mixed alloys of more than one species.
较佳地,所述锂铝氧化物薄膜制备参数为:本底真空1×10-5~5×10-3Pa,基底温度为20℃~200℃,镀膜时间为1~60min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~10W/cm2。Preferably, the preparation parameters of the lithium aluminum oxide thin film are: the background vacuum is 1×10 -5 to 5×10 -3 Pa, the substrate temperature is 20°C to 200°C, the coating time is 1 to 60min, and the working atmosphere is The atmosphere contains oxygen and argon, the working pressure is 0.5-5Pa, and the sputtering power density is 1-10W/cm 2 .
较佳地,所述氧化钽薄膜使用金属钽靶材通过反应性磁控溅射方式制备;优选地,所述氧化钽薄膜制备参数为:本底真空1×10-5~5×10-3Pa,基底温度为20℃~200℃,镀膜时间为1~60min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为 1~10W/cm2。应注意,氧化钽为公知的电致变色固态离子传导层,所有公知的制备方式均可采用,具体制备条件此处不再赘述。Preferably, the tantalum oxide film is prepared by reactive magnetron sputtering using a metal tantalum target; preferably, the preparation parameters of the tantalum oxide film are: background vacuum 1×10 -5 ~ 5×10 -3 Pa, the substrate temperature is 20°C-200°C, the coating time is 1-60min, the working atmosphere is an atmosphere containing oxygen and argon, the working pressure is 0.5-5Pa, and the sputtering power density is 1-10W/cm 2 . It should be noted that tantalum oxide is a well-known electrochromic solid-state ion-conducting layer, and all known preparation methods can be used, and the specific preparation conditions will not be repeated here.
另一方面,本发明还提供了一种全固态电致变色器件,结构包括基板,以及依次设置于所述基板上的第一透明导电层、第一电致变色层、本发明所述固态离子传导层、第二电致变色层、第二透明导电层和保护层。On the other hand, the present invention also provides an all-solid-state electrochromic device, the structure of which includes a substrate, and a first transparent conductive layer, a first electrochromic layer, and the solid-state ions described in the present invention are sequentially arranged on the substrate. Conductive layer, second electrochromic layer, second transparent conductive layer and protective layer.
较佳地,所述第一电致变色层为氧化镍,厚度为100~500nm;所述第二电致变色层为氧化钨,厚度为200~600nm;所述透明导电层为ITO,厚度为50~500nm;所述保护层为硅铝氮氧化物,厚度为50~500nm。Preferably, the first electrochromic layer is nickel oxide with a thickness of 100-500 nm; the second electrochromic layer is tungsten oxide with a thickness of 200-600 nm; the transparent conductive layer is ITO with a thickness of 50-500 nm; the protective layer is silicon aluminum oxynitride with a thickness of 50-500 nm.
较佳地,将所述全固态电致变色器件中第一透明导电层或第二透明导电层替换为反射型金属导电膜,则器件具有可变的反射率,可用于汽车防眩等用途。Preferably, if the first transparent conductive layer or the second transparent conductive layer in the all-solid-state electrochromic device is replaced with a reflective metal conductive film, the device has variable reflectivity and can be used for automotive anti-glare and other purposes.
本发明具有以下诸多优点:1)采用高低折射率物质交替形成多层膜的固态离子传导层,根据多层膜增透原理,其优化结构的可见光透过率高于同等膜厚的锂铝氧化物单层膜或氧化钽单层膜;2)采用氧化钽作为高折射率组分,最大限度利用其优异的离子传导特性和稳定性;3)通过提高锂铝氧化物中的锂含量为固态离子传导层提供足够的锂离子,满足器件的变色需求;4)固态离子传导层中各膜层均可使用金属靶材和直流(或中频)磁控溅射工艺,效率高成本低。因此本发明解决了目前离子传导层结构与制备工艺中存在的材料成本高,工艺复杂,成膜率低,光学性能不足等诸多问题,为实现大规模器件生产打下了坚实基础。The present invention has the following advantages: 1) The solid ion conduction layer of the multilayer film is formed alternately by high and low refractive index materials. According to the principle of multilayer film anti-reflection, the visible light transmittance of the optimized structure is higher than that of lithium aluminum oxide with the same film thickness. single-layer film or tantalum oxide single-layer film; 2) using tantalum oxide as a high refractive index component to maximize its excellent ion conductivity and stability; 3) increasing the lithium content in lithium aluminum oxide to solid state The ion-conducting layer provides enough lithium ions to meet the discoloration requirements of the device; 4) Each film layer in the solid-state ion-conducting layer can use metal targets and DC (or intermediate frequency) magnetron sputtering process, which has high efficiency and low cost. Therefore, the present invention solves the problems of high material cost, complex process, low film forming rate and insufficient optical performance existing in the current structure and preparation process of the ion conducting layer, and lays a solid foundation for realizing large-scale device production.
