CN106407931B - 一种深度卷积神经网络运动车辆检测方法 - Google Patents
一种深度卷积神经网络运动车辆检测方法 Download PDFInfo
- Publication number
- CN106407931B CN106407931B CN201610828673.5A CN201610828673A CN106407931B CN 106407931 B CN106407931 B CN 106407931B CN 201610828673 A CN201610828673 A CN 201610828673A CN 106407931 B CN106407931 B CN 106407931B
- Authority
- CN
- China
- Prior art keywords
- layer
- neural network
- vehicle
- convolutional
- convolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 55
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 29
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 18
- 238000013528 artificial neural network Methods 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 16
- 210000002569 neuron Anatomy 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 13
- 238000010586 diagram Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 9
- 238000012795 verification Methods 0.000 claims description 9
- 239000013598 vector Substances 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- JGSMCYNBVCGIHC-QPEQYQDCSA-N (3z)-3-[(4-hydroxyphenyl)methylidene]-5,6-dimethoxy-1h-indol-2-one Chemical compound C1=2C=C(OC)C(OC)=CC=2NC(=O)\C1=C/C1=CC=C(O)C=C1 JGSMCYNBVCGIHC-QPEQYQDCSA-N 0.000 claims 1
- 230000006698 induction Effects 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 230000003313 weakening effect Effects 0.000 claims 1
- 206010039203 Road traffic accident Diseases 0.000 abstract description 4
- 230000000505 pernicious effect Effects 0.000 abstract 1
- 238000011161 development Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610828673.5A CN106407931B (zh) | 2016-09-19 | 2016-09-19 | 一种深度卷积神经网络运动车辆检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610828673.5A CN106407931B (zh) | 2016-09-19 | 2016-09-19 | 一种深度卷积神经网络运动车辆检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106407931A CN106407931A (zh) | 2017-02-15 |
CN106407931B true CN106407931B (zh) | 2019-11-22 |
Family
ID=57996553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610828673.5A Active CN106407931B (zh) | 2016-09-19 | 2016-09-19 | 一种深度卷积神经网络运动车辆检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106407931B (zh) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106846278A (zh) * | 2017-02-17 | 2017-06-13 | 深圳市唯特视科技有限公司 | 一种基于深度卷积神经网络的图像像素标记方法 |
CN108538051A (zh) * | 2017-03-03 | 2018-09-14 | 防城港市港口区思达电子科技有限公司 | 一种夜间运动车辆检测方法 |
US11308391B2 (en) * | 2017-03-06 | 2022-04-19 | Baidu Usa Llc | Offline combination of convolutional/deconvolutional and batch-norm layers of convolutional neural network models for autonomous driving vehicles |
CN106934378B (zh) * | 2017-03-16 | 2020-04-24 | 山东建筑大学 | 一种基于视频深度学习的汽车远光灯识别系统及方法 |
CN107203134B (zh) * | 2017-06-02 | 2020-08-18 | 浙江零跑科技有限公司 | 一种基于深度卷积神经网络的前车跟随方法 |
CN107292340A (zh) * | 2017-06-19 | 2017-10-24 | 南京农业大学 | 基于卷积神经网络的侧线鳞识别方法 |
CN107292319A (zh) * | 2017-08-04 | 2017-10-24 | 广东工业大学 | 一种基于可变形卷积层的特征图像提取的方法及装置 |
US10520940B2 (en) * | 2017-08-14 | 2019-12-31 | GM Global Technology Operations LLC | Autonomous operation using deep spatio-temporal learning |
CN107516110B (zh) * | 2017-08-22 | 2020-02-18 | 华南理工大学 | 一种基于集成卷积编码的医疗问答语义聚类方法 |
US9947228B1 (en) * | 2017-10-05 | 2018-04-17 | StradVision, Inc. | Method for monitoring blind spot of vehicle and blind spot monitor using the same |