附图说明Description of drawings
图1为本发明中固态电致变色器件结构示意图;Fig. 1 is a schematic structural view of a solid-state electrochromic device in the present invention;
图2为具有三层膜结构的固态离子传导层中各膜层厚度与可见光透过率的关系;Fig. 2 is the relationship between the thickness of each film layer and the visible light transmittance in the solid ion conducting layer with three-layer film structure;
图3为一个具有三层膜结构的固态离子传导层优化结构的可见光透反射率曲线与可见光透过率积分值;Fig. 3 is a visible light transmittance reflectance curve and visible light transmittance integral value of a solid ion conduction layer optimized structure with a three-layer film structure;
图号说明:Description of figure number:
100 透明基板;100 transparent substrates;
110 第一透明导电膜;110 the first transparent conductive film;
120 电致变色层;120 electrochromic layer;
130 离子传导层;130 ion conducting layer;
140 电致变色层;140 electrochromic layer;
150 第二透明导电层;150 second transparent conductive layer;
160 保护层;160 layers of protection;
131 LiAlxOy;131 LiAl x O y ;
132 Ta2O5;132 Ta 2 O 5 ;
13n LiAlxOy(重复131与132结构至第13n层)。13n LiAl x O y (repeat the structure of 131 and 132 to the 13n layer).
具体实施方式Detailed ways
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below through the following embodiments. It should be understood that the following embodiments are only used to illustrate the present invention, not to limit the present invention.
在本发明一实施方式中,固态离子传导层为锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜,所述锂铝氧化物薄膜的化学式为LiAlxOy,其中0.4≤x≤1.2,优选0.44≤x≤1,更优选0.45≤x≤0.67;0.5≤y≤3,优选0.5≤y≤2.5,更优选0.5≤y≤2;所述氧化钽薄膜为五氧化二钽(Ta2O5)。In one embodiment of the present invention, the solid-state ion-conducting layer is a multilayer film formed by alternately stacking lithium aluminum oxide thin films and tantalum oxide thin films. The chemical formula of the lithium aluminum oxide thin films is LiAl x O y , where 0.4≤x ≤1.2, preferably 0.44≤x≤1, more preferably 0.45≤x≤0.67; 0.5≤y≤3, preferably 0.5≤y≤2.5, more preferably 0.5≤y≤2; the tantalum oxide film is tantalum pentoxide ( Ta 2 O 5 ).
在可选的实施方式中,所述固态离子传导层至少包含一个锂铝氧化物薄膜和一个氧化钽薄膜,两者位置可以互换。更优选地,所述的固态离子传导层至少包含一个锂铝氧化物薄膜并夹在两个氧化钽薄膜之间,或一个氧化钽薄膜并夹在两个锂铝氧化物薄膜之间。所述锂铝氧化物薄膜和氧化钽薄膜交替层叠而成的多层膜总层数为2~20,优选3~15,更优选 3~5。所述固态离子传导层总厚度为100nm~1000nm,优选为200nm~600nm。In an optional embodiment, the solid-state ion-conducting layer includes at least one lithium aluminum oxide film and one tantalum oxide film, and the positions of the two can be interchanged. More preferably, the solid ion conducting layer comprises at least one lithium aluminum oxide film sandwiched between two tantalum oxide films, or one tantalum oxide film sandwiched between two lithium aluminum oxide films. The total number of layers of the multilayer film formed by alternately stacking the lithium aluminum oxide thin film and the tantalum oxide thin film is 2-20, preferably 3-15, more preferably 3-5. The total thickness of the solid ion conducting layer is 100nm-1000nm, preferably 200nm-600nm.
在可选的实施方式中,固态离子传导层(多层膜固态离子传导层)中的锂铝氧化物薄膜使用铝锂合金靶材通过反应性磁控溅射方式制备,铝锂合金靶材为具有AlLix(0.4≤x≤1.2,例如,x可≈1)组成的固溶体,或Al2Li3晶相,或Al4Li9晶相中的任何一种或两种以上混合物。所述锂铝氧化物薄膜制备参数为:本底真空1×10-5~5×10-3Pa,基底温度为 20℃~200℃,镀膜时间为1~60min,工作气氛为含氧气和氩气气氛,工作气压为0.5~ 5Pa,溅射功率密度为1~10W/cm2。应注意,只要能获得所定厚度所定质量的锂铝氧化物薄膜,其沉积方式不应有所限制。In an optional embodiment, the lithium-aluminum oxide film in the solid-state ion-conducting layer (multilayer film solid-state ion-conducting layer) is prepared by reactive magnetron sputtering using an aluminum-lithium alloy target, and the aluminum-lithium alloy target is A solid solution with a composition of AlLi x (0.4≤x≤1.2, for example, x can be ≈1), or an Al 2 Li 3 crystal phase, or any one or a mixture of two or more of the Al 4 Li 9 crystal phases. The preparation parameters of the lithium aluminum oxide thin film are: the background vacuum is 1×10 -5 to 5×10 -3 Pa, the substrate temperature is 20°C to 200°C, the coating time is 1 to 60min, and the working atmosphere is oxygen and argon. gas atmosphere, the working pressure is 0.5-5Pa, and the sputtering power density is 1-10W/cm 2 . It should be noted that as long as a lithium aluminum oxide thin film with a given thickness and a given quality can be obtained, the deposition method should not be limited.
在可选的实施方式中,所述氧化钽薄膜使用金属钽靶材通过反应性磁控溅射方式制备,其制备参数为:本底真空1×10-5~5×10-3Pa,基底温度为20℃~200℃,镀膜时间为1~60min,工作气氛为含氧气和氩气气氛,工作气压为0.5~5Pa,溅射功率密度为1~ 10W/cm2。应注意,只要能获得所定厚度所定质量的氧化钽薄膜,其沉积方式不应有所限制。In an optional embodiment, the tantalum oxide thin film is prepared by reactive magnetron sputtering using a metal tantalum target, and its preparation parameters are: background vacuum 1×10 -5 ~5×10 -3 Pa, substrate The temperature is 20°C-200°C, the coating time is 1-60min, the working atmosphere is an atmosphere containing oxygen and argon, the working pressure is 0.5-5Pa, and the sputtering power density is 1-10W/cm 2 . It should be noted that as long as a tantalum oxide thin film with a given thickness and a given quality can be obtained, its deposition method should not be limited.
本公开中,由于多层膜增透原理,锂铝氧化物/氧化钽多层膜固态离子传导层可见光透过率高于同样厚度的锂铝氧化物单层膜或氧化钽单层膜所构成的固态离子传导层。例如,仅以一层氧化钽薄膜夹在两层锂铝氧化物薄膜(如锂铝氧化物)之间形成的离子传导多层膜,其光学性能已超过同样厚度的各自的单层膜。并且,由于同时也使用了性能优异的氧化钽薄膜,结构具有良好的稳定性和耐久性。再有,两者均可采用金属靶材溅射形成,效率高,成本低。In this disclosure, due to the anti-reflection principle of the multilayer film, the visible light transmittance of the solid ion conduction layer of the lithium aluminum oxide/tantalum oxide multilayer film is higher than that of the lithium aluminum oxide single layer film or the tantalum oxide single layer film of the same thickness. solid-state ion-conducting layer. For example, the optical performance of an ion-conducting multilayer film formed by sandwiching only one layer of tantalum oxide film between two layers of lithium aluminum oxide film (such as lithium aluminum oxide) has exceeded the respective single-layer films of the same thickness. Moreover, since the tantalum oxide film with excellent performance is also used at the same time, the structure has good stability and durability. Furthermore, both of them can be formed by sputtering a metal target, which has high efficiency and low cost.
在本公开中,离子传导层的有益效果:1)光学性能最佳;2)可使用金属靶材实现直流或中频电源的磁控溅射,靶材易于制备,生产效率高;3)具有足够的离离子浓度,而无需另外附加通电锂化等复杂工艺;4)组成和结构分布均匀。In the present disclosure, the beneficial effects of the ion conducting layer: 1) the optical performance is the best; 2) the metal target can be used to realize the magnetron sputtering of DC or intermediate frequency power supply, the target is easy to prepare, and the production efficiency is high; 3) it has sufficient The concentration of ion ions is high, without additional complex processes such as electrified lithiation; 4) The composition and structure are evenly distributed.
在本发明一实施方式中,利用固态离子传导层构成固态电致变色器件,其结构如图1 所示。该固态电致变色器件制作特点是:选择透明基板(例如,玻璃,有机玻璃等),并依次形成一定厚度的第一透明导电层(ITO、AZO、FTO,ATO等),第一电致变色层(例如,氧化镍膜),固态离子传导层(锂铝氧化物/氧化钽多层膜),第二电致变色层(例如,氧化钨膜),第二透明导电层(ITO导电薄膜、AZO、FTO,ATO等),和保护层(例如、氮化硅、氧化硅,氮氧化硅,氮氧化硅铝等),上述膜层构成完整的固态电致变色器件。在可选的实施方式中,第一电致变色层的厚度可为100~500nm,第二电致变色层的厚度可为 200~600nm,第一和第二透明导电层的厚度可为50-500nm,保护层厚度为50-500nm。In one embodiment of the present invention, a solid-state electrochromic device is formed by using a solid-state ion-conducting layer, and its structure is shown in FIG. 1 . The manufacturing feature of the solid-state electrochromic device is: select a transparent substrate (for example, glass, plexiglass, etc.), and sequentially form a certain thickness of the first transparent conductive layer (ITO, AZO, FTO, ATO, etc.), the first electrochromic layer (for example, nickel oxide film), solid ion conduction layer (lithium aluminum oxide/tantalum oxide multilayer film), second electrochromic layer (for example, tungsten oxide film), second transparent conductive layer (ITO conductive film, AZO, FTO, ATO, etc.), and protective layers (for example, silicon nitride, silicon oxide, silicon oxynitride, silicon aluminum oxynitride, etc.), the above film layers constitute a complete solid-state electrochromic device. In an optional embodiment, the thickness of the first electrochromic layer may be 100-500 nm, the thickness of the second electrochromic layer may be 200-600 nm, and the thickness of the first and second transparent conductive layers may be 50-50 nm. 500nm, the thickness of the protective layer is 50-500nm.