CN107578453B (zh) * | 2017-10-18 | 2019-11-01 | 北京旷视科技有限公司 | 压缩图像处理方法、装置、电子设备及计算机可读介质 |
CN108169745A (zh) * | 2017-12-18 | 2018-06-15 | 电子科技大学 | 一种基于卷积神经网络的钻孔雷达目标识别方法 |
CN108495132B (zh) * | 2018-02-05 | 2019-10-11 | 西安电子科技大学 | 基于轻量级深度卷积网络的遥感影像大倍率压缩方法 |
US11282389B2 (en) | 2018-02-20 | 2022-03-22 | Nortek Security & Control Llc | Pedestrian detection for vehicle driving assistance |
CN108492575A (zh) * | 2018-04-11 | 2018-09-04 | 济南浪潮高新科技投资发展有限公司 | 一种智能车辆型号识别方法 |
CN108725440B (zh) | 2018-04-20 | 2020-11-27 | 深圳市商汤科技有限公司 | 前向碰撞控制方法和装置、电子设备、程序和介质 |
CN108805866B (zh) * | 2018-05-23 | 2022-03-25 | 兰州理工大学 | 基于四元数小波变换深度视感知的图像注视点检测方法 |
US11199839B2 (en) * | 2018-07-23 | 2021-12-14 | Hrl Laboratories, Llc | Method of real time vehicle recognition with neuromorphic computing network for autonomous driving |
CN110148170A (zh) * | 2018-08-31 | 2019-08-20 | 北京初速度科技有限公司 | 一种应用于车辆定位的定位初始化方法及车载终端 |
CN110874632B (zh) * | 2018-08-31 | 2024-05-03 | 嘉楠明芯(北京)科技有限公司 | 图像识别处理方法和装置 |
US10474930B1 (en) * | 2018-10-05 | 2019-11-12 | StradVision, Inc. | Learning method and testing method for monitoring blind spot of vehicle, and learning device and testing device using the same |
CN111144560B (zh) * | 2018-11-05 | 2024-02-02 | 杭州海康威视数字技术股份有限公司 | 一种深度神经网络运算方法及装置 |
TWI698811B (zh) * | 2019-03-28 | 2020-07-11 | 國立交通大學 | 多路徑卷積神經網路偵測方法及系統 |
CN110313894A (zh) * | 2019-04-15 | 2019-10-11 | 四川大学 | 基于卷积神经网络的心率失常分类算法 |
CN110287786B (zh) * | 2019-05-20 | 2020-01-31 | 特斯联(北京)科技有限公司 | 基于人工智能防干扰的车辆信息识别方法及装置 |
CN110286677B (zh) * | 2019-06-13 | 2021-03-16 | 北京理工大学 | 一种用于数据采集的无人车控制方法和系统 |
CN110321961A (zh) * | 2019-07-09 | 2019-10-11 | 北京金山数字娱乐科技有限公司 | 一种数据处理方法及装置 |
EP4001041A1 (en) * | 2020-11-16 | 2022-05-25 | Aptiv Technologies Limited | Methods and systems for determining a maneuver to be executed by an autonomous vehicle |
CN112464910B (zh) * | 2020-12-18 | 2024-09-27 | 杭州电子科技大学 | 一种基于YOLO v4-tiny的交通标志识别方法 |
CN114200937B (zh) * | 2021-12-10 | 2023-07-14 | 新疆工程学院 | 一种基于gps定位和5g技术的无人驾驶控制方法 |
CN114995401B (zh) * | 2022-05-18 | 2024-06-07 | 广西科技大学 | 一种基于视觉和cnn的小车自动驾驶方法 |
CN116363462B (zh) * | 2023-06-01 | 2023-08-22 | 合肥市正茂科技有限公司 | 一种路桥过车检测模型的训练方法、系统、设备及介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279759A (zh) * | 2013-06-09 | 2013-09-04 | 大连理工大学 | 一种基于卷积神经网络的车辆前方可通行性分析方法 |
CN104036323A (zh) * | 2014-06-26 | 2014-09-10 | 叶茂 | 一种基于卷积神经网络的车辆检测方法 |
CN105654067A (zh) * | 2016-02-02 | 2016-06-08 | 北京格灵深瞳信息技术有限公司 | 一种车辆检测方法及装置 |
CN105740910A (zh) * | 2016-02-02 | 2016-07-06 | 北京格灵深瞳信息技术有限公司 | 一种车辆物件检测方法及装置 |
CN105787510A (zh) * | 2016-02-26 | 2016-07-20 | 华东理工大学 | 基于深度学习实现地铁场景分类的系统及方法 |
CN105930830A (zh) * | 2016-05-18 | 2016-09-07 | 大连理工大学 | 一种基于卷积神经网络的路面交通标志识别方法 |
-
2016
- 2016-09-19 CN CN201610828673.5A patent/CN106407931B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103279759A (zh) * | 2013-06-09 | 2013-09-04 | 大连理工大学 | 一种基于卷积神经网络的车辆前方可通行性分析方法 |
CN104036323A (zh) * | 2014-06-26 | 2014-09-10 | 叶茂 | 一种基于卷积神经网络的车辆检测方法 |
CN105654067A (zh) * | 2016-02-02 | 2016-06-08 | 北京格灵深瞳信息技术有限公司 | 一种车辆检测方法及装置 |
CN105740910A (zh) * | 2016-02-02 | 2016-07-06 | 北京格灵深瞳信息技术有限公司 | 一种车辆物件检测方法及装置 |
CN105787510A (zh) * | 2016-02-26 | 2016-07-20 | 华东理工大学 | 基于深度学习实现地铁场景分类的系统及方法 |
CN105930830A (zh) * | 2016-05-18 | 2016-09-07 | 大连理工大学 | 一种基于卷积神经网络的路面交通标志识别方法 |