上述结构是本发明中固态电致变色器件的一个示例。当然,根据需要可以改变部分膜层顺序,如将氧化钨膜和氧化镍膜位置调换。也可根据需要增加部分介质膜,等等。只要在固态电致变色器件中包含本发明所规定的多层膜结构的离子传导层,其他组合不应有任何限制。此外,也可以将固态电致变色器件结构中的透明导电层中的一层换成反射型导电金属,如银,铬或其合金,使器件成为具有反射率变化的电致变色器件。应注意,固态电致变色器件中各个膜层厚度根据需要可进行调节,且只要能获得所定厚度和所定质量的各个膜层,其沉积方式可参照锂铝氧化物薄膜进行制备,或对于其他制备方式不应有所限制。The above structure is an example of a solid-state electrochromic device in the present invention. Of course, part of the film layer sequence can be changed according to needs, such as changing the positions of the tungsten oxide film and the nickel oxide film. Part of the dielectric film can also be added as needed, and so on. As long as the ion-conducting layer of the multilayer film structure specified in the present invention is included in the solid-state electrochromic device, other combinations should not be limited in any way. In addition, one layer of the transparent conductive layer in the structure of the solid-state electrochromic device can also be replaced with a reflective conductive metal, such as silver, chromium or their alloys, so that the device becomes an electrochromic device with reflectivity change. It should be noted that the thickness of each film layer in a solid-state electrochromic device can be adjusted as needed, and as long as each film layer of a given thickness and a given quality can be obtained, its deposition method can be prepared with reference to a lithium aluminum oxide thin film, or for other preparations The method should not be limited.
在本公开中,具有特殊多层膜结构的固态离子传导层,其光学性能极其优异、材料成本低,镀膜工艺简单,速率快,所形成的固态电致变色器件性能良好,适合大规模工业生产。本发明的产品可广泛应用于汽车,列车,船舶,飞行器以及建筑行业的节能玻璃以及显示屏等领域。In the present disclosure, the solid-state ion-conducting layer with a special multilayer film structure has excellent optical properties, low material cost, simple coating process and fast rate, and the formed solid-state electrochromic device has good performance and is suitable for large-scale industrial production . The product of the invention can be widely used in fields such as automobiles, trains, ships, aircrafts and energy-saving glass and display screens in construction industries.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Examples are given below to describe the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention all belong to the present invention scope of protection. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.
实施例1Example 1
本实施例1中,首先就多层膜离子传导层的光学性能进行了理论和实践两方面的验证,主要工作包括以下步骤:In this embodiment 1, at first the optical properties of the multilayer film ion conducting layer are verified both theoretically and practically, and the main work includes the following steps:
1)选择具有离子传导特性的锂铝氧化物和氧化钽作为主要研究对象。利用反应性磁控溅射法分别在玻璃和单晶硅衬底上制备出所需厚度的氧化钽单层薄膜(Ta2O5,厚度为100-200nm)和锂铝氧化物单层薄膜(LiAlxOy,厚度为100~200nm)。其中,氧化钽单层薄膜使用金属钽靶材,锂铝氧化物单层薄膜使用铝锂合金靶材,通过反应性直流磁控溅射制备而成。所述直流磁控溅射的工艺参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为2Pa,溅射功率密度为1~1.25W/cm2,镀膜时间为10~ 30min;1) Lithium aluminum oxide and tantalum oxide with ion-conducting properties are selected as the main research objects. Tantalum oxide monolayer film (Ta 2 O 5 , thickness 100-200nm) and lithium aluminum oxide monolayer film ( LiAl x O y , with a thickness of 100-200 nm). Among them, the tantalum oxide single-layer film uses a metal tantalum target, and the lithium-aluminum oxide single-layer film uses an aluminum-lithium alloy target, and is prepared by reactive DC magnetron sputtering. The process parameters of the DC magnetron sputtering include: a background vacuum of 1×10 -4 Pa, a substrate temperature of room temperature, a working atmosphere containing oxygen and argon, a working pressure of 2 Pa, and a sputtering power density of 1 to 1.25W /cm 2 , the coating time is 10~30min;
2)通利用椭偏仪对上述薄膜在可见光领域的光学常数(折射率)进行了测定。测定结果表明,锂铝氧化物和氧化钽的折射率具有较大差异,分别为n=1.615和n=2.126,根据多层膜干涉理论,充分具备了高低折射率交替多层膜增透条件;2) The optical constant (refractive index) of the above thin film in the visible light region was measured by using an ellipsometer. The measurement results show that the refractive index of lithium aluminum oxide and tantalum oxide has a large difference, which are n=1.615 and n=2.126 respectively. According to the multilayer film interference theory, it fully meets the anti-reflection conditions of alternating high and low refractive index multilayer films;
3)利用光学软件对具有多层(三层)膜“锂铝氧化物/氧化钽/锂铝氧化物/玻璃衬底”结构,以可见光透过率为目标,通过改变多层膜中各膜层的厚度进行了结构的优化设计,遴选出其中的最佳膜层结构;3) Use optical software to analyze the structure of "lithium aluminum oxide/tantalum oxide/lithium aluminum oxide/glass substrate" with a multilayer (three-layer) film, aiming at the visible light transmittance, by changing each film in the multilayer film The thickness of the layer is optimized for the structure, and the best film structure is selected;
4)利用磁控溅射方式制备出所述优化结构,并对其光学性能进行了评价和验证。4) The optimized structure was prepared by magnetron sputtering, and its optical properties were evaluated and verified.
首先利用所测光学常数,利用光学软件对结构进行了优化设计。图2显示了其中一例即具有“锂铝氧化物(厚度t1)/氧化钽(50nm)/锂铝氧化物(厚度t2)/玻璃衬底”多层膜离子传导层结构的可见光透过率与各膜层厚度的关系。当t1=t2=0即只有氧化钽单层膜时,可见光透过率非常低(图2中横向箭头所示);而当引入上下两层锂铝氧化物薄膜后,可见光透过率呈波浪式上升,并在一定条件下达到最大值(如图中纵向箭头所示)。理论计算充分显示了本发明的优越性和可行性。Firstly, the optical constants were used to optimize the design of the structure using optical software. Figure 2 shows one example of the visible light transmittance vs. The relationship between the thickness of each film layer. When t1=t2=0, that is, only a single layer of tantalum oxide, the visible light transmittance is very low (shown by the horizontal arrow in Figure 2); and when the upper and lower layers of lithium aluminum oxide films are introduced, the visible light transmittance is wavy rises and reaches the maximum value under certain conditions (as shown by the vertical arrow in the figure). Theoretical calculation fully demonstrates the superiority and feasibility of the present invention.
考虑器件中离子传导层的实际使用厚度范围进一步进行了结构设计与优化计算。图3 显示了具有“锂铝氧化物(LAO:80~120nm)/氧化钽(TO:160~200nm)/锂铝氧化物(LAO:80~120nm)/玻璃衬底(G)”优化多层膜结构之一的可见光透过光谱,并与具有同样总厚度的锂铝氧化物单独薄膜和氧化钽单独薄膜的透过率曲线进行了比较。图中可见,交替多层膜的可见光透过率曲线高于其他两类薄膜,其可见光透过率积分值(98.4%)远高于同样厚度的锂铝氧化物(94.3%)和氧化钽(90.2%)单层薄膜。Considering the actual thickness range of the ion-conducting layer in the device, the structure design and optimization calculation were further carried out. Figure 3 shows the optimized multilayer with "lithium aluminum oxide (LAO: 80 ~ 120nm) / tantalum oxide (TO: 160 ~ 200nm) / lithium aluminum oxide (LAO: 80 ~ 120nm) / glass substrate (G)" The visible light transmission spectrum of one of the film structures was compared with the transmittance curves of the lithium aluminum oxide thin film alone and the tantalum oxide thin film alone with the same total thickness. It can be seen from the figure that the visible light transmittance curve of the alternating multilayer film is higher than that of the other two types of films, and its integrated value of visible light transmittance (98.4%) is much higher than that of lithium aluminum oxide (94.3%) and tantalum oxide ( 90.2%) monolayer film.
上述计算表明,采用具有高低折射率值的氧化钽/锂铝氧化物交替多层膜结构,在仅使用简单的三层膜结构的情况下,其可见光透过率已经远高于具有同样厚度的氧化钽或锂铝氧化物单独薄膜。这样,本发明从理论与结构优化实验上展示了多层膜离子传导层在可见光透过率性能方面的巨大优越性。显然,采用可见光透过率较高的离子传导层直接导致电致变色器件具有较高的可见光透过性,作为建筑节能窗的应用性获得提升。并且,由于氧化钽或锂铝氧化物均可以使用金属靶材(金属钽或铝锂合金靶材)利用直流或中频磁控溅射方式制备,效率高易于大型化,适宜大规模器件生产工艺。另外,通过调节铝锂合金成分比以及增加膜层数量等方法,可以直接获得含有所定锂离子浓度的均匀离子传导层结构。The above calculations show that the visible light transmittance of tantalum oxide/lithium aluminum oxide alternating multi-layer film structure with high and low refractive index values is much higher than that of a film with the same thickness when only a simple three-layer film structure is used. Thin films of tantalum oxide or lithium aluminum oxide alone. In this way, the present invention demonstrates the great superiority of the multi-layer ion conducting layer in terms of visible light transmittance performance from the theory and structure optimization experiments. Obviously, the use of an ion-conducting layer with a higher visible light transmittance directly leads to a higher visible light transmittance of the electrochromic device, and the applicability as a building energy-saving window is improved. Moreover, since tantalum oxide or lithium aluminum oxide can be prepared by using a metal target (metal tantalum or aluminum-lithium alloy target) by DC or intermediate frequency magnetron sputtering, it has high efficiency and is easy to scale up, and is suitable for large-scale device production processes. In addition, by adjusting the composition ratio of aluminum-lithium alloy and increasing the number of film layers, a uniform ion-conducting layer structure containing a predetermined concentration of lithium ions can be directly obtained.