Non-Patent Citations (5)
Title |
---|
A Closer Look at Faster R-CNN for Vehicle Detection;Quanfu Fan 等;《2016 IEEE Intelligent Vehicles Symposium (IV)》;20160725;124-129 * |
Convolutional neural network for vehicle detection in low resolution traffic videos;Carlo Migel Bautista 等;《016 IEEE Region 10 Symposium》;20160808;277-281 * |
Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks;Xueyun Chen 等;《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》;20140325;第11卷(第10期);1797-1801 * |
基于卷积神经网络的车标识别;孙晔 等;《现代计算机(专业版)》;20150415;84-87 * |
郭晓伟 等.基于卷积神经网络的车型识别.《第二十届计算机工程与工艺年会暨第六届微处理器技术论坛论文集》.2016, * |
Also Published As
Publication number | Publication date |
---|---|
CN106407931A (zh) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106407931B (zh) | 一种深度卷积神经网络运动车辆检测方法 | |
CN104036323B (zh) | 一种基于卷积神经网络的车辆检测方法 | |
Ohgushi et al. | Road obstacle detection method based on an autoencoder with semantic segmentation | |
Ming et al. | Vehicle detection using tail light segmentation | |
CN107633220A (zh) | 一种基于卷积神经网络的车辆前方目标识别方法 | |
CN112990065B (zh) | 一种基于优化的YOLOv5模型的车辆分类检测方法 | |
CN115311241A (zh) | 一种基于图像融合和特征增强的煤矿井下行人检测方法 | |
CN117058646B (zh) | 基于多模态融合鸟瞰图的复杂道路目标检测方法 | |
CN111461221A (zh) | 一种面向自动驾驶的多源传感器融合目标检测方法和系统 | |
Arora et al. | Automatic vehicle detection system in Day and Night Mode: challenges, applications and panoramic review | |
CN107480646A (zh) | 一种基于双目视觉的车载视频异常运动检测方法 | |
CN114973199A (zh) | 一种基于卷积神经网络的轨道交通列车障碍物检测方法 | |
CN113034378B (zh) | 一种区分电动汽车与燃油汽车的方法 | |
Bourja et al. | Real time vehicle detection, tracking, and inter-vehicle distance estimation based on stereovision and deep learning using YOLOv3 | |
Islam et al. | Comparative analysis of steering angle prediction for automated object using deep neural network | |
KR101050687B1 (ko) | 사후확률을 이용한 보행자 인식 장치 및 방법과 그를이용한 보행자 보호 장치 | |
Murali et al. | Comparative study of different cnns for vehicle classification | |
CN115205813A (zh) | 一种基于卷积神经网络的多视角道路车辆匹配系统及方法 | |
Rahaman et al. | Lane detection for autonomous vehicle management: PHT approach | |
CN111862147A (zh) | 视频中多车辆和多行人目标的跟踪方法 | |
Reddy et al. | Automatic vehicle damage detection classification framework using fast and mask deep learning | |
CN117058641A (zh) | 一种基于深度学习的全景驾驶感知方法 | |
CN112541930A (zh) | 基于级联式的图像超像素目标行人分割方法 | |
Amini et al. | New approach to road detection in challenging outdoor environment for autonomous vehicle | |
Chumerin et al. | Cue and sensor fusion for independent moving objects detection and description in driving scenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210810 Address after: 303 Wenhui Road, Hangzhou, Zhejiang 310000 Patentee after: ZHEJIANG HIGHWAY INFORMATION ENGINEERING TECHNOLOGY Co.,Ltd. Address before: 310027 No.2 street, Xiasha Higher Education Park, Hangzhou, Zhejiang Province Patentee before: HANGZHOU DIANZI University |
|
TR01 | Transfer of patent right | ||
CP01 | Change in the name or title of a patent holder |
Address after: 303 Wenhui Road, Hangzhou, Zhejiang 310000 Patentee after: Zhejiang Gaoxin Technology Co.,Ltd. Address before: 303 Wenhui Road, Hangzhou, Zhejiang 310000 Patentee before: ZHEJIANG HIGHWAY INFORMATION ENGINEERING TECHNOLOGY CO.,LTD. |
|
CP01 | Change in the name or title of a patent holder |