以下将对优化设计结果进行试验验证。参照上述氧化钽和锂铝氧化物薄膜的制备参数,在玻璃衬底上制备了多层膜的固态离子传导层(“锂铝氧化物(LiAlxOy:80~120nm)/氧化钽(Ta2O5:160~200nm)/锂铝氧化物(LiAlxOy:80~120nm)/玻璃衬底(G)”),测定了其可见光透过率积分值,并与同样总厚度的氧化钽和锂铝氧化物单层膜进行了比较,结果如表1所示:The experimental verification of the optimized design results will be carried out in the following. Referring to the preparation parameters of the above-mentioned tantalum oxide and lithium aluminum oxide thin films, a solid-state ion-conducting layer of a multilayer film ("lithium aluminum oxide (LiAl x O y : 80-120nm)/tantalum oxide (Ta 2 O 5 :160~200nm)/lithium aluminum oxide (LiAl x O y :80~120nm)/glass substrate (G)"), the integral value of visible light transmittance was measured, and compared with the oxide with the same total thickness Tantalum and lithium aluminum oxide monolayer films were compared and the results are shown in Table 1:
表1:Table 1:
实际镀膜实验结果证明,本发明多层膜结构相对单层膜而言具有更高的可见光透过率,本实验其中一个结构达到了94.1%的最大值。当然,由于膜厚控制精度的影响,实验结果与理论优化计算尚有一定差距,但也同时展示了性能的进一步提升空间。The actual coating experiment results prove that the multilayer film structure of the present invention has a higher visible light transmittance than the single layer film, and one of the structures in this experiment reached the maximum value of 94.1%. Of course, due to the influence of film thickness control accuracy, there is still a certain gap between the experimental results and the theoretical optimization calculation, but it also shows the room for further improvement in performance.
实施例2Example 2
实施例2对具有本发明离子传导层结构的全固态电致变色器件的制备过程做详细说明:Embodiment 2 explains in detail the preparation process of the all-solid-state electrochromic device with the ion-conducting layer structure of the present invention:
器件制备在小型磁控溅射仪(4靶位,φ4英寸靶材,旋转基板)上进行;Device preparation is carried out on a small magnetron sputtering apparatus (4 target positions, φ4 inch target material, rotating substrate);
选择玻璃基板,经清洗后放入磁控溅射设备;Select the glass substrate, put it into the magnetron sputtering equipment after cleaning;
在惰性气氛中磁控溅射ITO导电靶材,制备第一透明导电层(厚度为120nm),所述制备参数包括:本底真空1×10-4Pa,基底温度200℃,工作气氛为氩气,工作气压为1Pa,溅射功率密度为1.25W/cm2,镀膜时间为10~30min;Magnetron sputtering ITO conductive target material in an inert atmosphere to prepare the first transparent conductive layer (thickness is 120nm), the preparation parameters include: background vacuum 1×10 -4 Pa, substrate temperature 200°C, working atmosphere is argon Gas, the working pressure is 1Pa, the sputtering power density is 1.25W/cm 2 , and the coating time is 10-30min;
采用金属镍靶,在含氧气气氛中通过反应性磁控溅射方法制备第1电致变色层(厚度为100nm),所述制备参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm2,镀膜时间为10~30min;The first electrochromic layer (with a thickness of 100 nm) was prepared by reactive magnetron sputtering in an oxygen-containing atmosphere using a nickel metal target. The preparation parameters included: background vacuum 1×10 -4 Pa, substrate temperature of At room temperature, the working atmosphere is oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W/cm 2 , and the coating time is 10-30min;
采用LiAlx合金靶,在含氧气气氛中通过反应性磁控溅射方式制备离子传导层中的第一层锂铝氧化物薄膜(厚度为100nm,LiAlxOy,x=0.5~0.8,y=1.8~2.2),所述制备参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm2,镀膜时间为10~30min;Using a LiAl x alloy target, the first layer of lithium aluminum oxide film (thickness is 100nm, LiAl x O y , x=0.5~0.8, y =1.8~2.2), the preparation parameters include: the background vacuum is 1×10 -4 Pa, the substrate temperature is room temperature, the working atmosphere is oxygen and argon, the working pressure is 3Pa, and the sputtering power density is 2W/cm 2 , coating time is 10~30min;
采用金属钽靶,在含氧气气氛中通过反应性磁控溅射方法制备氧化钽薄膜(厚度为160nm),所述制备参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm2,镀膜时间为10~30min;Using a metal tantalum target, a tantalum oxide film (160nm in thickness) was prepared by reactive magnetron sputtering in an oxygen-containing atmosphere. The preparation parameters include: background vacuum 1×10 -4 Pa, substrate temperature at room temperature, working The atmosphere is oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W/cm 2 , and the coating time is 10-30min;
在制备具有氧化钽单独离子传导层结构的电致变色器件时,为了导入锂离子,采用了钽酸锂 (LiTaO3)靶材并通过射频磁控溅射制备,其他参数与上述同样。When preparing an electrochromic device with a single ion-conducting layer structure of tantalum oxide, in order to introduce lithium ions, a lithium tantalate (LiTaO 3 ) target was used and prepared by radio frequency magnetron sputtering, and other parameters were the same as above.
制备厚度为100nm的第二层锂铝氧化物薄膜(LiAlxOy,x=0.5~0.8,y=1.8~2.2),条件与第一层锂铝氧化物薄膜制备同样;Prepare a second layer of lithium aluminum oxide film (LiAl x O y , x=0.5-0.8, y=1.8-2.2) with a thickness of 100nm, under the same conditions as the preparation of the first layer of lithium aluminum oxide film;
采用W金属靶,在含氧气气氛中通过反应性磁控溅射方式制备第二电致变色层(厚度为450nm),所述制备参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气和氩气,工作气压为3Pa,溅射功率密度为2W/cm2,镀膜时间为10~30min;Using a W metal target, the second electrochromic layer (with a thickness of 450 nm) was prepared by reactive magnetron sputtering in an oxygen-containing atmosphere. The preparation parameters include: background vacuum 1×10 -4 Pa, substrate temperature of At room temperature, the working atmosphere is oxygen and argon, the working pressure is 3Pa, the sputtering power density is 2W/cm 2 , and the coating time is 10-30min;
取出上述样品,放入另一磁控溅射仪,采用SiAlm合金靶,在含氧气氮气气氛中通过反应性磁控溅射方式制备SiAlNmOn保护层(厚度为50~200nm),所述制备参数包括:本底真空1×10-4Pa,基底温度为室温,工作气氛为含氧气、氮气和氩气,工作气压为1Pa,溅射功率密度为2W/cm2,镀膜时间为10~30min;The above samples were taken out and put into another magnetron sputtering apparatus, and a SiAlN m O n protective layer (with a thickness of 50-200 nm) was prepared by reactive magnetron sputtering in an atmosphere containing oxygen and nitrogen using a SiAl m alloy target. The above preparation parameters include: the background vacuum is 1×10 -4 Pa, the substrate temperature is room temperature, the working atmosphere is oxygen, nitrogen and argon, the working pressure is 1Pa, the sputtering power density is 2W/cm 2 , and the coating time is 10 ~30min;
经上述步骤获得全固体电致变色器件多层膜结构。The multilayer film structure of the all-solid electrochromic device is obtained through the above steps.
利用电极连接全固态电致变色器件中第一透明导电层和第二透明导电层)并加以电压,测试正反向电压印加后的器件着色-消色透射率光谱,积分求出透光率和调节率。与单层Ta2O5(使用钽酸锂靶材)及单层LiAlxOy离子传导层相比较,结果由表2所示:Use electrodes to connect the first transparent conductive layer and the second transparent conductive layer in the all-solid-state electrochromic device) and apply voltage, test the coloring-achromatic transmittance spectrum of the device after the forward and reverse voltages are applied, and integrally calculate the light transmittance and adjustment rate. Compared with single-layer Ta 2 O 5 (using lithium tantalate target) and single-layer LiAl x O y ion-conducting layer, the results are shown in Table 2:
表2:Table 2:
实验结果表明,使用本发明特殊多层膜固态离子传导层结构的电致变色器件,比使用单层膜固态离子传导层结构的电致变色器件,在可见光透过率的提升和调光率的增大方面具有极大的优越性。Experimental results show that the electrochromic device using the special multilayer film solid ion conduction layer structure of the present invention, compared with the electrochromic device using the single layer film solid ion conduction layer structure, has higher visible light transmittance and lower dimming rate. There are great advantages in terms of enlargement.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810535285.7A CN108761949B (en) | 2018-05-29 | 2018-05-29 | A solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer |
PCT/CN2019/088562 WO2019228303A1 (en) | 2018-05-29 | 2019-05-27 | Solid-state ionic conduction layer and solid-state electrochromic device having solid-state ionic conduction layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810535285.7A CN108761949B (en) | 2018-05-29 | 2018-05-29 | A solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108761949A true CN108761949A (en) | 2018-11-06 |
CN108761949B CN108761949B (en) | 2020-11-10 |
Family
ID=64003840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810535285.7A Active CN108761949B (en) | 2018-05-29 | 2018-05-29 | A solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108761949B (en) |
WO (1) | WO2019228303A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109782506A (en) * | 2019-01-10 | 2019-05-21 | 上海理工大学 | A kind of optically-variable glass and optically-variable suspension display device |
WO2019228303A1 (en) * | 2018-05-29 | 2019-12-05 | 中国科学院上海硅酸盐研究所 | Solid-state ionic conduction layer and solid-state electrochromic device having solid-state ionic conduction layer |
CN112631034A (en) * | 2019-10-09 | 2021-04-09 | 中国科学院上海硅酸盐研究所 | All-solid-state electrochromic device and preparation method thereof |
CN112731691A (en) * | 2020-12-29 | 2021-04-30 | 中国科学院上海硅酸盐研究所 | Dual-response composite film based on dual-ion cooperative regulation and control and preparation method thereof |
CN112764286A (en) * | 2021-01-29 | 2021-05-07 | 哈尔滨工业大学 | Thermal control device for intelligently regulating infrared emissivity and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235540A (en) * | 2007-11-09 | 2008-08-06 | 中国科学院上海光学精密机械研究所 | Method for preparing aluminum nitride film at low temperature on the surface of lithium aluminate wafer |
US20120176660A1 (en) * | 2011-01-10 | 2012-07-12 | National Cheng Kung University | Electrochromic device and storage device and manufacturing method thereof |
CN107710453A (en) * | 2015-06-05 | 2018-02-16 | 应用材料公司 | Battery separator with dielectric coat |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7808693B2 (en) * | 2007-06-07 | 2010-10-05 | Soladigm, Inc. | Electrochromic devices and fabrication methods |
US7961375B2 (en) * | 2008-06-25 | 2011-06-14 | Soladigm, Inc. | Multi-cell solid-state electrochromic device |
JP2010014917A (en) * | 2008-07-03 | 2010-01-21 | Bridgestone Corp | Electrochromic element and method for manufacturing the same |
CN107085339B (en) * | 2017-03-01 | 2020-02-14 | 江苏繁华玻璃股份有限公司 | Preparation method of all-solid-state electrochromic device |
CN107015412A (en) * | 2017-04-13 | 2017-08-04 | 吉晟光电(深圳)有限公司 | A kind of structure and preparation method of the full film electrochromic device of solid-state |
CN108761949B (en) * | 2018-05-29 | 2020-11-10 | 中国科学院上海硅酸盐研究所 | A solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer |
-
2018
- 2018-05-29 CN CN201810535285.7A patent/CN108761949B/en active Active
-
2019
- 2019-05-27 WO PCT/CN2019/088562 patent/WO2019228303A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235540A (en) * | 2007-11-09 | 2008-08-06 | 中国科学院上海光学精密机械研究所 | Method for preparing aluminum nitride film at low temperature on the surface of lithium aluminate wafer |
US20120176660A1 (en) * | 2011-01-10 | 2012-07-12 | National Cheng Kung University | Electrochromic device and storage device and manufacturing method thereof |
CN107710453A (en) * | 2015-06-05 | 2018-02-16 | 应用材料公司 | Battery separator with dielectric coat |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019228303A1 (en) * | 2018-05-29 | 2019-12-05 | 中国科学院上海硅酸盐研究所 | Solid-state ionic conduction layer and solid-state electrochromic device having solid-state ionic conduction layer |
CN109782506A (en) * | 2019-01-10 | 2019-05-21 | 上海理工大学 | A kind of optically-variable glass and optically-variable suspension display device |
CN109782506B (en) * | 2019-01-10 | 2021-08-03 | 上海理工大学 | Optically variable glass and optically variable suspension display device |
CN112631034A (en) * | 2019-10-09 | 2021-04-09 | 中国科学院上海硅酸盐研究所 | All-solid-state electrochromic device and preparation method thereof |
CN112731691A (en) * | 2020-12-29 | 2021-04-30 | 中国科学院上海硅酸盐研究所 | Dual-response composite film based on dual-ion cooperative regulation and control and preparation method thereof |
CN112764286A (en) * | 2021-01-29 | 2021-05-07 | 哈尔滨工业大学 | Thermal control device for intelligently regulating infrared emissivity and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108761949B (en) | 2020-11-10 |
WO2019228303A1 (en) | 2019-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108761949B (en) | A solid-state ion-conducting layer and a solid-state electrochromic device containing the solid-state ion-conducting layer | |
CN103771724B (en) | Full solid thin film electrochomeric glass and preparation method thereof | |
CN110032018B (en) | Aluminum-lithium alloy solid-state ion-conducting layer and preparation method thereof, and electrochromic device | |
KR102755062B1 (en) | Counter electrode for electrochromic devices | |
CN107085339B (en) | Preparation method of all-solid-state electrochromic device | |
RU2711523C2 (en) | Counter electrode for electrochromic devices | |
CN112456813B (en) | Nickel oxide electrochromic film and preparation method and application thereof | |
CN110764331B (en) | An ultra-fast response, anti-overcharge-induced color device and preparation method thereof | |
CN108254989B (en) | All-solid-state electrochromic window, solid-state electrochromic mirror and preparation method of all-solid-state electrochromic window and solid-state electrochromic mirror | |
CN202953940U (en) | All-solid film electrochromic glass | |
CN111596496A (en) | Visible-infrared independently-controlled electrochromic device | |
CN110045558B (en) | Lithium aluminate solid ion conducting layer, preparation method thereof and all-solid-state electrochromic device | |
CN208351218U (en) | A kind of solid ionic conducting shell and the solid-state electrochromic device containing the solid ionic conducting shell | |
CN109298579A (en) | A kind of all-solid-state electrochromic device and preparation method thereof | |
CN112731691A (en) | Dual-response composite film based on dual-ion cooperative regulation and control and preparation method thereof | |
CN108803183A (en) | A kind of bilayer full-inorganic electrochromic device and preparation method thereof | |
CN111045268B (en) | All-solid-state electrochromic device with fluoride as electrolyte layer and preparation method thereof | |
CN205643982U (en) | Electrochromic device including metal lines | |
CN114563896A (en) | A kind of multi-color inorganic all-solid-state electrochromic device and preparation method thereof | |
CN107045243A (en) | Electrochromic structure and forming method thereof | |
CN107045242A (en) | Electrochromic structure and forming method thereof | |
CN107315298A (en) | A kind of brown electrochromism charge storage electrode and preparation method | |
TWI495944B (en) | Electrochromic composite film and applying the same | |
US11500257B2 (en) | Inorganic solid-state electrochromic module containing inorganic transparent conductive film | |
CN220305598U (en) | All-solid-state electrochromic glass and all-solid-state electrochromic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |