CA2629853A1 - Water in oil emulsion compositions containing siloxane elastomers - Google Patents
Water in oil emulsion compositions containing siloxane elastomers Download PDFInfo
- Publication number
- CA2629853A1 CA2629853A1 CA002629853A CA2629853A CA2629853A1 CA 2629853 A1 CA2629853 A1 CA 2629853A1 CA 002629853 A CA002629853 A CA 002629853A CA 2629853 A CA2629853 A CA 2629853A CA 2629853 A1 CA2629853 A1 CA 2629853A1
- Authority
- CA
- Canada
- Prior art keywords
- skin
- composition
- emulsifying
- crosslinked siloxane
- compositions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 221
- 229920001971 elastomer Polymers 0.000 title claims abstract description 57
- 239000000806 elastomer Substances 0.000 title claims abstract description 57
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000007762 w/o emulsion Substances 0.000 title claims abstract description 12
- 239000008346 aqueous phase Substances 0.000 claims abstract description 46
- 230000001804 emulsifying effect Effects 0.000 claims abstract description 40
- 239000000839 emulsion Substances 0.000 claims abstract description 29
- 239000002904 solvent Substances 0.000 claims abstract description 27
- 230000007480 spreading Effects 0.000 claims abstract description 9
- 238000003892 spreading Methods 0.000 claims abstract description 9
- -1 hydroxypropyl sorbitol Chemical compound 0.000 claims description 81
- 239000003795 chemical substances by application Substances 0.000 claims description 59
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 57
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 57
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 51
- 229940008099 dimethicone Drugs 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 39
- 239000003995 emulsifying agent Substances 0.000 claims description 32
- 239000003921 oil Substances 0.000 claims description 25
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 22
- 238000003801 milling Methods 0.000 claims description 19
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 16
- 239000000516 sunscreening agent Substances 0.000 claims description 16
- 230000000475 sunscreen effect Effects 0.000 claims description 15
- 229920006037 cross link polymer Polymers 0.000 claims description 13
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 claims description 12
- 235000000346 sugar Nutrition 0.000 claims description 12
- 239000003963 antioxidant agent Substances 0.000 claims description 11
- 235000006708 antioxidants Nutrition 0.000 claims description 11
- 230000003750 conditioning effect Effects 0.000 claims description 11
- 235000011187 glycerol Nutrition 0.000 claims description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims description 11
- 239000002516 radical scavenger Substances 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 9
- 150000001412 amines Chemical class 0.000 claims description 9
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 claims description 9
- OQLKNTOKMBVBKV-UHFFFAOYSA-N hexamidine Chemical class C1=CC(C(=N)N)=CC=C1OCCCCCCOC1=CC=C(C(N)=N)C=C1 OQLKNTOKMBVBKV-UHFFFAOYSA-N 0.000 claims description 9
- 235000005152 nicotinamide Nutrition 0.000 claims description 9
- 239000011570 nicotinamide Substances 0.000 claims description 9
- 229960003966 nicotinamide Drugs 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 9
- 239000002738 chelating agent Substances 0.000 claims description 8
- 239000003974 emollient agent Substances 0.000 claims description 8
- 229940088594 vitamin Drugs 0.000 claims description 8
- 229930003231 vitamin Natural products 0.000 claims description 8
- 235000013343 vitamin Nutrition 0.000 claims description 8
- 239000011782 vitamin Substances 0.000 claims description 8
- 206010040844 Skin exfoliation Diseases 0.000 claims description 7
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 7
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 7
- 230000035618 desquamation Effects 0.000 claims description 7
- 239000011236 particulate material Substances 0.000 claims description 7
- 229920001451 polypropylene glycol Polymers 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 208000035484 Cellulite Diseases 0.000 claims description 6
- 206010049752 Peau d'orange Diseases 0.000 claims description 6
- 230000003255 anti-acne Effects 0.000 claims description 6
- 239000007844 bleaching agent Substances 0.000 claims description 6
- 238000000386 microscopy Methods 0.000 claims description 6
- 230000000845 anti-microbial effect Effects 0.000 claims description 5
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 5
- 229940015975 1,2-hexanediol Drugs 0.000 claims description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 claims description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 4
- 239000004287 Dehydroacetic acid Substances 0.000 claims description 4
- 230000000843 anti-fungal effect Effects 0.000 claims description 4
- 239000004599 antimicrobial Substances 0.000 claims description 4
- 150000001277 beta hydroxy acids Chemical class 0.000 claims description 4
- 235000019258 dehydroacetic acid Nutrition 0.000 claims description 4
- 229940061632 dehydroacetic acid Drugs 0.000 claims description 4
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 claims description 4
- 239000003589 local anesthetic agent Substances 0.000 claims description 4
- 239000000600 sorbitol Substances 0.000 claims description 4
- 235000007586 terpenes Nutrition 0.000 claims description 4
- 229940058015 1,3-butylene glycol Drugs 0.000 claims description 3
- 229940043375 1,5-pentanediol Drugs 0.000 claims description 3
- 235000019437 butane-1,3-diol Nutrition 0.000 claims description 3
- 229960005150 glycerol Drugs 0.000 claims description 3
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 claims description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 claims description 2
- 150000002314 glycerols Chemical class 0.000 claims description 2
- 239000013003 healing agent Substances 0.000 claims description 2
- 229940051250 hexylene glycol Drugs 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229960002920 sorbitol Drugs 0.000 claims description 2
- 229940074410 trehalose Drugs 0.000 claims description 2
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 claims 1
- 229940123457 Free radical scavenger Drugs 0.000 claims 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 claims 1
- 125000004387 flavanoid group Chemical group 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 210000003491 skin Anatomy 0.000 description 120
- 229920001296 polysiloxane Polymers 0.000 description 72
- 239000002537 cosmetic Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 24
- 230000008901 benefit Effects 0.000 description 22
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 21
- 239000000047 product Substances 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 150000002148 esters Chemical class 0.000 description 20
- 230000035882 stress Effects 0.000 description 20
- 235000019198 oils Nutrition 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 17
- 239000012071 phase Substances 0.000 description 16
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical class CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 239000004615 ingredient Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 238000001000 micrograph Methods 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 11
- 230000000699 topical effect Effects 0.000 description 11
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical class OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 229930003935 flavonoid Natural products 0.000 description 10
- 235000017173 flavonoids Nutrition 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 230000008439 repair process Effects 0.000 description 10
- 239000002562 thickening agent Substances 0.000 description 10
- 239000000341 volatile oil Substances 0.000 description 10
- 239000004721 Polyphenylene oxide Substances 0.000 description 9
- 229960001915 hexamidine Drugs 0.000 description 9
- 229920000570 polyether Polymers 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 229930003799 tocopherol Natural products 0.000 description 9
- 235000010384 tocopherol Nutrition 0.000 description 9
- 229960001295 tocopherol Drugs 0.000 description 9
- 239000011732 tocopherol Substances 0.000 description 9
- 230000002087 whitening effect Effects 0.000 description 9
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 235000010323 ascorbic acid Nutrition 0.000 description 8
- 239000011668 ascorbic acid Substances 0.000 description 8
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 150000002191 fatty alcohols Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 235000015424 sodium Nutrition 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- CRDAMVZIKSXKFV-YFVJMOTDSA-N (2-trans,6-trans)-farnesol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO CRDAMVZIKSXKFV-YFVJMOTDSA-N 0.000 description 7
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 7
- 229920002125 Sokalan® Polymers 0.000 description 7
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 229940043259 farnesol Drugs 0.000 description 7
- 229930002886 farnesol Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 6
- 239000005792 Geraniol Chemical class 0.000 description 6
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Chemical class CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 229930003427 Vitamin E Natural products 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229960005070 ascorbic acid Drugs 0.000 description 6
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 6
- 150000002170 ethers Chemical class 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 6
- 229940113087 geraniol Drugs 0.000 description 6
- 210000004209 hair Anatomy 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000000346 nonvolatile oil Substances 0.000 description 6
- 239000011591 potassium Chemical class 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 150000005846 sugar alcohols Polymers 0.000 description 6
- 229940046009 vitamin E Drugs 0.000 description 6
- 235000019165 vitamin E Nutrition 0.000 description 6
- 239000011709 vitamin E Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 5
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 5
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- KIENGQUGHPTFGC-JLAZNSOCSA-N L-ascorbic acid 6-phosphate Chemical compound OP(=O)(O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O KIENGQUGHPTFGC-JLAZNSOCSA-N 0.000 description 5
- 206010040954 Skin wrinkling Diseases 0.000 description 5
- 229930003268 Vitamin C Natural products 0.000 description 5
- 150000001253 acrylic acids Chemical class 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 235000010980 cellulose Nutrition 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 150000001789 chalcones Chemical class 0.000 description 5
- 235000005513 chalcones Nutrition 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 150000002215 flavonoids Chemical class 0.000 description 5
- 239000003349 gelling agent Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229960003512 nicotinic acid Drugs 0.000 description 5
- CGIHFIDULQUVJG-UHFFFAOYSA-N phytantriol Chemical class CC(C)CCCC(C)CCCC(C)CCCC(C)(O)C(O)CO CGIHFIDULQUVJG-UHFFFAOYSA-N 0.000 description 5
- CGIHFIDULQUVJG-VNTMZGSJSA-N phytantriol Chemical class CC(C)CCC[C@H](C)CCC[C@H](C)CCC[C@@](C)(O)[C@H](O)CO CGIHFIDULQUVJG-VNTMZGSJSA-N 0.000 description 5
- 229920002401 polyacrylamide Polymers 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 150000004804 polysaccharides Chemical class 0.000 description 5
- 229920002545 silicone oil Polymers 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 229940075554 sorbate Drugs 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 229940042585 tocopherol acetate Drugs 0.000 description 5
- 235000019154 vitamin C Nutrition 0.000 description 5
- 239000011718 vitamin C Substances 0.000 description 5
- RGZSQWQPBWRIAQ-CABCVRRESA-N (-)-alpha-Bisabolol Chemical compound CC(C)=CCC[C@](C)(O)[C@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-CABCVRRESA-N 0.000 description 4
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 4
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 4
- 241000239290 Araneae Species 0.000 description 4
- SNPLKNRPJHDVJA-ZETCQYMHSA-N D-panthenol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCCO SNPLKNRPJHDVJA-ZETCQYMHSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000007259 addition reaction Methods 0.000 description 4
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 4
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 4
- RGZSQWQPBWRIAQ-LSDHHAIUSA-N alpha-Bisabolol Natural products CC(C)=CCC[C@@](C)(O)[C@@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-LSDHHAIUSA-N 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 4
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 235000010418 carrageenan Nutrition 0.000 description 4
- 239000000679 carrageenan Substances 0.000 description 4
- 229920001525 carrageenan Polymers 0.000 description 4
- 229940113118 carrageenan Drugs 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000008406 cosmetic ingredient Substances 0.000 description 4
- 235000001671 coumarin Nutrition 0.000 description 4
- 150000004775 coumarins Chemical class 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 4
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 229960002442 glucosamine Drugs 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 230000037303 wrinkles Effects 0.000 description 4
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 4
- WTVHAMTYZJGJLJ-UHFFFAOYSA-N (+)-(4S,8R)-8-epi-beta-bisabolol Natural products CC(C)=CCCC(C)C1(O)CCC(C)=CC1 WTVHAMTYZJGJLJ-UHFFFAOYSA-N 0.000 description 3
- WSGCRSMLXFHGRM-DEVHWETNSA-N (2s)-2-[[(2s)-6-amino-2-[[(2s,3r)-2-[[(2s,3r)-2-[[(2s)-6-amino-2-(hexadecanoylamino)hexanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoic acid Chemical group CCCCCCCCCCCCCCCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O WSGCRSMLXFHGRM-DEVHWETNSA-N 0.000 description 3
- RTBWWWVNZWFNBV-SFHVURJKSA-N (2s)-3-phenyl-2-(undec-10-enoylamino)propanoic acid Chemical compound C=CCCCCCCCCC(=O)N[C@H](C(=O)O)CC1=CC=CC=C1 RTBWWWVNZWFNBV-SFHVURJKSA-N 0.000 description 3
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 244000144927 Aloe barbadensis Species 0.000 description 3
- 235000002961 Aloe barbadensis Nutrition 0.000 description 3
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 3
- BYUQATUKPXLFLZ-UIOOFZCWSA-N CCCCCCCCCCCCCCCC(=O)NCC(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(O)=O)CC1=CN=CN1 Chemical compound CCCCCCCCCCCCCCCC(=O)NCC(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(O)=O)CC1=CN=CN1 BYUQATUKPXLFLZ-UIOOFZCWSA-N 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 3
- MLSJBGYKDYSOAE-DCWMUDTNSA-N L-Ascorbic acid-2-glucoside Chemical class OC[C@H](O)[C@H]1OC(=O)C(O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)=C1O MLSJBGYKDYSOAE-DCWMUDTNSA-N 0.000 description 3
- 206010036229 Post inflammatory pigmentation change Diseases 0.000 description 3
- 229930003537 Vitamin B3 Natural products 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000005250 alkyl acrylate group Chemical group 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 235000011399 aloe vera Nutrition 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003212 astringent agent Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229940036350 bisabolol Drugs 0.000 description 3
- HHGZABIIYIWLGA-UHFFFAOYSA-N bisabolol Natural products CC1CCC(C(C)(O)CCC=C(C)C)CC1 HHGZABIIYIWLGA-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 229930003949 flavanone Natural products 0.000 description 3
- 150000002208 flavanones Chemical class 0.000 description 3
- 235000011981 flavanones Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- CJWQYWQDLBZGPD-UHFFFAOYSA-N isoflavone Natural products C1=C(OC)C(OC)=CC(OC)=C1C1=COC2=C(C=CC(C)(C)O3)C3=C(OC)C=C2C1=O CJWQYWQDLBZGPD-UHFFFAOYSA-N 0.000 description 3
- 150000002515 isoflavone derivatives Chemical class 0.000 description 3
- 235000008696 isoflavones Nutrition 0.000 description 3
- 229940078752 magnesium ascorbyl phosphate Drugs 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229940101267 panthenol Drugs 0.000 description 3
- 235000020957 pantothenol Nutrition 0.000 description 3
- 239000011619 pantothenol Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000000979 retarding effect Effects 0.000 description 3
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 3
- 235000005493 rutin Nutrition 0.000 description 3
- 229960004555 rutoside Drugs 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 230000035910 sensory benefits Effects 0.000 description 3
- 230000037075 skin appearance Effects 0.000 description 3
- 230000037380 skin damage Effects 0.000 description 3
- 230000036548 skin texture Effects 0.000 description 3
- 210000000434 stratum corneum Anatomy 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- HTJNEBVCZXHBNJ-XCTPRCOBSA-H trimagnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one;diphosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.OC[C@H](O)[C@H]1OC(=O)C(O)=C1O HTJNEBVCZXHBNJ-XCTPRCOBSA-H 0.000 description 3
- 235000019160 vitamin B3 Nutrition 0.000 description 3
- 239000011708 vitamin B3 Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 239000002888 zwitterionic surfactant Substances 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- 239000001100 (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one Substances 0.000 description 2
- MRAMPOPITCOOIN-VIFPVBQESA-N (2r)-n-(3-ethoxypropyl)-2,4-dihydroxy-3,3-dimethylbutanamide Chemical compound CCOCCCNC(=O)[C@H](O)C(C)(C)CO MRAMPOPITCOOIN-VIFPVBQESA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 2
- MVQVNTPHUGQQHK-UHFFFAOYSA-N 3-pyridinemethanol Chemical compound OCC1=CC=CN=C1 MVQVNTPHUGQQHK-UHFFFAOYSA-N 0.000 description 2
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 2
- 235000007173 Abies balsamea Nutrition 0.000 description 2
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 2
- FSNVAJOPUDVQAR-AVGNSLFASA-N Arg-Lys-Arg Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FSNVAJOPUDVQAR-AVGNSLFASA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 239000004857 Balsam Substances 0.000 description 2
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 2
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 2
- QRYRORQUOLYVBU-VBKZILBWSA-N Carnosic acid Natural products CC([C@@H]1CC2)(C)CCC[C@]1(C(O)=O)C1=C2C=C(C(C)C)C(O)=C1O QRYRORQUOLYVBU-VBKZILBWSA-N 0.000 description 2
- 108010087806 Carnosine Proteins 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- BIVBRWYINDPWKA-VLQRKCJKSA-L Glycyrrhizinate dipotassium Chemical compound [K+].[K+].O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@H]1CC[C@]2(C)[C@H]3C(=O)C=C4[C@@H]5C[C@](C)(CC[C@@]5(CC[C@@]4(C)[C@]3(C)CC[C@H]2C1(C)C)C)C(O)=O)C([O-])=O)[C@@H]1O[C@H](C([O-])=O)[C@@H](O)[C@H](O)[C@H]1O BIVBRWYINDPWKA-VLQRKCJKSA-L 0.000 description 2
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 2
- QUQPHWDTPGMPEX-UHFFFAOYSA-N Hesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(COC4C(C(O)C(O)C(C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-UHFFFAOYSA-N 0.000 description 2
- CMBYOWLFQAFZCP-UHFFFAOYSA-N Hexyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCCCCC CMBYOWLFQAFZCP-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- 244000018716 Impatiens biflora Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- CQOVPNPJLQNMDC-UHFFFAOYSA-N N-beta-alanyl-L-histidine Natural products NCCC(=O)NC(C(O)=O)CC1=CN=CN1 CQOVPNPJLQNMDC-UHFFFAOYSA-N 0.000 description 2
- YBGZDTIWKVFICR-JLHYYAGUSA-N Octyl 4-methoxycinnamic acid Chemical compound CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C=C1 YBGZDTIWKVFICR-JLHYYAGUSA-N 0.000 description 2
- 239000004264 Petrolatum Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 208000003251 Pruritus Diseases 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- VYGQUTWHTHXGQB-FFHKNEKCSA-N Retinol Palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-FFHKNEKCSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 206010040799 Skin atrophy Diseases 0.000 description 2
- 206010040867 Skin hypertrophy Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 2
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229960000458 allantoin Drugs 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- QUQPHWDTPGMPEX-UTWYECKDSA-N aurantiamarin Natural products COc1ccc(cc1O)[C@H]1CC(=O)c2c(O)cc(O[C@@H]3O[C@H](CO[C@@H]4O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)cc2O1 QUQPHWDTPGMPEX-UTWYECKDSA-N 0.000 description 2
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 2
- 235000004420 brassicasterol Nutrition 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 2
- 235000000431 campesterol Nutrition 0.000 description 2
- 229960000846 camphor Drugs 0.000 description 2
- 229930008380 camphor Natural products 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 229940044199 carnosine Drugs 0.000 description 2
- CQOVPNPJLQNMDC-ZETCQYMHSA-N carnosine Chemical compound [NH3+]CCC(=O)N[C@H](C([O-])=O)CC1=CNC=N1 CQOVPNPJLQNMDC-ZETCQYMHSA-N 0.000 description 2
- 229940085262 cetyl dimethicone Drugs 0.000 description 2
- 229940048851 cetyl ricinoleate Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 150000004777 chromones Chemical class 0.000 description 2
- APSNPMVGBGZYAJ-GLOOOPAXSA-N clematine Natural products COc1cc(ccc1O)[C@@H]2CC(=O)c3c(O)cc(O[C@@H]4O[C@H](CO[C@H]5O[C@@H](C)[C@H](O)[C@@H](O)[C@H]5O)[C@@H](O)[C@H](O)[C@H]4O)cc3O2 APSNPMVGBGZYAJ-GLOOOPAXSA-N 0.000 description 2
- 239000010634 clove oil Substances 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013005 condensation curing Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000006184 cosolvent Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000005388 cross polarization Methods 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- DTPCFIHYWYONMD-UHFFFAOYSA-N decaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO DTPCFIHYWYONMD-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 229940120503 dihydroxyacetone Drugs 0.000 description 2
- 229940101029 dipotassium glycyrrhizinate Drugs 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- UKHVLWKBNNSRRR-ODZAUARKSA-M dowicil 200 Chemical compound [Cl-].C1N(C2)CN3CN2C[N+]1(C\C=C/Cl)C3 UKHVLWKBNNSRRR-ODZAUARKSA-M 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- UVCJGUGAGLDPAA-UHFFFAOYSA-N ensulizole Chemical compound N1C2=CC(S(=O)(=O)O)=CC=C2N=C1C1=CC=CC=C1 UVCJGUGAGLDPAA-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 2
- MMKRHZKQPFCLLS-UHFFFAOYSA-N ethyl myristate Chemical compound CCCCCCCCCCCCCC(=O)OCC MMKRHZKQPFCLLS-UHFFFAOYSA-N 0.000 description 2
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 2
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 2
- 239000010642 eucalyptus oil Substances 0.000 description 2
- 229940044949 eucalyptus oil Drugs 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 150000003620 farnesol derivatives Chemical class 0.000 description 2
- 229930003944 flavone Natural products 0.000 description 2
- 150000002213 flavones Chemical class 0.000 description 2
- 235000011949 flavones Nutrition 0.000 description 2
- 229940074391 gallic acid Drugs 0.000 description 2
- 235000004515 gallic acid Nutrition 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 229940108690 glucosyl hesperidin Drugs 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229930182470 glycoside Natural products 0.000 description 2
- 108010038983 glycyl-histidyl-lysine Proteins 0.000 description 2
- 229940025878 hesperidin Drugs 0.000 description 2
- QUQPHWDTPGMPEX-QJBIFVCTSA-N hesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]4[C@@H]([C@H](O)[C@@H](O)[C@H](C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-QJBIFVCTSA-N 0.000 description 2
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 229940100463 hexyl laurate Drugs 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- BJRNKVDFDLYUGJ-RMPHRYRLSA-N hydroquinone O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-RMPHRYRLSA-N 0.000 description 2
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N icos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229940093629 isopropyl isostearate Drugs 0.000 description 2
- BEJNERDRQOWKJM-UHFFFAOYSA-N kojic acid Chemical compound OCC1=CC(=O)C(O)=CO1 BEJNERDRQOWKJM-UHFFFAOYSA-N 0.000 description 2
- 229960004705 kojic acid Drugs 0.000 description 2
- WZNJWVWKTVETCG-UHFFFAOYSA-N kojic acid Natural products OC(=O)C(N)CN1C=CC(=O)C(O)=C1 WZNJWVWKTVETCG-UHFFFAOYSA-N 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- HCZKYJDFEPMADG-TXEJJXNPSA-N masoprocol Chemical compound C([C@H](C)[C@H](C)CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-TXEJJXNPSA-N 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 230000003020 moisturizing effect Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000000282 nail Anatomy 0.000 description 2
- ARGKVCXINMKCAZ-UHFFFAOYSA-N neohesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(O)C(C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UHFFFAOYSA-N 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- FMJSMJQBSVNSBF-UHFFFAOYSA-N octocrylene Chemical group C=1C=CC=CC=1C(=C(C#N)C(=O)OCC(CC)CCCC)C1=CC=CC=C1 FMJSMJQBSVNSBF-UHFFFAOYSA-N 0.000 description 2
- 229960000601 octocrylene Drugs 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 2
- 229940066842 petrolatum Drugs 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- OSORMYZMWHVFOZ-UHFFFAOYSA-N phenethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCC1=CC=CC=C1 OSORMYZMWHVFOZ-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229940068065 phytosterols Drugs 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001843 polymethylhydrosiloxane Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 150000004492 retinoid derivatives Chemical class 0.000 description 2
- QGNJRVVDBSJHIZ-QHLGVNSISA-N retinyl acetate Chemical compound CC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C QGNJRVVDBSJHIZ-QHLGVNSISA-N 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229950005143 sitosterol Drugs 0.000 description 2
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229940032091 stigmasterol Drugs 0.000 description 2
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 2
- 235000016831 stigmasterol Nutrition 0.000 description 2
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- LBTVHXHERHESKG-UHFFFAOYSA-N tetrahydrocurcumin Chemical compound C1=C(O)C(OC)=CC(CCC(=O)CC(=O)CCC=2C=C(OC)C(O)=CC=2)=C1 LBTVHXHERHESKG-UHFFFAOYSA-N 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 235000019155 vitamin A Nutrition 0.000 description 2
- 239000011719 vitamin A Substances 0.000 description 2
- 229940045997 vitamin a Drugs 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- BIHGMNAEAOIWJW-ZMUFBLIFSA-K (2R)-3-[bis[[(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2H-furan-3-yl]oxy]alumanyloxy]-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-2H-furan-5-one Chemical compound [Al+3].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] BIHGMNAEAOIWJW-ZMUFBLIFSA-K 0.000 description 1
- 239000001500 (2R)-6-methyl-2-[(1R)-4-methyl-1-cyclohex-3-enyl]hept-5-en-2-ol Substances 0.000 description 1
- PDHSAQOQVUXZGQ-JKSUJKDBSA-N (2r,3s)-2-(3,4-dihydroxyphenyl)-3-methoxy-3,4-dihydro-2h-chromene-5,7-diol Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2OC)=CC=C(O)C(O)=C1 PDHSAQOQVUXZGQ-JKSUJKDBSA-N 0.000 description 1
- FGSPQNZCLMWQAS-GPXNEJASSA-N (2s,3r)-2-[[(2s)-6-amino-2-(hexadecanoylamino)hexanoyl]amino]-3-hydroxybutanoic acid Chemical compound CCCCCCCCCCCCCCCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O FGSPQNZCLMWQAS-GPXNEJASSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- OJISWRZIEWCUBN-QIRCYJPOSA-N (E,E,E)-geranylgeraniol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CO OJISWRZIEWCUBN-QIRCYJPOSA-N 0.000 description 1
- RBOZTFPIXJBLPK-HWAYABPNSA-N (NE)-N-[(2E)-1,2-bis(furan-2-yl)-2-hydroxyiminoethylidene]hydroxylamine Chemical compound O\N=C(/C(=N\O)/C1=CC=CO1)\C1=CC=CO1 RBOZTFPIXJBLPK-HWAYABPNSA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-O (R)-carnitinium Chemical compound C[N+](C)(C)C[C@H](O)CC(O)=O PHIQHXFUZVPYII-ZCFIWIBFSA-O 0.000 description 1
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- OVYMWJFNQQOJBU-UHFFFAOYSA-N 1-octanoyloxypropan-2-yl octanoate Chemical compound CCCCCCCC(=O)OCC(C)OC(=O)CCCCCCC OVYMWJFNQQOJBU-UHFFFAOYSA-N 0.000 description 1
- RMFFCSRJWUBPBJ-UHFFFAOYSA-N 15-hydroxypentadecyl benzoate Chemical compound OCCCCCCCCCCCCCCCOC(=O)C1=CC=CC=C1 RMFFCSRJWUBPBJ-UHFFFAOYSA-N 0.000 description 1
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 1
- DWHIUNMOTRUVPG-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCO DWHIUNMOTRUVPG-UHFFFAOYSA-N 0.000 description 1
- XILVEPYQJIOVNB-UHFFFAOYSA-N 2-[3-(trifluoromethyl)anilino]benzoic acid 2-(2-hydroxyethoxy)ethyl ester Chemical compound OCCOCCOC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 XILVEPYQJIOVNB-UHFFFAOYSA-N 0.000 description 1
- TYIOVYZMKITKRO-UHFFFAOYSA-N 2-[hexadecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O TYIOVYZMKITKRO-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-CBPJZXOFSA-N 2-amino-2-deoxy-D-mannopyranose Chemical compound N[C@@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-CBPJZXOFSA-N 0.000 description 1
- TYYHDKOVFSVWON-UHFFFAOYSA-N 2-butyl-2-methoxy-1,3-diphenylpropane-1,3-dione Chemical compound C=1C=CC=CC=1C(=O)C(OC)(CCCC)C(=O)C1=CC=CC=C1 TYYHDKOVFSVWON-UHFFFAOYSA-N 0.000 description 1
- NFIHXTUNNGIYRF-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate Chemical compound CCCCCCCCCC(=O)OCC(C)OC(=O)CCCCCCCCC NFIHXTUNNGIYRF-UHFFFAOYSA-N 0.000 description 1
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 1
- BJRXGOFKVBOFCO-UHFFFAOYSA-N 2-hydroxypropyl 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(C)O BJRXGOFKVBOFCO-UHFFFAOYSA-N 0.000 description 1
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 1
- ZGIGZINMAOQWLX-NCZFFCEISA-N 3,7,11-Trimethyl-2,6,10-dodecatrienyl acetate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\COC(C)=O ZGIGZINMAOQWLX-NCZFFCEISA-N 0.000 description 1
- UTECWQIXBMWRRR-UHFFFAOYSA-N 3-O-[beta-D-Glucopyranosyl-(1?4)-beta-D-mannopyranoside]-3,3',4',5,7-Pentahydroxyflavone Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)OC1CO UTECWQIXBMWRRR-UHFFFAOYSA-N 0.000 description 1
- 229940099451 3-iodo-2-propynylbutylcarbamate Drugs 0.000 description 1
- WYVVKGNFXHOCQV-UHFFFAOYSA-N 3-iodoprop-2-yn-1-yl butylcarbamate Chemical compound CCCCNC(=O)OCC#CI WYVVKGNFXHOCQV-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical group C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- HBTAOSGHCXUEKI-UHFFFAOYSA-N 4-chloro-n,n-dimethyl-3-nitrobenzenesulfonamide Chemical compound CN(C)S(=O)(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 HBTAOSGHCXUEKI-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- PJJGZPJJTHBVMX-UHFFFAOYSA-N 5,7-Dihydroxyisoflavone Chemical compound C=1C(O)=CC(O)=C(C2=O)C=1OC=C2C1=CC=CC=C1 PJJGZPJJTHBVMX-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical class [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 206010004950 Birth mark Diseases 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 240000003538 Chamaemelum nobile Species 0.000 description 1
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 244000228088 Cola acuminata Species 0.000 description 1
- 235000010205 Cola acuminata Nutrition 0.000 description 1
- 235000015438 Cola nitida Nutrition 0.000 description 1
- 241000159174 Commiphora Species 0.000 description 1
- 240000003890 Commiphora wightii Species 0.000 description 1
- 235000004866 D-panthenol Nutrition 0.000 description 1
- 239000011703 D-panthenol Substances 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 229920001174 Diethylhydroxylamine Polymers 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 206010014970 Ephelides Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 description 1
- ZGIGZINMAOQWLX-UHFFFAOYSA-N Farnesyl acetate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOC(C)=O ZGIGZINMAOQWLX-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 1
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- MVORZMQFXBLMHM-QWRGUYRKSA-N Gly-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1 MVORZMQFXBLMHM-QWRGUYRKSA-N 0.000 description 1
- 244000303040 Glycyrrhiza glabra Species 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 241000208680 Hamamelis mollis Species 0.000 description 1
- DKLKMKYDWHYZTD-UHFFFAOYSA-N Hexylcaine Chemical compound C=1C=CC=CC=1C(=O)OC(C)CNC1CCCCC1 DKLKMKYDWHYZTD-UHFFFAOYSA-N 0.000 description 1
- FDQYIRHBVVUTJF-ZETCQYMHSA-N His-Gly-Gly Chemical compound [O-]C(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])CC1=CN=CN1 FDQYIRHBVVUTJF-ZETCQYMHSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- VTAJIXDZFCRWBR-UHFFFAOYSA-N Licoricesaponin B2 Natural products C1C(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2)C(O)=O)C)(C)CC2)(C)C2C(C)(C)CC1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O VTAJIXDZFCRWBR-UHFFFAOYSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- MQYXUWHLBZFQQO-CWFQSGEHSA-N Lupenol Natural products C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@H](C(=C)C)[C@H]5[C@H]4CC[C@@H]3[C@]21C MQYXUWHLBZFQQO-CWFQSGEHSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- ACFGRWJEQJVZTM-LEJBHHMKSA-L Magnesium L-ascorbic acid-2-phosphate Chemical compound [Mg+2].OC[C@H](O)[C@H]1OC(=O)C(OP([O-])([O-])=O)=C1O ACFGRWJEQJVZTM-LEJBHHMKSA-L 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- 208000003351 Melanosis Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- QWZLBLDNRUUYQI-UHFFFAOYSA-M Methylbenzethonium chloride Chemical compound [Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 QWZLBLDNRUUYQI-UHFFFAOYSA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- 125000003047 N-acetyl group Chemical group 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- OVRNDRQMDRJTHS-OZRXBMAMSA-N N-acetyl-beta-D-mannosamine Chemical compound CC(=O)N[C@@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-OZRXBMAMSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- SEBFKMXJBCUCAI-UHFFFAOYSA-N NSC 227190 Natural products C1=C(O)C(OC)=CC(C2C(OC3=CC=C(C=C3O2)C2C(C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- USSFUVKEHXDAPM-UHFFFAOYSA-N Nicotinamide N-oxide Chemical compound NC(=O)C1=CC=C[N+]([O-])=C1 USSFUVKEHXDAPM-UHFFFAOYSA-N 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004260 Potassium ascorbate Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 108010007568 Protamines Chemical class 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 241001303601 Rosacea Species 0.000 description 1
- 241001103643 Rubia Species 0.000 description 1
- 240000009235 Rubia cordifolia Species 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- 241001558929 Sclerotium <basidiomycota> Species 0.000 description 1
- 206010040829 Skin discolouration Diseases 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 239000004288 Sodium dehydroacetate Substances 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- MSCCTZZBYHQMQJ-AZAGJHQNSA-N Tocopheryl nicotinate Chemical compound C([C@@](OC1=C(C)C=2C)(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)CC1=C(C)C=2OC(=O)C1=CC=CN=C1 MSCCTZZBYHQMQJ-AZAGJHQNSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- GTTSNKDQDACYLV-UHFFFAOYSA-N Trihydroxybutane Chemical compound CCCC(O)(O)O GTTSNKDQDACYLV-UHFFFAOYSA-N 0.000 description 1
- GLEVLJDDWXEYCO-UHFFFAOYSA-N Trolox Chemical compound O1C(C)(C(O)=O)CCC2=C1C(C)=C(C)C(O)=C2C GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 206010046996 Varicose vein Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- UJNOLBSYLSYIBM-WISYIIOYSA-N [(1r,2s,5r)-5-methyl-2-propan-2-ylcyclohexyl] (2r)-2-hydroxypropanoate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)[C@@H](C)O UJNOLBSYLSYIBM-WISYIIOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- JZVFJDZBLUFKCA-FXIAWGAOSA-N alpha-Spinasterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)CC[C@H]33)C)C3=CC[C@H]21 JZVFJDZBLUFKCA-FXIAWGAOSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- HAMNKKUPIHEESI-UHFFFAOYSA-N aminoguanidine Chemical compound NNC(N)=N HAMNKKUPIHEESI-UHFFFAOYSA-N 0.000 description 1
- 235000010407 ammonium alginate Nutrition 0.000 description 1
- 239000000728 ammonium alginate Substances 0.000 description 1
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 229940051879 analgesics and antipyretics salicylic acid and derivative Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000000058 anti acne agent Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229940124340 antiacne agent Drugs 0.000 description 1
- 229940053195 antiepileptics hydantoin derivative Drugs 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229960000271 arbutin Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229940067599 ascorbyl glucoside Drugs 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 229960005193 avobenzone Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229940116224 behenate Drugs 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-M behenate Chemical compound CCCCCCCCCCCCCCCCCCCCCC([O-])=O UKMSUNONTOPOIO-UHFFFAOYSA-M 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960005274 benzocaine Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 229940093797 bioflavonoids Drugs 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QRZAKQDHEVVFRX-UHFFFAOYSA-N biphenyl-4-ylacetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1C1=CC=CC=C1 QRZAKQDHEVVFRX-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- 235000010376 calcium ascorbate Nutrition 0.000 description 1
- 229940047036 calcium ascorbate Drugs 0.000 description 1
- 239000011692 calcium ascorbate Substances 0.000 description 1
- BLORRZQTHNGFTI-ZZMNMWMASA-L calcium-L-ascorbate Chemical compound [Ca+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] BLORRZQTHNGFTI-ZZMNMWMASA-L 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- YZIYKJHYYHPJIB-UUPCJSQJSA-N chlorhexidine gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.C1=CC(Cl)=CC=C1NC(=N)NC(=N)NCCCCCCNC(=N)NC(=N)NC1=CC=C(Cl)C=C1 YZIYKJHYYHPJIB-UUPCJSQJSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960001747 cinchocaine Drugs 0.000 description 1
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- LUNQZVCDZKODKF-PFVVTREHSA-L copper acetic acid (2S)-6-amino-2-[[(2S)-2-[(2-aminoacetyl)amino]-3-(1H-imidazol-5-yl)propanoyl]amino]hexanoate (2S)-6-amino-2-[[(2S)-2-[(2-amino-1-oxidoethylidene)amino]-3-(1H-imidazol-5-yl)propanoyl]amino]hexanoate hydron Chemical compound [Cu+2].CC(O)=O.CC(O)=O.NCCCC[C@@H](C([O-])=O)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1.NCCCC[C@@H](C([O-])=O)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1 LUNQZVCDZKODKF-PFVVTREHSA-L 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229960003949 dexpanthenol Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- FVCOIAYSJZGECG-UHFFFAOYSA-N diethylhydroxylamine Chemical compound CCN(O)CC FVCOIAYSJZGECG-UHFFFAOYSA-N 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- BZCOSCNPHJNQBP-OWOJBTEDSA-N dihydroxyfumaric acid Chemical compound OC(=O)C(\O)=C(/O)C(O)=O BZCOSCNPHJNQBP-OWOJBTEDSA-N 0.000 description 1
- 229940031578 diisopropyl adipate Drugs 0.000 description 1
- 229940031569 diisopropyl sebacate Drugs 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- XFKBBSZEQRFVSL-UHFFFAOYSA-N dipropan-2-yl decanedioate Chemical compound CC(C)OC(=O)CCCCCCCCC(=O)OC(C)C XFKBBSZEQRFVSL-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229960000385 dyclonine Drugs 0.000 description 1
- BZEWSEKUUPWQDQ-UHFFFAOYSA-N dyclonine Chemical compound C1=CC(OCCCC)=CC=C1C(=O)CCN1CCCCC1 BZEWSEKUUPWQDQ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229960000655 ensulizole Drugs 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- HCZKYJDFEPMADG-UHFFFAOYSA-N erythro-nordihydroguaiaretic acid Natural products C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229940052296 esters of benzoic acid for local anesthesia Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 229920006228 ethylene acrylate copolymer Polymers 0.000 description 1
- 229960003976 etidocaine Drugs 0.000 description 1
- 229960001493 etofenamate Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229940007703 farnesyl acetate Drugs 0.000 description 1
- 230000006126 farnesylation Effects 0.000 description 1
- 229960000192 felbinac Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- LPEPZBJOKDYZAD-UHFFFAOYSA-N flufenamic acid Chemical compound OC(=O)C1=CC=CC=C1NC1=CC=CC(C(F)(F)F)=C1 LPEPZBJOKDYZAD-UHFFFAOYSA-N 0.000 description 1
- 229960004369 flufenamic acid Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 1
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 1
- XWRJRXQNOHXIOX-UHFFFAOYSA-N geranylgeraniol Natural products CC(C)=CCCC(C)=CCOCC=C(C)CCC=C(C)C XWRJRXQNOHXIOX-UHFFFAOYSA-N 0.000 description 1
- OJISWRZIEWCUBN-UHFFFAOYSA-N geranylnerol Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCO OJISWRZIEWCUBN-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 1
- 239000001685 glycyrrhizic acid Substances 0.000 description 1
- 229960004949 glycyrrhizic acid Drugs 0.000 description 1
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 1
- 235000019410 glycyrrhizin Nutrition 0.000 description 1
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 230000003648 hair appearance Effects 0.000 description 1
- 210000004919 hair shaft Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- RTUQKZCBZBMIAA-UHFFFAOYSA-N hex-1-ene-1,2,6-triol Chemical compound OCCCCC(O)=CO RTUQKZCBZBMIAA-UHFFFAOYSA-N 0.000 description 1
- XAMHKORMKJIEFW-AYTKPMRMSA-N hexadecyl (z,12r)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/C[C@H](O)CCCCCC XAMHKORMKJIEFW-AYTKPMRMSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 229960005388 hexylcaine Drugs 0.000 description 1
- 230000036732 histological change Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 210000000003 hoof Anatomy 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960004337 hydroquinone Drugs 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000005165 hydroxybenzoic acids Chemical class 0.000 description 1
- 229920013819 hydroxyethyl ethylcellulose Polymers 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 229940054190 hydroxypropyl chitosan Drugs 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229940072106 hydroxystearate Drugs 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 229940031674 laureth-7 Drugs 0.000 description 1
- 229940071145 lauroyl sarcosinate Drugs 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 125000005644 linolenyl group Chemical group 0.000 description 1
- 125000005645 linoleyl group Chemical group 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- MQYXUWHLBZFQQO-QGTGJCAVSA-N lupeol Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C MQYXUWHLBZFQQO-QGTGJCAVSA-N 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229960003951 masoprocol Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960003803 meclofenamic acid Drugs 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- 229960002409 mepivacaine Drugs 0.000 description 1
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- CBKLICUQYUTWQL-XWGBWKJCSA-N methyl (3s,4r)-3-methyl-1-(2-phenylethyl)-4-(n-propanoylanilino)piperidine-4-carboxylate;oxalic acid Chemical compound OC(=O)C(O)=O.CCC(=O)N([C@]1([C@H](CN(CCC=2C=CC=CC=2)CC1)C)C(=O)OC)C1=CC=CC=C1 CBKLICUQYUTWQL-XWGBWKJCSA-N 0.000 description 1
- 229960002285 methylbenzethonium chloride Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- DCYOADKBABEMIQ-FLCVNNLFSA-N myricitrin Natural products O([C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](C)O1)C1=C(c2cc(O)c(O)c(O)c2)Oc2c(c(O)cc(O)c2)C1=O DCYOADKBABEMIQ-FLCVNNLFSA-N 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 235000013557 nattō Nutrition 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229960004738 nicotinyl alcohol Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- YBGZDTIWKVFICR-UHFFFAOYSA-N octinoxate Chemical compound CCCCC(CC)COC(=O)C=CC1=CC=C(OC)C=C1 YBGZDTIWKVFICR-UHFFFAOYSA-N 0.000 description 1
- YAGMLECKUBJRNO-UHFFFAOYSA-N octyl 4-(dimethylamino)benzoate Chemical compound CCCCCCCCOC(=O)C1=CC=C(N(C)C)C=C1 YAGMLECKUBJRNO-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- FJCFFCXMEXZEIM-UHFFFAOYSA-N oxiniacic acid Chemical compound OC(=O)C1=CC=C[N+]([O-])=C1 FJCFFCXMEXZEIM-UHFFFAOYSA-N 0.000 description 1
- 229960001173 oxybenzone Drugs 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- BJRNKVDFDLYUGJ-UHFFFAOYSA-N p-hydroxyphenyl beta-D-alloside Natural products OC1C(O)C(O)C(CO)OC1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-UHFFFAOYSA-N 0.000 description 1
- 108010027628 palmitoyl-lysyl-threonyl-threonyl-lysyl-serine Proteins 0.000 description 1
- 229940055726 pantothenic acid Drugs 0.000 description 1
- 235000019161 pantothenic acid Nutrition 0.000 description 1
- 239000011713 pantothenic acid Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229940088608 peg-9 polydimethylsiloxyethyl dimethicone Drugs 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940098888 phenethyl benzoate Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 150000002548 phytantriol derivatives Chemical class 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 235000002378 plant sterols Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940100518 polyglyceryl-4 isostearate Drugs 0.000 description 1
- 235000010408 potassium alginate Nutrition 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 1
- 235000019275 potassium ascorbate Nutrition 0.000 description 1
- 229940017794 potassium ascorbate Drugs 0.000 description 1
- CONVKSGEGAVTMB-RXSVEWSESA-M potassium-L-ascorbate Chemical compound [K+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] CONVKSGEGAVTMB-RXSVEWSESA-M 0.000 description 1
- 229960001896 pramocaine Drugs 0.000 description 1
- DQKXQSGTHWVTAD-UHFFFAOYSA-N pramocaine Chemical compound C1=CC(OCCCC)=CC=C1OCCCN1CCOCC1 DQKXQSGTHWVTAD-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- NEOZOXKVMDBOSG-UHFFFAOYSA-N propan-2-yl 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OC(C)C NEOZOXKVMDBOSG-UHFFFAOYSA-N 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940116422 propylene glycol dicaprate Drugs 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940043131 pyroglutamate Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229940096792 quaternium-15 Drugs 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 235000020746 red clover extract Nutrition 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- NCYCYZXNIZJOKI-OVSJKPMPSA-N retinal group Chemical group C\C(=C/C=O)\C=C\C=C(\C=C\C1=C(CCCC1(C)C)C)/C NCYCYZXNIZJOKI-OVSJKPMPSA-N 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 229960000342 retinol acetate Drugs 0.000 description 1
- 235000019173 retinyl acetate Nutrition 0.000 description 1
- 239000011770 retinyl acetate Substances 0.000 description 1
- 229940108325 retinyl palmitate Drugs 0.000 description 1
- 235000019172 retinyl palmitate Nutrition 0.000 description 1
- 239000011769 retinyl palmitate Substances 0.000 description 1
- 201000004700 rosacea Diseases 0.000 description 1
- 235000020748 rosemary extract Nutrition 0.000 description 1
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 150000003330 sebacic acids Chemical class 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- SEBFKMXJBCUCAI-HKTJVKLFSA-N silibinin Chemical compound C1=C(O)C(OC)=CC([C@@H]2[C@H](OC3=CC=C(C=C3O2)[C@@H]2[C@H](C(=O)C3=C(O)C=C(O)C=C3O2)O)CO)=C1 SEBFKMXJBCUCAI-HKTJVKLFSA-N 0.000 description 1
- 229960004029 silicic acid Drugs 0.000 description 1
- 229960004245 silymarin Drugs 0.000 description 1
- 235000017700 silymarin Nutrition 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- YRWWOAFMPXPHEJ-OFBPEYICSA-K sodium L-ascorbic acid 2-phosphate Chemical compound [Na+].[Na+].[Na+].OC[C@H](O)[C@H]1OC(=O)C(OP([O-])([O-])=O)=C1[O-] YRWWOAFMPXPHEJ-OFBPEYICSA-K 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229940048058 sodium ascorbyl phosphate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019259 sodium dehydroacetate Nutrition 0.000 description 1
- 229940079839 sodium dehydroacetate Drugs 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- DSOWAKKSGYUMTF-GZOLSCHFSA-M sodium;(1e)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate Chemical compound [Na+].C\C([O-])=C1/C(=O)OC(C)=CC1=O DSOWAKKSGYUMTF-GZOLSCHFSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000003687 soy isoflavones Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002294 steroidal antiinflammatory agent Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000036561 sun exposure Effects 0.000 description 1
- 230000037072 sun protection Effects 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 208000009056 telangiectasis Diseases 0.000 description 1
- RLNWRDKVJSXXPP-UHFFFAOYSA-N tert-butyl 2-[(2-bromoanilino)methyl]piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CNC1=CC=CC=C1Br RLNWRDKVJSXXPP-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 229960005196 titanium dioxide Drugs 0.000 description 1
- 229950009883 tocopheryl nicotinate Drugs 0.000 description 1
- 239000011731 tocotrienol Substances 0.000 description 1
- 229930003802 tocotrienol Natural products 0.000 description 1
- 229940068778 tocotrienols Drugs 0.000 description 1
- 235000019148 tocotrienols Nutrition 0.000 description 1
- 210000004906 toe nail Anatomy 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 208000027185 varicose disease Diseases 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 150000003712 vitamin E derivatives Chemical class 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 229940118846 witch hazel Drugs 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/891—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
- A61K8/064—Water-in-oil emulsions, e.g. Water-in-silicone emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/891—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
- A61K8/894—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/895—Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/54—Polymers characterized by specific structures/properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/594—Mixtures of polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to water in oil emulsion compositions comprising: from about 0.1 % to about 15% of a non-emulsifying crosslinked siloxane elastomer; from about 0.1% to about 15% of an emulsifying crosslinked siloxane elastomer; from about 1% to about 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers; optionally, from 0% to about 5% of an additional emulsifÊer; and from about 50% to about 99% of aqueous phase; wherein when shear stress is applied to the composition during spreading on skin, aqueous phase is released from the emulsion.
Description
WATER IN OIL EMULSION COMPOSITIONS
CONTAINING SILOXANE ELASTOMERS
FIELD OF THE INVENTION
The present invention relates to water in oil emulsion type skin care compositions containing a combination of emulsifying and non-emulsifying siloxane elastomers. Such compositions are useful for delivering skin care actives in products with consumer acceptable aestlietics. In particular, the ainount and rate of aqueous phase released from the compositions upon spreading application to the skin can provide consumer acceptable aesthetics and non-greasy skin feel.
BACKGROUND
Many personal care products currently available to consumers are directed primarily to improving the health and/or physical appearance of the skin and/or hair. Among the skin care products, many are directed to hydration, whitening, oil control, delaying, minimizing or even eliminating skin wrinkling and other histological changes typically associated with the aging of skin or environmental damage to human skin. Numerous coinpounds have been described in the art as being useful for regulating skin conditions such as those listed above.
Skin is subject to insults by many extrinsic and intrinsic factors. Extrinsic factors include ultraviolet radiation (e.g., from sun exposure), environmental pollution, wind, heat, low humidity, harsh surfactants, abrasives, and the like. Intrinsic factors include chronological aging and other biochemical changes from within the skin. While delivery of specific skin care actives or compounds that can help condition the skin and/or alleviate the damage caused by such insults is of course important, consutner acceptance of the sensory and aesthetic aspects of a particular skin care composition is also important. For exainple, as the level of commonly incorporated moisturizing agents such as glycerin increases, greasy skin feel also increased.
Many consumers dislike heavy, oily or greasy feeling compositions and prefer compositions that can provide smooth spreadability and water-like, fresh skin feel, with silky after-feel.
Previous skin care and cosmetic compositions incorporating silicone elastomers have been described, e.g., WO 02/03930, WO 02/03950; WO 02/03951; WO 02/03952; EP 1 746 Al; EP 1 068 851 Al; Japanese Laid Open Publication No. 2003-081757; and Japanese Laid Open Publication No. 2003-55141. Among these disclosures, compositions said to provide the impression of freshness and "splash" of the aqueous ingredients upon rubbing are described.
CONTAINING SILOXANE ELASTOMERS
FIELD OF THE INVENTION
The present invention relates to water in oil emulsion type skin care compositions containing a combination of emulsifying and non-emulsifying siloxane elastomers. Such compositions are useful for delivering skin care actives in products with consumer acceptable aestlietics. In particular, the ainount and rate of aqueous phase released from the compositions upon spreading application to the skin can provide consumer acceptable aesthetics and non-greasy skin feel.
BACKGROUND
Many personal care products currently available to consumers are directed primarily to improving the health and/or physical appearance of the skin and/or hair. Among the skin care products, many are directed to hydration, whitening, oil control, delaying, minimizing or even eliminating skin wrinkling and other histological changes typically associated with the aging of skin or environmental damage to human skin. Numerous coinpounds have been described in the art as being useful for regulating skin conditions such as those listed above.
Skin is subject to insults by many extrinsic and intrinsic factors. Extrinsic factors include ultraviolet radiation (e.g., from sun exposure), environmental pollution, wind, heat, low humidity, harsh surfactants, abrasives, and the like. Intrinsic factors include chronological aging and other biochemical changes from within the skin. While delivery of specific skin care actives or compounds that can help condition the skin and/or alleviate the damage caused by such insults is of course important, consutner acceptance of the sensory and aesthetic aspects of a particular skin care composition is also important. For exainple, as the level of commonly incorporated moisturizing agents such as glycerin increases, greasy skin feel also increased.
Many consumers dislike heavy, oily or greasy feeling compositions and prefer compositions that can provide smooth spreadability and water-like, fresh skin feel, with silky after-feel.
Previous skin care and cosmetic compositions incorporating silicone elastomers have been described, e.g., WO 02/03930, WO 02/03950; WO 02/03951; WO 02/03952; EP 1 746 Al; EP 1 068 851 Al; Japanese Laid Open Publication No. 2003-081757; and Japanese Laid Open Publication No. 2003-55141. Among these disclosures, compositions said to provide the impression of freshness and "splash" of the aqueous ingredients upon rubbing are described.
However, such previous disclosures have shown compositions containing only silicone emulsifiers, or 'compositions using different silicone elastomer systems.
Similarly, it is believed that previously disclosed coinpositions have not provided the level of aqueous content and release from the emulsion that the compositions of the present invention provide.
Based on the foregoing, there is a continuing need to formulate skin care compositions that can provide improved delivery of skin care actives while also providing sensory and aesthetic benefits, especially as related to non-greasy, fresh feeling and aqueous phase release.
None of the existing art provides all of the advantages and benefits of the present invention.
SUMMARY
The present invention relates to water in oil emulsion compositions comprising: from about 0.1% to about 15% of a non-emulsifying crosslinked siloxane elastomer;
from about 0.1%
to about 15% of an emulsifying crosslinked siloxane elastomer; from about 1%
to about 40%
of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
optionally, from 0% to about 5% of an additional emulsifier; from about 50% to about 99% of aqueous phase; wherein when shear stress is applied to the composition during spreading on skin, aqueous phase is released from the emulsion.
The present invention also relates to methods of using such compositions to regulate the condition of mammalian skin. Said methods generally contain the step of topically applying a safe and effective amount of the composition to the skin of a mammal needing such treatment.
These and other features, aspects, and advantages of the present invention will become evident to those skilled in the art from a reading of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1A-B are micrographs of suitable embodiments of the invention.
Figs. 2A-C are micrographs of suitable embodiments of the invention.
Figs. 3A-C are micrographs of a comparative example.
Figs. 4-6 are plots of log shear stress (x-axis) versus log viscosity (y-axis) for three sutiable embodiments of the invention.
Fig. 7 is a plot of log shear stress (x-axis) versus log viscosity (y-axis) for a comparative exainple.
Similarly, it is believed that previously disclosed coinpositions have not provided the level of aqueous content and release from the emulsion that the compositions of the present invention provide.
Based on the foregoing, there is a continuing need to formulate skin care compositions that can provide improved delivery of skin care actives while also providing sensory and aesthetic benefits, especially as related to non-greasy, fresh feeling and aqueous phase release.
None of the existing art provides all of the advantages and benefits of the present invention.
SUMMARY
The present invention relates to water in oil emulsion compositions comprising: from about 0.1% to about 15% of a non-emulsifying crosslinked siloxane elastomer;
from about 0.1%
to about 15% of an emulsifying crosslinked siloxane elastomer; from about 1%
to about 40%
of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
optionally, from 0% to about 5% of an additional emulsifier; from about 50% to about 99% of aqueous phase; wherein when shear stress is applied to the composition during spreading on skin, aqueous phase is released from the emulsion.
The present invention also relates to methods of using such compositions to regulate the condition of mammalian skin. Said methods generally contain the step of topically applying a safe and effective amount of the composition to the skin of a mammal needing such treatment.
These and other features, aspects, and advantages of the present invention will become evident to those skilled in the art from a reading of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1A-B are micrographs of suitable embodiments of the invention.
Figs. 2A-C are micrographs of suitable embodiments of the invention.
Figs. 3A-C are micrographs of a comparative example.
Figs. 4-6 are plots of log shear stress (x-axis) versus log viscosity (y-axis) for three sutiable embodiments of the invention.
Fig. 7 is a plot of log shear stress (x-axis) versus log viscosity (y-axis) for a comparative exainple.
DETAILED DESCRIPTION
While the specification concludes with the claims particularly pointing and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.
All percentages and ratios used herein are by weight of the total composition and all measurements made are at 25 C, unless otherwise designated.
As used herein, the "skin care products" are those used to treat or care for, or somehow moisturize, improve, or clean the skin. Products conteinplated by the phrase "skin care products" include, but are not limited to moisturizers, personal cleansing products, occlusive drug delivery patches, nail polish, powders, wipes, hair conditioners, skin treatment emulsions, shaving creams and the like.
The tenn "ambient conditions" as used herein refers to surrounding conditions under about one atmosphere of pressure, at about 50% relative humidity, and at about 25 C, unless otherwise specified.
The compositions of the present invention can include, consist essentially of, or consist of, the components of the present invention as well as other ingredients described herein. As used herein, "consisting essentially of' means that the composition or component may include additional ingredients, but only if the additional ingredients do not materially alter the basic and novel characteristics of the claimed compositions or methods.
All percentages, parts and ratios are based upon the total weight of the skin care compositions of the present invention, unless otherwise specified. All such weiglits as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.
All publications cited herein are hereby incoiporated by reference in their entirety.
The term "keratinous tissue," as used herein, refers to keratin-containing layers disposed as the outermost protective covering of mainmals (e.g., humans, dogs, cats, etc.) which includes, but is not limited to, skin, lips, hair, toenails, finger-nails, cuticles, hooves, etc.
The term "dermatologically-acceptable," as used herein, means that the compositions or components thereof so described are suitable for use in contact with mammalian keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like.
While the specification concludes with the claims particularly pointing and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description.
All percentages and ratios used herein are by weight of the total composition and all measurements made are at 25 C, unless otherwise designated.
As used herein, the "skin care products" are those used to treat or care for, or somehow moisturize, improve, or clean the skin. Products conteinplated by the phrase "skin care products" include, but are not limited to moisturizers, personal cleansing products, occlusive drug delivery patches, nail polish, powders, wipes, hair conditioners, skin treatment emulsions, shaving creams and the like.
The tenn "ambient conditions" as used herein refers to surrounding conditions under about one atmosphere of pressure, at about 50% relative humidity, and at about 25 C, unless otherwise specified.
The compositions of the present invention can include, consist essentially of, or consist of, the components of the present invention as well as other ingredients described herein. As used herein, "consisting essentially of' means that the composition or component may include additional ingredients, but only if the additional ingredients do not materially alter the basic and novel characteristics of the claimed compositions or methods.
All percentages, parts and ratios are based upon the total weight of the skin care compositions of the present invention, unless otherwise specified. All such weiglits as they pertain to listed ingredients are based on the active level and, therefore, do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.
All publications cited herein are hereby incoiporated by reference in their entirety.
The term "keratinous tissue," as used herein, refers to keratin-containing layers disposed as the outermost protective covering of mainmals (e.g., humans, dogs, cats, etc.) which includes, but is not limited to, skin, lips, hair, toenails, finger-nails, cuticles, hooves, etc.
The term "dermatologically-acceptable," as used herein, means that the compositions or components thereof so described are suitable for use in contact with mammalian keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like.
The term "safe and effective amount" as used herein means an amount of a compound or composition sufficient,to significantly induce a positive benefit, preferably a positive keratinous tissue appearance or feel benefit, or positive hair appearance or feel benefit, including independently or in combinations the benefits disclosed herein, but low enough to avoid serious side effects, i.e., to provide a reasonable benefit to risk ratio, within the scope of sound judgment of the skilled artisan.
The terms "smoothing" and "softening" as used herein mean altering the surface of the keratinous tissue such that its tactile feel is improved.
It is desirable to have one or more skin care actives at high levels for skin care benefits such as regulating the condition of skin. However, when high levels of skin care actives are used in traditional skin care products, there is a downside. For example, residue caused by "salting out" of niacinamide produces an undesirable whitening effect on the skin. Likewise, high levels of skin conditioning agents such as glycerin produces a greasy, sticky feeling on the skin.
Silicone elastomers are known in the art as useful components in skin care compositions.
Such silicone elastomers have been used to reduce the tackiness/stickiness associated with skin conditioning agents including glycerin. The use of silicone emulsifiers, e.g, as described in EP
1068851 Al, has also been said to provide compositions that contain as much as 91% aqueous phase. However, it has been found that the water in oil emulsion compositions of the present invention comprising a mixture of emulsified and non-emulsified siloxane elastomers can provide skin care compositions that contain an aqueous phase which, upon release from the emulsion when applied by spreading onto the slcin, provide even better sensory benefits than heretofor believed possible. In addition, the rate of aqueous phase release from the emulsions of the present invention can be controlled to provide the desired consumer aesthetic and sensory benefits. In addition, increased levels of skin conditioning agents such as glycerin can be incorporated into the compositions of the present invention, without causing the, compositions to feel greasy or sticky when spread upon the skin.
The compositions of the present invention are also useful for regulating the condition of skin and especially for regulating keratinous tissue condition. Regulation of skin condition, namely mammalian and in particular human slcin condition, is often required due to conditions which may be induced or caused by factors internal and/or external to the body. Examples include, environmental damage, radiation exposure (including ultraviolet radiation), chronological aging, menopausal status (e.g., post-menopausal changes in skin), stress, diseases, etc. For instance, "regulating skin condition" includes prophylactically regulating and/or tlierapeutically regulating skin condition, and may involve one or more of the following benefits:
thickening of skin (i.e., building the epidermis and/or dermis and/or sub-dermal (e.g., subcutaneous fat or muscle) layers of the skin and where applicable the keratinous layers of the 5 nail and hair shaft) to reduce skin atrophy, increasing the convolution of the dermal-epidermal border (also known as the rete ridges), preventing loss of skin elasticity (loss, damage and/or inactivation of functional skin elastin) such as elastosis, sagging, loss of skin recoil from deformation; non-melanin slcin discoloration such as under eye circles, blotching (e.g., uneven red coloration due to, e.g., rosacea) (hereinafter referred to as "red blotchiness"), sallowness (pale color), discoloration caused by telangiectasia or spider vessels.
The compositions of the present inven.tion provide additional benefits, including stability, absence of significant (consumer-unacceptable) skin irritation and good aesthetics.
The compositions of the present invention contain a non-emulsifying c'rosslinked siloxane elastomer; an emulsifying crosslinked siloxane elastomer; a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers; optionally, an additional emulsifier; and aqueous water phase. The compositions also preferably contain one or more skin care actives.
The compositions herein may also include a wide variety of other ingredients.
The compositions of the present invention are described in detail hereinafter.
Crosslinked Siloxane Elastomers An essential component of the present invention is a crosslinked organopolysiloxane elastomer. No specific restriction exists as to the type of curable organopolysiloxane composition that can serve as starting material for the crosslinked organopolysiloxane elastomer.
Examples in this respect are addition reaction-curing organopolysiloxane compositions which cure under platinum metal catalysis by the addition reaction between SiH-containing diorganopolysiloxane and organopolysiloxane having silicon-bonded vinyl groups;
condensation-curing organopolysiloxane compositions wliich cure in the presence of an organotin compound by a dehydrogenation reaction between hydroxyl-terminated diorganopolysiloxane and SiH-containing diorganopolysiloxane; condensation-curing organopolysiloxane compositions which cure in the presence of an organotin compound or a titanate ester, by a condensation reaction between an hydroxyl-terminated diorganopolysiloxane and a hydrolyzable organosilane (this condensation reaction is exemplified by dehydration, alcohol-liberating, oxime-liberating, amine-liberating, amide-liberating, carboxyl-liberating, and ketone-liberating reactions); peroxide-curing organopolysiloxane compositions which thermally cure in the presence of an organoperoxide catalyst; and organopolysiloxane compositions which are cured by high-energy radiation, such as by gamma-rays, ultraviolet radiation, or electron beams.
Addition reaction-curing organopolysiloxane compositions are preferred for their rapid curing rates and excellent uniformity of curing. A particularly preferred addition reaction-curing organopolysiloxane composition is prepared from:
(A) an organopolysiloxane having at least 2 lower alkenyl groups in each molecule;
(B) an organopolysiloxane having at least 2 silicon-bonded hydrogen atoms in each molecule; and (C) a platinum-type catalyst.
With regard to the above, component (A) is the basic coinponent of the siloxane elastomer-generating organopolysiloxane, and curing proceeds by the addition reaction of this component with component (B) under catalysis by component (C). This component (A) nlust contain at least 2 silicon-bonded lower alkenyl groups in each molecule; an excellent cured product will not be obtained at few than two lower alkenyl groups because a network structure will not be formed. Said lower alkenyl groups are exemplified by vinyl, allyl, and propenyl.
While the lower alkenyl groups can be present at any position in the molecule, their presence at the molecular terminals is preferred. The molecular structure of this component may be straight chain, branched straight chain, cyclic, or network, but a straight chain, possibly slightly branched, is preferred. The molecular weiglit of the component is not specifically restricted, and thus the viscosity may range from low viscosity liquids to very high viscosity gums. In order for the cured product to be obtained in the form of the rubbery elastomer, it is preferred that the viscosity at 25 degrees Centigrade be at least 100 centistokes. These organopolysiloxanes are exemplified by methylvinylsiloxanes, methylvinylsiloxane-dimethylsiloxane copolymers, dimethylvinylsiloxy-terminated dimethylpolysiloxanes, dimethylvinylsiloxy-terminated dimethylsiloxane-methylphenylsiloxane copolymers, dimethylvinylsiloxy-tenninated dimethylsiloxane-diphenylsiloxane-methylvinylsiloxane copolymers, trimethylsiloxy-terminated dimethylsiloxane-methylvinylsiloxane copolymers, trimethylsiloxy-terminated dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymers, dimethylvinylsiloxy-terminated methyl(3,3,3-trifluoropropyl) polysiloxanes, and dimethylvinylsiloxy-terminated dimethylsiloxane-methyl(3,3,-trifluoropropyl)siloxane copolymers.
The terms "smoothing" and "softening" as used herein mean altering the surface of the keratinous tissue such that its tactile feel is improved.
It is desirable to have one or more skin care actives at high levels for skin care benefits such as regulating the condition of skin. However, when high levels of skin care actives are used in traditional skin care products, there is a downside. For example, residue caused by "salting out" of niacinamide produces an undesirable whitening effect on the skin. Likewise, high levels of skin conditioning agents such as glycerin produces a greasy, sticky feeling on the skin.
Silicone elastomers are known in the art as useful components in skin care compositions.
Such silicone elastomers have been used to reduce the tackiness/stickiness associated with skin conditioning agents including glycerin. The use of silicone emulsifiers, e.g, as described in EP
1068851 Al, has also been said to provide compositions that contain as much as 91% aqueous phase. However, it has been found that the water in oil emulsion compositions of the present invention comprising a mixture of emulsified and non-emulsified siloxane elastomers can provide skin care compositions that contain an aqueous phase which, upon release from the emulsion when applied by spreading onto the slcin, provide even better sensory benefits than heretofor believed possible. In addition, the rate of aqueous phase release from the emulsions of the present invention can be controlled to provide the desired consumer aesthetic and sensory benefits. In addition, increased levels of skin conditioning agents such as glycerin can be incorporated into the compositions of the present invention, without causing the, compositions to feel greasy or sticky when spread upon the skin.
The compositions of the present invention are also useful for regulating the condition of skin and especially for regulating keratinous tissue condition. Regulation of skin condition, namely mammalian and in particular human slcin condition, is often required due to conditions which may be induced or caused by factors internal and/or external to the body. Examples include, environmental damage, radiation exposure (including ultraviolet radiation), chronological aging, menopausal status (e.g., post-menopausal changes in skin), stress, diseases, etc. For instance, "regulating skin condition" includes prophylactically regulating and/or tlierapeutically regulating skin condition, and may involve one or more of the following benefits:
thickening of skin (i.e., building the epidermis and/or dermis and/or sub-dermal (e.g., subcutaneous fat or muscle) layers of the skin and where applicable the keratinous layers of the 5 nail and hair shaft) to reduce skin atrophy, increasing the convolution of the dermal-epidermal border (also known as the rete ridges), preventing loss of skin elasticity (loss, damage and/or inactivation of functional skin elastin) such as elastosis, sagging, loss of skin recoil from deformation; non-melanin slcin discoloration such as under eye circles, blotching (e.g., uneven red coloration due to, e.g., rosacea) (hereinafter referred to as "red blotchiness"), sallowness (pale color), discoloration caused by telangiectasia or spider vessels.
The compositions of the present inven.tion provide additional benefits, including stability, absence of significant (consumer-unacceptable) skin irritation and good aesthetics.
The compositions of the present invention contain a non-emulsifying c'rosslinked siloxane elastomer; an emulsifying crosslinked siloxane elastomer; a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers; optionally, an additional emulsifier; and aqueous water phase. The compositions also preferably contain one or more skin care actives.
The compositions herein may also include a wide variety of other ingredients.
The compositions of the present invention are described in detail hereinafter.
Crosslinked Siloxane Elastomers An essential component of the present invention is a crosslinked organopolysiloxane elastomer. No specific restriction exists as to the type of curable organopolysiloxane composition that can serve as starting material for the crosslinked organopolysiloxane elastomer.
Examples in this respect are addition reaction-curing organopolysiloxane compositions which cure under platinum metal catalysis by the addition reaction between SiH-containing diorganopolysiloxane and organopolysiloxane having silicon-bonded vinyl groups;
condensation-curing organopolysiloxane compositions wliich cure in the presence of an organotin compound by a dehydrogenation reaction between hydroxyl-terminated diorganopolysiloxane and SiH-containing diorganopolysiloxane; condensation-curing organopolysiloxane compositions which cure in the presence of an organotin compound or a titanate ester, by a condensation reaction between an hydroxyl-terminated diorganopolysiloxane and a hydrolyzable organosilane (this condensation reaction is exemplified by dehydration, alcohol-liberating, oxime-liberating, amine-liberating, amide-liberating, carboxyl-liberating, and ketone-liberating reactions); peroxide-curing organopolysiloxane compositions which thermally cure in the presence of an organoperoxide catalyst; and organopolysiloxane compositions which are cured by high-energy radiation, such as by gamma-rays, ultraviolet radiation, or electron beams.
Addition reaction-curing organopolysiloxane compositions are preferred for their rapid curing rates and excellent uniformity of curing. A particularly preferred addition reaction-curing organopolysiloxane composition is prepared from:
(A) an organopolysiloxane having at least 2 lower alkenyl groups in each molecule;
(B) an organopolysiloxane having at least 2 silicon-bonded hydrogen atoms in each molecule; and (C) a platinum-type catalyst.
With regard to the above, component (A) is the basic coinponent of the siloxane elastomer-generating organopolysiloxane, and curing proceeds by the addition reaction of this component with component (B) under catalysis by component (C). This component (A) nlust contain at least 2 silicon-bonded lower alkenyl groups in each molecule; an excellent cured product will not be obtained at few than two lower alkenyl groups because a network structure will not be formed. Said lower alkenyl groups are exemplified by vinyl, allyl, and propenyl.
While the lower alkenyl groups can be present at any position in the molecule, their presence at the molecular terminals is preferred. The molecular structure of this component may be straight chain, branched straight chain, cyclic, or network, but a straight chain, possibly slightly branched, is preferred. The molecular weiglit of the component is not specifically restricted, and thus the viscosity may range from low viscosity liquids to very high viscosity gums. In order for the cured product to be obtained in the form of the rubbery elastomer, it is preferred that the viscosity at 25 degrees Centigrade be at least 100 centistokes. These organopolysiloxanes are exemplified by methylvinylsiloxanes, methylvinylsiloxane-dimethylsiloxane copolymers, dimethylvinylsiloxy-terminated dimethylpolysiloxanes, dimethylvinylsiloxy-terminated dimethylsiloxane-methylphenylsiloxane copolymers, dimethylvinylsiloxy-tenninated dimethylsiloxane-diphenylsiloxane-methylvinylsiloxane copolymers, trimethylsiloxy-terminated dimethylsiloxane-methylvinylsiloxane copolymers, trimethylsiloxy-terminated dimethylsiloxane-methylphenylsiloxane-methylvinylsiloxane copolymers, dimethylvinylsiloxy-terminated methyl(3,3,3-trifluoropropyl) polysiloxanes, and dimethylvinylsiloxy-terminated dimethylsiloxane-methyl(3,3,-trifluoropropyl)siloxane copolymers.
Component (B) is an organopolysiloxane having at least 2 silicon-bonded hydrogen atoms in each molecule and is a crosslinker for coi-nponent (A). Curing proceeds by the addition reaction of the silicon-bonded hydrogen atoms in this component with the lower alkenyl groups in component (A) under catalysis by component (C). This component (B) must contain at least 2 silicon-bonded hydrogen atoms in each molecule in order to function as a crosslinker.
Furthermore, the sum of the number of alkenyl groups in each molecule of component (A) and the number of silicon-bonded hydrogen atoms in each molecule of component (B) is to be at least 5. Values below 5 should be avoided because a network structure is then essentially not formed.
No specific restriction exists on the molecular structure of this component, and it may be any of straight chain, branch-containing straight chain, cyclic, etc. The molecular weight of this component is not specifically restricted, but it is preferred that the viscosity at 25 degrees Centigrade be 1 to 50,000 centistokes in order to obtain good miscibility with component (A).
It is preferred that this component be added in a quantity such that the molar ratio between the total quantity of silicon-bonded hydrogen atoms in the instant component and the total quantity of all lower alkenyl groups in component (A) falls within the range of (1.5:1) to (20:1). It is difficult to obtain good curing properties when this molar ratio falls below 0.5:1. When (20:1) is exceeded, there is a tendency for the hardness to increase to high levels when the cured product is heated. Furthermore, wlien an organosiloxane containing substantial alkenyl is supplementary added for the purpose of; for example, reinforcement, it is preferred that a supplemental addition of the instant SiH-containing component be made in a quantity offsetting these alkenyl groups. This component is concretely exemplified by trimethylsiloxy-terminated methylhydrogenpolysiloxanes, trimethylsiloxy-terminated dimethylsiloxane-methylhydrogensiloxane copolymers, and dimethylsiloxane-methylhydrogen-siloxane cyclic copolymers.
Component (C) is a catalyst of the addition reaction of silicon-bonded hydrogen atoms and alkenyl groups, and is concretely exeinplified by chloroplatinic acid, possibly dissolved in an alcohol or ketone and this solution optionally aged, chloroplatinic acid-olefin complexes, chloroplatinic acid-alkenylsiloxane complexes, chloroplatinic acid-diketone complexes, platinum black, and carrier-supported platinum.
This component is added preferably at 0.1 to 1,000 weight parts, and more preferably at 1 to 100 weight parts, as platinum-type metal proper per 1,000,000 weight parts of the total quantity of components (A) plus (B). Other organic groups which may be bonded to silicon in the organopolysiloxane forming the basis for the above-described curable organopolysiloxane compositions are, for example, alkyl groups such as methyl, ethyl, propyl, butyl, and octyl;
substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl, and xylyl; substituted aryl groups such as phenylethyl; and monovalent hydrocarbon groups substituted by, for example, the epoxy group, the carboxylate ester group, the mercapto group, etc.
Examples of the production of the organopolysiloxane elastomer powder are as follows:
an organopolysiloxane composition as described above (additional-curable, condensation-curable, or peroxide-curable) is mixed with water in the presence of a surfactant (nonionic, anionic, cationic, or amphoteric), and, after mixing to homogeneity in a homomixer, colloid mill, homogenizer, propeller mixer, etc., this is cured by discharge into hot water (temperature at least 50 degrees Ceritigrade) and is then dried; the organopolysiloxane composition (addition-curable, condensation-curable, or peroxide-curable) is cured by sprayi,ng it directly into a heated current;
the powder is obtained by curing a radiation-curable organopolysiloxane composition by spraying it under high energy radiation; the organopolysiloxane composition (addition-curable, condensation-curable, peroxide-curable) or high energy-curable organopolysiloxane composition is cured, the latter by high energy radiation, and the product is then pulverized using a known pulverizer such as, for example, a ball mill, atomizer, kneader, roll mill, etc., to thereby form the powder. Suitable organopolysiloxane elastomer powders include vinyl dimethicone/methicone silesquioxane crosspolymers like Shin-Etsu's KSP-100, KSP-101, KSP-102, KSP-103, KSP-104, KSP-105, hybrid silicone powders that contain a fluoroalkyl group like Shin-Etsu's KSP-200, and hybrid silicone powders that contain a phenyl group such as Shin-Etsu's KSP-300; and Dow Corning's DC 9506.
Preferred organopolysiloxane compositions are dimethicone/vinyl dimetliicone crosspolymers. Such dimethicone/vinyl dimethicone crosspolymers are supplied by a variety of suppliers including Dow Corning (DC 9040 and DC 9041), General Electric (SFE
839), Shin Etsu (KSG-15, 16, 18 [dimethicone /phenyl vinyl dimethicone crosspolymer]), and Grant Industries (GransilTM line of materials), and lauryl dimethicone/vinyl dimethicone crosspolymers supplied by Shin Etsu (e.g., KSG-21, KSG-210, KSG-310, KSG-320, KSG-41, KSG-42, KSG-43, KSG-44, KSG-710 and KSG-810). Cross-linked organopolysiloxane elastomers useful in the present invention_and processes for making them are further described in US
Patent 4,970,252 to Sakuta et al.; US Patent 5,760,116 to Kilgour et al.; US Patent 5,654,362 to Schulz, Jr. et al.; and Japanese Patent Application JP 61-18708, assigned to Pola Kasei Kogyo KK.
Furthermore, the sum of the number of alkenyl groups in each molecule of component (A) and the number of silicon-bonded hydrogen atoms in each molecule of component (B) is to be at least 5. Values below 5 should be avoided because a network structure is then essentially not formed.
No specific restriction exists on the molecular structure of this component, and it may be any of straight chain, branch-containing straight chain, cyclic, etc. The molecular weight of this component is not specifically restricted, but it is preferred that the viscosity at 25 degrees Centigrade be 1 to 50,000 centistokes in order to obtain good miscibility with component (A).
It is preferred that this component be added in a quantity such that the molar ratio between the total quantity of silicon-bonded hydrogen atoms in the instant component and the total quantity of all lower alkenyl groups in component (A) falls within the range of (1.5:1) to (20:1). It is difficult to obtain good curing properties when this molar ratio falls below 0.5:1. When (20:1) is exceeded, there is a tendency for the hardness to increase to high levels when the cured product is heated. Furthermore, wlien an organosiloxane containing substantial alkenyl is supplementary added for the purpose of; for example, reinforcement, it is preferred that a supplemental addition of the instant SiH-containing component be made in a quantity offsetting these alkenyl groups. This component is concretely exemplified by trimethylsiloxy-terminated methylhydrogenpolysiloxanes, trimethylsiloxy-terminated dimethylsiloxane-methylhydrogensiloxane copolymers, and dimethylsiloxane-methylhydrogen-siloxane cyclic copolymers.
Component (C) is a catalyst of the addition reaction of silicon-bonded hydrogen atoms and alkenyl groups, and is concretely exeinplified by chloroplatinic acid, possibly dissolved in an alcohol or ketone and this solution optionally aged, chloroplatinic acid-olefin complexes, chloroplatinic acid-alkenylsiloxane complexes, chloroplatinic acid-diketone complexes, platinum black, and carrier-supported platinum.
This component is added preferably at 0.1 to 1,000 weight parts, and more preferably at 1 to 100 weight parts, as platinum-type metal proper per 1,000,000 weight parts of the total quantity of components (A) plus (B). Other organic groups which may be bonded to silicon in the organopolysiloxane forming the basis for the above-described curable organopolysiloxane compositions are, for example, alkyl groups such as methyl, ethyl, propyl, butyl, and octyl;
substituted alkyl groups such as 2-phenylethyl, 2-phenylpropyl, and 3,3,3-trifluoropropyl; aryl groups such as phenyl, tolyl, and xylyl; substituted aryl groups such as phenylethyl; and monovalent hydrocarbon groups substituted by, for example, the epoxy group, the carboxylate ester group, the mercapto group, etc.
Examples of the production of the organopolysiloxane elastomer powder are as follows:
an organopolysiloxane composition as described above (additional-curable, condensation-curable, or peroxide-curable) is mixed with water in the presence of a surfactant (nonionic, anionic, cationic, or amphoteric), and, after mixing to homogeneity in a homomixer, colloid mill, homogenizer, propeller mixer, etc., this is cured by discharge into hot water (temperature at least 50 degrees Ceritigrade) and is then dried; the organopolysiloxane composition (addition-curable, condensation-curable, or peroxide-curable) is cured by sprayi,ng it directly into a heated current;
the powder is obtained by curing a radiation-curable organopolysiloxane composition by spraying it under high energy radiation; the organopolysiloxane composition (addition-curable, condensation-curable, peroxide-curable) or high energy-curable organopolysiloxane composition is cured, the latter by high energy radiation, and the product is then pulverized using a known pulverizer such as, for example, a ball mill, atomizer, kneader, roll mill, etc., to thereby form the powder. Suitable organopolysiloxane elastomer powders include vinyl dimethicone/methicone silesquioxane crosspolymers like Shin-Etsu's KSP-100, KSP-101, KSP-102, KSP-103, KSP-104, KSP-105, hybrid silicone powders that contain a fluoroalkyl group like Shin-Etsu's KSP-200, and hybrid silicone powders that contain a phenyl group such as Shin-Etsu's KSP-300; and Dow Corning's DC 9506.
Preferred organopolysiloxane compositions are dimethicone/vinyl dimetliicone crosspolymers. Such dimethicone/vinyl dimethicone crosspolymers are supplied by a variety of suppliers including Dow Corning (DC 9040 and DC 9041), General Electric (SFE
839), Shin Etsu (KSG-15, 16, 18 [dimethicone /phenyl vinyl dimethicone crosspolymer]), and Grant Industries (GransilTM line of materials), and lauryl dimethicone/vinyl dimethicone crosspolymers supplied by Shin Etsu (e.g., KSG-21, KSG-210, KSG-310, KSG-320, KSG-41, KSG-42, KSG-43, KSG-44, KSG-710 and KSG-810). Cross-linked organopolysiloxane elastomers useful in the present invention_and processes for making them are further described in US
Patent 4,970,252 to Sakuta et al.; US Patent 5,760,116 to Kilgour et al.; US Patent 5,654,362 to Schulz, Jr. et al.; and Japanese Patent Application JP 61-18708, assigned to Pola Kasei Kogyo KK.
The compositions of the present invention comprise a combination) of einulsifying and non-emulsifying crosslinlced organopolysiloxane elastomer. The term "non-emulsifying," as used herein, defines crosslinked organopolysiloxane elastomer from which polyoxyalkylene units or polyglycerin units are absent. The term "emulsifying," as used herein, means crosslinked organopolysiloxane elastomer having at least one polyoxyalkylene (e.g., polyoxyethylene or polyoxypropylene) unit or polyglycerin unit.
Particularly useful einulsifying elastomers are polyoxyalkylene-modified elastomers formed from divinyl compounds, particularly siloxane polymers witli at least two free vinyl groups, reacting with Si-H linkages on a polysiloxane backbone. Preferably, the elastomers are dimethyl polysiloxanes crosslinked by Si-H sites on a molecularly spherical MQ
resin.
The non-emulsifying cross-linked organopolysiloxane elastomers of the present invention are preferably fiuther processed by subjecting them to a high shear (approximately 5,000 psi) treatment in the presence of a solvent for the siloxane elastomer via a Sonolator with or without recycling in 10 to 60 passes.
The emulsifying crosslinked organopolysiloxane elastomer is present in the compositions of the present invention at concentrations of from about 0.1% to about 15%, preferably from about 0.2% to about 5%, most preferably from about 0.2% to about 2% by weight.
The non-emulsifying crosslinked organopolysiloxane elastomer is present in the compositions of the present invention at concentrations of from about 0.1 to about 15%, preferably from about 0.1 to about 5%, most preferably from about 0.1 to about 2% by weight.
Solvent for the Non-emulsifying and EmulsifyingCrosslinked SiloxanejElastomer The compositions of the present invention coinprise a solvent for the crosslinked organopolysiloxane elastomer described above. The solvent, when combined with the cross-linked organopolysiloxane elastomer particles of the present invention, serves to suspend and swell the elastomer particles to provide aii elastic, gel-like network or matrix. The solvent for the cross-linked siloxane elastomer is liquid under ambient conditions, and preferably has a low viscosity to provide for improved spreading on the skin.
Concentrations of the solvent in the cosmetic compositions of the present invention will vary primarily with the type and amount of solvent and the cross-linked siloxane elastomer enzployed. Preferred concentrations of the solvent are from about 1% to about 50%, preferably from about 4% to about 50%, more preferably from about 5% to about 40%, by weight of the composition.
The solvent for the crosslinked siloxane elastomer comprises one or more liquid carriers suitable for topical application to human skin. These liquid carriers may be organic, silicone-containing or fluorine-containing, volatile or non-volatile, polar or non-polar, provided that the liquid carrier forms a solution or other homogenous liquid or liquid dispersion with the selected 5 cross-linked siloxane elastomer at the selected siloxane elastomer concentration at a temperature of from about 28 C to about 250 C, preferably from about 28 C to about 100 C, preferably from about 28 C to about 78 C. The solvent for the cross-linked siloxane elastomer preferably has a solubility parameter of from about 3 to about 13 (cal/cm3) '5, more preferably from about 5 to about 11 (cal/cm3) 's, most preferably from about 5 to about 9(cal/cm3)0'5Solubility 10 parameters for the liquid carriers or other materials, and means for determining such parameters, are well known in the chemical arts. A description of solubility parameters and means for determining them are described by C. D. Vaughan, "Solubility Effects in Product, Package, Penetration and Preservation" 103 Cosmetics and Toiletries 47-69, October 1988; and C. D.
Vaughan, "Using Solubility Parameters in Cosmetics Formulation", 36 J. Soc.
Cosmetic Chemists 319-333, September/October, 1988, which articles are incorporated herein by _ reference.
The solvent preferably includes volatile, non-polar oils; non-volatile, relatively polar oils;
non-volatile, non-polar oils; and non-volatile paraffinic hydrocarbon oils;
each discussed more fully hereinafter. The term "non-volatile" as used herein refers to materials that exhibit a vapor pressure of no more than about 0.2 mm Hg at 25 C at one atmosphere and/or to materials that have a boiling point at one atmosphere of at least about 300 C. The tenn "volatile" as used herein refers to all materials that are not "non-volatile" as previously defined herein. The phrase "relatively polar" as used herein means more polar than another material in terms of solubility parameter; i.e., the higher the solubility parameter the more polar the liquid. The term "non-polar" typically means that the material has a solubility parameter below about 6.5 (cal/cm) .s 1. Non-polar, Volatile Oils The non-polar, volatile oil tends to impart highly desirable aesthetic properties to the compositions of the present invention. Consequently, the non-polar, volatile oils are preferably utilized at a fairly high level. Non-polar, volatile oils particularly useful in the present invention are selected from the group consisting of silicone oils;
hydrocarbons; and mixtures thereof. Such non-polar, volatile oils are disclosed, for exainple, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsain and Sagarin, 1972. The non-polar, volatile oils useful in the present invention may be either saturated or unsaturated, have an aliphatic character and be straight or branched chained or contain alicyclic or aromatic rings.
Examples of preferred non-polar, volatile hydrocarbons include polydecanes such as isododecane and isodecane (e.g., Permethyl-99A which is available from Presperse Inc.) and the C7 -C8 through C12 -C15 isoparaffins (such as the Isopar Series available from Exxon Chemicals). Non-polar, volatile liquid silicone oils are disclosed in U.S. Patent 4,781,917 issued to Luebbe et al. on Nov.
1, 1988. Additionally, a description of various volatile silicones materials is found in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976).
Particularly preferred volatile silicone oils are selected from the group consisting of cyclic volatile silicones corresponding to the formula:
IHi I CH' L - - - - - - - - - - J
wherein n is from about 3 to about 7; and linear volatile silicones corresponding to the formula:
(CH3)3 SI--O--[Sl(CH3)2-O]m --Sl(CH3)3 wherein m is from about 1 to about 7. Linear volatile silicones generally have a viscosity of less than about 5 centistokes at 25 C, whereas the cyclic silicones have viscosities of less than about 10 centistokes at 25 C. Highly preferred examples of volatile silicone oils include cyclomethicones of varying viscosities, e.g., Dow Coming 200, Dow Coming 244, Dow Corning 245, Dow Corning 344, and Dow Corning 345, (conunercially available from Dow Corning Corp.); SF-1204 and SF-1202 Silicone Fluids (commercially available from G.E.
Silicones), GE 7207 and 7158 (commercially available from General Electric Co.); and SWS-03314 (commercially available from SWS Silicones Corp.).
2. Relatively Polar, Non-volatile oils The non-volatile oil is "relatively polar" as compared to the non-polar, volatile oil discussed above. Therefore, the non-volatile co-solvent is more polar (i.e., has a higher solubility parameter) than at least one of the non-polar, volatile oils.
Relatively polar, non-volatile oils potentially useful in the present invention are disclosed, for example, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsam and Sagarin, 1972;
U.S. Patents 4,202,879 issued to Shelton on May 13, 1980; and 4,816,261 issued to Luebbe et al. on Mar. 28, 1989. Relatively polar, non-volatile oils useful in the present invention are preferably selected from the group consisting of silicone oils; hydrocarbon oils; fatty alcohols;
fatty acids; esters of mono and dibasic carboxylic acids with mono and polyhydric alcohols;
polyoxyethylenes, polyoxypropylenes, mixtures of polyoxyethylene and polyoxypropylene ethers of fatty alcohols;
and mixtures thereof. The relatively polar, non-volatile co-solvents useful in the present invention inay be either saturated or unsaturated, have an aliphatic character and be straight or branched chained or contain alicyclic or aromatic rings. More preferably, the relatively polar, non-volatile liquid co-solvent are selected from the group consisting of fatty alcohols having from about 12-26 carbon atoms; fatty acids having from about 12-26 carbon atoms; esters of monobasic carboxylic acids and alcohols having from about 14-30 carbon atoms;
esters of dibasic carboxylic acids and alcohols having from about 10-30 carbon atoms;
esters of polyhydric alcohols and carboxylic acids having from about 5-26 carbon atoms;
ethoxylated, propoxylated, and mixtures of ethoxylated and propoxylated ethers of fatty alcohols with from about 12-26 carbon atoms and a degree of ethoxylation and propoxylation of below about 50;
and mixtures thereof. More preferred are propoxylated ethers of C 14-C 18 fatty alcohols having a degree of propoxylation below about 50, esters of,C2-C8 alcohols and carboxylic acids (e.g. ethyl myristate, isopropyl palmitate), esters of C12-C26 alcohols and benzoic acid (e.g. Finsolv TN supplied by Finetex), diesters of C2-C8 alcohols and adipic, sebacic, and phthalic acids (e.g., diisopropyl sebacate, diisopropyl adipate, di-n-butyl phthalate), polyliydric alcohol esters of C6-C26 carboxylic acids (e.g., propylene glycol dicaprate/dicaprylate, propylene glycol isostearate); and mixtures thereof.
Even more preferred are branched-chain aliphatic fatty alcohols having from about 12-26 carbon atoms.
3. Non-polar, Non-volatile oils In addition to the liquids discussed above, the solvent for the cross-linked siloxane elastomer may optionally include non-volatile, non-polar oils. Typical non-volatile, non-polar emollients are disclosed, for example, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsam and Sagarin, 1972; U.S. Patents 4,202,879 issued to Shelton on May 13, 1980;
and 4,816,261 issued to Luebbe et al. on Mar. 28, 1989. The non-volatile oils useful in the present invention are essentially non-volatile polysiloxanes, paraffinic hydrocarbon oils, and mixtures thereof. The polysiloxanes useful in the present invention selected from 'the group consisting of polyalkylsiloxanes, polyarylsiloxanes, polyalkylarylsiloxanes, poly-ethersiloxane copolymers, and mixtures thereof. Examples of these include polydimethyl siloxanes having viscosities of from about 1 to about 100,000 centistokes at 25 C.' Among the preferred non-volatile silicone emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 2 to about 400 centistokes at 25 C. Such polyalkylsiloxanes include the Viscasil series (sold by General Electric Company) and the Dow Corning 200 series (sold by Dow Corning Corp.). Polyalkylarylsiloxanes include polymethylphenyl siloxanes having viscosities of from about 15 to about 65 centistokes at 25 C. These are available, for example, as SF 1075 methyl-phenyl fluid (sold by General Electric Company) and Cosmetic Grade Fluid (sold by Dow Coniing Corp.).
Non-volatile paraffinic hydrocarbon oils useful in the present invention include mineral oils and certain branched-chain hydrocarbons. Examples of these fluids are disclosed in U.S.
Patent 5,019,375 issued to Tanner et al. on May 28, 1991. Preferred mineral oils have the following properties:
(1) viscosity fiom about 5 centistokes to about 70 centistokes at 40 C;
(2) density between about 0.82 and 0.89 g/cm3 at 25 C;
(3) flash point between about 138 C. and about 216 C; and (4) carbon chain length between about 14 and about 40 carbon atoms.
Preferred branched chain hydrocarbon oils have the following properties:
(1) density between about 0.79 and about 0.89 g/cm3 at 20 C
(2) boiling point greater than about 250 C; and (3) flash point between about 110 C and about 200 C.
Suitable branched-chain hydrocarbons include Permethyl 103 A, which contains an average of about 24 carbon atoms; Permethyl 104A, which contains an average of about 68 carbon atoms; Permetlzyl 102A, which contains an average of about 20 carbon atoms; all of which may be purchased from Permethyl Corporation; and Ethylflo 364 which contains a mixture of 30 carbon atoms and 40 carbon atoms and may be purchased from Ethyl Corp.
Additional solvents useful herein are described in US Patent 5,750,096 to Gerald J.
Guskey et al., issued May 12, 1998.
Aqueous Phase The cosmetic compositions of the present invention comprise an aqueous phase comprising from about 50% to about 99%, preferably from about 50% to about 95%, more preferably from about 65% to about 90% by weight of the composition.
The compositions of the present invention are water in oil emulsions. As such, generally speaking, there is weak bonding of aqueous phase to oil phase. This can permit the composition to transform upon application, e.g., to provide a water-splash sensation during spreading or rubbing upon the skin. For example, at the initial application to the skin but before spreading upon the skin, the composition is in the form of a gel or cream. Upon spreading, the finger shear stress is believed to brealc the emulsion, thereby releasing the aqueous phase from the emulsion. This provides good consumer sensory benefit, as the aqueous phase so released is perceptible to the touch as well as visually.
In certain embodiments, the visually perceptible release of the aqueous phase may be characterized by the Microscopy Metliod as presented in the Test Methods. The microscopy method is a microscope-assisted visual analysis of the presence and size of the aqueous domains emulsified within the oil phase. The emulsion is subjected to timed increments of shear after which a micrograph of the emulsion is taken. A visually perceptible release of the aqueous phase occurs when an amorphous aqueous region having a maximuni linear dimension of at least about 10 microns becomes visible at 500x magnification within about 1 ininute 'of shear. In alternate embodiments, the visually perceptible release of the aqueous phase occurs when an amorphous region of water having a size of at least about 25, 50, or 75 microns becomes visible at 500x magnification within about 1 minute of shear. In another suitable embodiment, the visually perceptible release of the aqueous phase occurs when an amorphous region of water having a size of at least 10 microns becomes visible at 500x magnification within about 45 second, 30 second, or 15 seconds of shear.
In certain embodiments, the visually perceptible release of the aqueous phase may be characterized by phase separation after milling according to the Milling Method provided in the Test Methods. The milling metliod involves the bulk milling of a 30g sample of the emulsion.
In one embodiment, a visually perceptible release of a portion of the aqueous phase occurs when at least about 0.5 g of the aqueous phase separates after 1 minute of milling at a rate of 24000 rpm. In further embodiments, at least about 1.0 g, 2.5 g, or 5.0 g of the aqueous phase separates after 1 minute of milling at a rate of 24000 rpm. In another embodiment, a visually perceptible release of a portion of the aqueous phase occurs when at least 0.25 g of the aqueous phase separates after 1 minute of milling at a rate of 13500 rpm. In other embodiments, the composition may result in the separation of at least about a 0.5 g portion of the aqueous phase after 1 minute of milling at a rate of 24000 rpm while yielding no visually perceptible release of the aqueous phase (i.e., < 0.1g of aqueous phase) after 1 minute of milling at a rate of 8000 rpm.
Such an embodiment is believed to have suitable shelf and processing stability while still exhibiting a perceptible release of the aqueous phase during typical skin application.
In certain embodiments, the tactilely perceptible release of the aqueous phase may be characterized by a viscosity drop as measured in the Rheological Method provided in the Test Methods. The rheological method involves applying a controlled stress to a sample of the emulsion to generate a rheology profile of the log of viscosity (y-axis) versus the log of shear 5 stress (x-axis). For an emulsion exhibiting an aqueous phase release upon application of shear, the plot of viscosity versus shear yields a sharp decrease in viscosity at a critical shear stress.
The slope of the region of the plot exhibiting a sharp decrease is less than about -5. In alternate embodiments, slope of the region of the plot exhibiting a sharp decrease is less than about -10, -25, -50, -75, or -100.
10 Without being bound by theory, the amount of aqueous phase released from the einulsion and the rate at which the aqueous phase is released from the emulsion can be controlled, depending upon how the oil phase is bonded to the aqueous phase in the emulsion. In addition, it is also believed that the amount of aqueous phase released from the emulsion and the rate at which it is released from the emulsion can be controlled, for example, by incorporating an 15 additional emulsifier for dispersing the aqueous phase as described below, by changing the level of the emulsifying crosslinked siloxane elastomer within the claimed range, and by varying the water/oil phase ratio.
Additional Emulsifier for Dis ep rsin the he Aqueous Phase The water-in-oil emulsions of the present invention can optionally contain an emulsifier in addition to an emulsifying elastomer. In some embodiments, the composition may contain from about 0% to about 5%, preferably from 0.01% to about 5% additional emulsifier, more preferably from about 0.1% to about 3%, still more preferably from about 0.1%
to about 2%, emulsifier by weight of the composition. The additional emulsifier if present helps disperse and suspend the aqueous phase witllin the continuous silicone phase.
A wide variety of emulsifying agents can be employed herein to form the preferred water-in-silicone emulsion. Known or conventional emulsifying agents can be used in the coinposition, provided that the selected einulsifying agent is chemically and physically compatible with coinponents of the composition of the present invention, and provides the desired dispersion characteristics. Suitable emulsifiers include silicone emulsifiers, non-silicon-containing emulsifiers, and mixtures thereof, known by those skilled in the art for use in topical personal care products. Preferably these emulsifiers have an HLB value of or less than about 14, more preferably from about 2 to about 14, and still more preferably from about 4 to about 10. Emulsifiers having an HLB value outside of these ranges can be used in combination with other emulsifiers to achieve an effective weighted average HLB for the combination that falls within these ranges.
Silicone emulsifiers are preferred. A wide variety of silicone emulsifiers are useful herein. These silicone emulsifiers are typically organically modified organopolysiloxanes, also known to those skilled in the art as silicone surfactants. Useful silicone emulsifiers include dimethicone copolyols. These materials are polydimethyl siloxanes which have been modified to include polyether side chains such as polyethylene oxide chains, polypropylene oxide chains, mixtures of these chains, and polyether chains containing moieties derived from both ethylene oxide and propylene oxide. Other examples include alkyl-modified dimethicone copolyols, i.e., compounds which contain C2-C30 pendant side chains. Still other useful dimethicone copolyols include materials having various cationic, anionic, ainphoteric, and zwitterionic pendant moieties.
Nonlimiting examples of dimethicone copolyols and other silicone surfactants useful as emulsifiers herein include polydimethylsiloxane polyether copolymers with pendant polyethylene oxide sidechains, polydimethylsiloxane polyether copolymers with pendant polypropylene oxide sidechains, polydimethylsiloxane polyether copolymers wit11 pendant mixed polyethylene oxide and polypropylene oxide sidechains, polydimethylsiloxane polyether copolymers with pendant mixed poly(ethylene)(propylene)oxide sidechains, polydimethylsiloxane polyether copolymers with pendant organobetaine sidechains, polydimethylsiloxane polyether copolymers with pendant carboxylate sidechains, polydimethylsiloxane polyether copolymers with pendant quaternary ammonium sidechains; and also further modifications of the preceding copolyiners containing pendant C2-C30 straight, branched, or cyclic alkyl moieties. Examples of commercially available dimethieone copolyols useful herein sold by Dow Corning Corporation are Dow Corning 190, 193, Q2-5220, 2501 Wax, 2-5324 fluid, and 3225C (this later material being sold as a mixture with cyclomethicone).
Cetyl diinethicone copolyol is commercially available under the trade name ABIL EM-90, and also available as a mixture with polyglyceryl-4 isostearate (and) hexyl laurate and is sold under the tradename ABIL WE-09 (available from Goldschmidt). Cetyl dimethicone copolyol is also commercially available as a mixture with hexyl laurate (and) polyglyceryl-3 oleate (and) cetyl dimethicone and is sold under the tradename ABIL WS-08 (also available from Goldschmidt). Polydimethylsiloxyethyl dimethicone copolyol is commercially available under the trade names KF-6028, KF-6104, KF-6105, and KF-6106 (from Shin-Etsu). Other nonlimiting examples of dimethicone copolyols also include lauryl dimethicone copolyol, lauryl polydimethylsiloxyethyl dimethicone copolyol, dimethicone copolyol acetate, dimethicone copolyol adipate, dimethicone copolyolainine, dimethicone copolyol behenate, dimethicone copolyol butyl ether, dimethicone copolyol hydroxy stearate, dimethicone copolyol isostearate, dimethicone copolyol laurate, dimethicone copolyol methyl ether, dimethicone copolyol phosphate, and dimethicone copolyol stearate.
Dimethicone copolyol emulsifiers useful herein are described, for example, in U.S. Patent No. 4,960,764, to Figueroa, Jr. et al.; European Patent No. EP 330,369, to SaNogueira; G.H.
Dahms, et al., "New Formulation Possibilities Offered by Silicone Copolyols,"
Cosmetics &
Toiletries, vol. 110, pp. 91-100, March 1995; M.E. Carlotti et al., "Optimization of W/O-S
Emulsions And Study Of The Quantitative Relationships Between Ester Structure And Emulsion Properties," J. Dispersion Science And Technology, 13(3), 315-336 (1992); P.
Hameyer, "Comparative Technological Investigations of Organic and Organosilicone Emulsifiers in, Cosmetic Water-in-Oil Emulsion Preparations," HAPPI 28(4), pp. 88-128 (1991);
J. Smid-Korbar et al., "Efficiency and usability of silicone surfactants in emulsions," Provisional Communication, International Journal of Cosmetic Science, 12, 135-139 (1990);
and D.G.
Krzysik et al., "A New Silicone Emulsifier For Water-in-Oil Systeins," Drug and Cosmetic Industry, vol. 146(4) pp. 28-81 (April 1990).
Among the non-silicone-containing emulsifiers useful herein are various non-ionic and anionic emulsifying agents such as sugar esters and polyesters, alkoxylated sugar )esters and polyesters, C1-C30 fatty acid esters of C1-C30 fatty alcohols, alkoxylated derivatives of C1-C30 fatty acid esters of C1-C30 fatty alcohols, alkoxylated ethers of Cl-C30 fatty alcohols, polyglyceryl esters of Cl-C30 fatty acids, Cl-C30 esters of polyols, C1-C30 eth.ers of polyols, alkyl phosphates, polyoxyalkylene fatty ether phosphates, fatty acid amides, acyl lactylates, soaps, and mixtures thereof.
Skin Care Active The topical compositions of the present invention preferably also include at least one skin care active. Actives that are typically characterized as "water-soluble" as well as actives that are typically characterized as "oil-soluble" are suitable for formulation herein. Without being bound by theory, it is believed the present compositions provide versatility in formulating a variety of actives.
In any embodiment of the present invention, however, the actives useful herein can be categorized by the benefit they provide or by their posttilated mode of action. However, it is to be understood that the actives useful herein can in sorne instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active to that particular application or applications listed.
Non-limiting examples of skin care actives suitable herein iuiclude niacinamide, hexamidine compounds, whitening actives, peptides, sugar amines, and mixtures thereof.
Niacinamide Niacinamide (or another solid at ambient teinperature vitainin B3 compound that is soluble in a solvent) is a preferred skin care active for use herein. The present invention preferably includes from about 2% to about 30%, more preferably from about 2%
to about 20%, even more preferably from about 2% to about 10% of a vitainin B3 compound.
As used herein, "niacinamide" means a compound having the formula:
R
wherein R is - CONH2.
The niacinamide may be included as the substantially pure material, or as an extract obtained by suitable physical and/or chemical isolation from natural (e.g., plant) sources. The vitamin B3 compound is preferably substantially pure, more preferably essentially pure.
Hexamidine Compound The topical compositions of the present invention comprise a safe and effective amount of one or more hexamidine and its salts. More preferably, the hexamidine is hexamidine diisethionate.
As used herein, "hexamidine" includes any isomers and tautomers of such and is commercially available as hexamidine diisethionate under the tradename Elestab HP 100 from Laboratoires Serobiologiques (Pulnoy, France).
In the composition of the present invention, the hexamidine preferably comprises from about 0.0001-25% by weiglit of the composition, more preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, and most preferably from about 0.02% to about 2.5%.
Particularly useful einulsifying elastomers are polyoxyalkylene-modified elastomers formed from divinyl compounds, particularly siloxane polymers witli at least two free vinyl groups, reacting with Si-H linkages on a polysiloxane backbone. Preferably, the elastomers are dimethyl polysiloxanes crosslinked by Si-H sites on a molecularly spherical MQ
resin.
The non-emulsifying cross-linked organopolysiloxane elastomers of the present invention are preferably fiuther processed by subjecting them to a high shear (approximately 5,000 psi) treatment in the presence of a solvent for the siloxane elastomer via a Sonolator with or without recycling in 10 to 60 passes.
The emulsifying crosslinked organopolysiloxane elastomer is present in the compositions of the present invention at concentrations of from about 0.1% to about 15%, preferably from about 0.2% to about 5%, most preferably from about 0.2% to about 2% by weight.
The non-emulsifying crosslinked organopolysiloxane elastomer is present in the compositions of the present invention at concentrations of from about 0.1 to about 15%, preferably from about 0.1 to about 5%, most preferably from about 0.1 to about 2% by weight.
Solvent for the Non-emulsifying and EmulsifyingCrosslinked SiloxanejElastomer The compositions of the present invention coinprise a solvent for the crosslinked organopolysiloxane elastomer described above. The solvent, when combined with the cross-linked organopolysiloxane elastomer particles of the present invention, serves to suspend and swell the elastomer particles to provide aii elastic, gel-like network or matrix. The solvent for the cross-linked siloxane elastomer is liquid under ambient conditions, and preferably has a low viscosity to provide for improved spreading on the skin.
Concentrations of the solvent in the cosmetic compositions of the present invention will vary primarily with the type and amount of solvent and the cross-linked siloxane elastomer enzployed. Preferred concentrations of the solvent are from about 1% to about 50%, preferably from about 4% to about 50%, more preferably from about 5% to about 40%, by weight of the composition.
The solvent for the crosslinked siloxane elastomer comprises one or more liquid carriers suitable for topical application to human skin. These liquid carriers may be organic, silicone-containing or fluorine-containing, volatile or non-volatile, polar or non-polar, provided that the liquid carrier forms a solution or other homogenous liquid or liquid dispersion with the selected 5 cross-linked siloxane elastomer at the selected siloxane elastomer concentration at a temperature of from about 28 C to about 250 C, preferably from about 28 C to about 100 C, preferably from about 28 C to about 78 C. The solvent for the cross-linked siloxane elastomer preferably has a solubility parameter of from about 3 to about 13 (cal/cm3) '5, more preferably from about 5 to about 11 (cal/cm3) 's, most preferably from about 5 to about 9(cal/cm3)0'5Solubility 10 parameters for the liquid carriers or other materials, and means for determining such parameters, are well known in the chemical arts. A description of solubility parameters and means for determining them are described by C. D. Vaughan, "Solubility Effects in Product, Package, Penetration and Preservation" 103 Cosmetics and Toiletries 47-69, October 1988; and C. D.
Vaughan, "Using Solubility Parameters in Cosmetics Formulation", 36 J. Soc.
Cosmetic Chemists 319-333, September/October, 1988, which articles are incorporated herein by _ reference.
The solvent preferably includes volatile, non-polar oils; non-volatile, relatively polar oils;
non-volatile, non-polar oils; and non-volatile paraffinic hydrocarbon oils;
each discussed more fully hereinafter. The term "non-volatile" as used herein refers to materials that exhibit a vapor pressure of no more than about 0.2 mm Hg at 25 C at one atmosphere and/or to materials that have a boiling point at one atmosphere of at least about 300 C. The tenn "volatile" as used herein refers to all materials that are not "non-volatile" as previously defined herein. The phrase "relatively polar" as used herein means more polar than another material in terms of solubility parameter; i.e., the higher the solubility parameter the more polar the liquid. The term "non-polar" typically means that the material has a solubility parameter below about 6.5 (cal/cm) .s 1. Non-polar, Volatile Oils The non-polar, volatile oil tends to impart highly desirable aesthetic properties to the compositions of the present invention. Consequently, the non-polar, volatile oils are preferably utilized at a fairly high level. Non-polar, volatile oils particularly useful in the present invention are selected from the group consisting of silicone oils;
hydrocarbons; and mixtures thereof. Such non-polar, volatile oils are disclosed, for exainple, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsain and Sagarin, 1972. The non-polar, volatile oils useful in the present invention may be either saturated or unsaturated, have an aliphatic character and be straight or branched chained or contain alicyclic or aromatic rings.
Examples of preferred non-polar, volatile hydrocarbons include polydecanes such as isododecane and isodecane (e.g., Permethyl-99A which is available from Presperse Inc.) and the C7 -C8 through C12 -C15 isoparaffins (such as the Isopar Series available from Exxon Chemicals). Non-polar, volatile liquid silicone oils are disclosed in U.S. Patent 4,781,917 issued to Luebbe et al. on Nov.
1, 1988. Additionally, a description of various volatile silicones materials is found in Todd et al., "Volatile Silicone Fluids for Cosmetics", Cosmetics and Toiletries, 91:27-32 (1976).
Particularly preferred volatile silicone oils are selected from the group consisting of cyclic volatile silicones corresponding to the formula:
IHi I CH' L - - - - - - - - - - J
wherein n is from about 3 to about 7; and linear volatile silicones corresponding to the formula:
(CH3)3 SI--O--[Sl(CH3)2-O]m --Sl(CH3)3 wherein m is from about 1 to about 7. Linear volatile silicones generally have a viscosity of less than about 5 centistokes at 25 C, whereas the cyclic silicones have viscosities of less than about 10 centistokes at 25 C. Highly preferred examples of volatile silicone oils include cyclomethicones of varying viscosities, e.g., Dow Coming 200, Dow Coming 244, Dow Corning 245, Dow Corning 344, and Dow Corning 345, (conunercially available from Dow Corning Corp.); SF-1204 and SF-1202 Silicone Fluids (commercially available from G.E.
Silicones), GE 7207 and 7158 (commercially available from General Electric Co.); and SWS-03314 (commercially available from SWS Silicones Corp.).
2. Relatively Polar, Non-volatile oils The non-volatile oil is "relatively polar" as compared to the non-polar, volatile oil discussed above. Therefore, the non-volatile co-solvent is more polar (i.e., has a higher solubility parameter) than at least one of the non-polar, volatile oils.
Relatively polar, non-volatile oils potentially useful in the present invention are disclosed, for example, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsam and Sagarin, 1972;
U.S. Patents 4,202,879 issued to Shelton on May 13, 1980; and 4,816,261 issued to Luebbe et al. on Mar. 28, 1989. Relatively polar, non-volatile oils useful in the present invention are preferably selected from the group consisting of silicone oils; hydrocarbon oils; fatty alcohols;
fatty acids; esters of mono and dibasic carboxylic acids with mono and polyhydric alcohols;
polyoxyethylenes, polyoxypropylenes, mixtures of polyoxyethylene and polyoxypropylene ethers of fatty alcohols;
and mixtures thereof. The relatively polar, non-volatile co-solvents useful in the present invention inay be either saturated or unsaturated, have an aliphatic character and be straight or branched chained or contain alicyclic or aromatic rings. More preferably, the relatively polar, non-volatile liquid co-solvent are selected from the group consisting of fatty alcohols having from about 12-26 carbon atoms; fatty acids having from about 12-26 carbon atoms; esters of monobasic carboxylic acids and alcohols having from about 14-30 carbon atoms;
esters of dibasic carboxylic acids and alcohols having from about 10-30 carbon atoms;
esters of polyhydric alcohols and carboxylic acids having from about 5-26 carbon atoms;
ethoxylated, propoxylated, and mixtures of ethoxylated and propoxylated ethers of fatty alcohols with from about 12-26 carbon atoms and a degree of ethoxylation and propoxylation of below about 50;
and mixtures thereof. More preferred are propoxylated ethers of C 14-C 18 fatty alcohols having a degree of propoxylation below about 50, esters of,C2-C8 alcohols and carboxylic acids (e.g. ethyl myristate, isopropyl palmitate), esters of C12-C26 alcohols and benzoic acid (e.g. Finsolv TN supplied by Finetex), diesters of C2-C8 alcohols and adipic, sebacic, and phthalic acids (e.g., diisopropyl sebacate, diisopropyl adipate, di-n-butyl phthalate), polyliydric alcohol esters of C6-C26 carboxylic acids (e.g., propylene glycol dicaprate/dicaprylate, propylene glycol isostearate); and mixtures thereof.
Even more preferred are branched-chain aliphatic fatty alcohols having from about 12-26 carbon atoms.
3. Non-polar, Non-volatile oils In addition to the liquids discussed above, the solvent for the cross-linked siloxane elastomer may optionally include non-volatile, non-polar oils. Typical non-volatile, non-polar emollients are disclosed, for example, in Cosmetics, Science, and Technology, Vol. 1, 27-104 edited by Balsam and Sagarin, 1972; U.S. Patents 4,202,879 issued to Shelton on May 13, 1980;
and 4,816,261 issued to Luebbe et al. on Mar. 28, 1989. The non-volatile oils useful in the present invention are essentially non-volatile polysiloxanes, paraffinic hydrocarbon oils, and mixtures thereof. The polysiloxanes useful in the present invention selected from 'the group consisting of polyalkylsiloxanes, polyarylsiloxanes, polyalkylarylsiloxanes, poly-ethersiloxane copolymers, and mixtures thereof. Examples of these include polydimethyl siloxanes having viscosities of from about 1 to about 100,000 centistokes at 25 C.' Among the preferred non-volatile silicone emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 2 to about 400 centistokes at 25 C. Such polyalkylsiloxanes include the Viscasil series (sold by General Electric Company) and the Dow Corning 200 series (sold by Dow Corning Corp.). Polyalkylarylsiloxanes include polymethylphenyl siloxanes having viscosities of from about 15 to about 65 centistokes at 25 C. These are available, for example, as SF 1075 methyl-phenyl fluid (sold by General Electric Company) and Cosmetic Grade Fluid (sold by Dow Coniing Corp.).
Non-volatile paraffinic hydrocarbon oils useful in the present invention include mineral oils and certain branched-chain hydrocarbons. Examples of these fluids are disclosed in U.S.
Patent 5,019,375 issued to Tanner et al. on May 28, 1991. Preferred mineral oils have the following properties:
(1) viscosity fiom about 5 centistokes to about 70 centistokes at 40 C;
(2) density between about 0.82 and 0.89 g/cm3 at 25 C;
(3) flash point between about 138 C. and about 216 C; and (4) carbon chain length between about 14 and about 40 carbon atoms.
Preferred branched chain hydrocarbon oils have the following properties:
(1) density between about 0.79 and about 0.89 g/cm3 at 20 C
(2) boiling point greater than about 250 C; and (3) flash point between about 110 C and about 200 C.
Suitable branched-chain hydrocarbons include Permethyl 103 A, which contains an average of about 24 carbon atoms; Permethyl 104A, which contains an average of about 68 carbon atoms; Permetlzyl 102A, which contains an average of about 20 carbon atoms; all of which may be purchased from Permethyl Corporation; and Ethylflo 364 which contains a mixture of 30 carbon atoms and 40 carbon atoms and may be purchased from Ethyl Corp.
Additional solvents useful herein are described in US Patent 5,750,096 to Gerald J.
Guskey et al., issued May 12, 1998.
Aqueous Phase The cosmetic compositions of the present invention comprise an aqueous phase comprising from about 50% to about 99%, preferably from about 50% to about 95%, more preferably from about 65% to about 90% by weight of the composition.
The compositions of the present invention are water in oil emulsions. As such, generally speaking, there is weak bonding of aqueous phase to oil phase. This can permit the composition to transform upon application, e.g., to provide a water-splash sensation during spreading or rubbing upon the skin. For example, at the initial application to the skin but before spreading upon the skin, the composition is in the form of a gel or cream. Upon spreading, the finger shear stress is believed to brealc the emulsion, thereby releasing the aqueous phase from the emulsion. This provides good consumer sensory benefit, as the aqueous phase so released is perceptible to the touch as well as visually.
In certain embodiments, the visually perceptible release of the aqueous phase may be characterized by the Microscopy Metliod as presented in the Test Methods. The microscopy method is a microscope-assisted visual analysis of the presence and size of the aqueous domains emulsified within the oil phase. The emulsion is subjected to timed increments of shear after which a micrograph of the emulsion is taken. A visually perceptible release of the aqueous phase occurs when an amorphous aqueous region having a maximuni linear dimension of at least about 10 microns becomes visible at 500x magnification within about 1 ininute 'of shear. In alternate embodiments, the visually perceptible release of the aqueous phase occurs when an amorphous region of water having a size of at least about 25, 50, or 75 microns becomes visible at 500x magnification within about 1 minute of shear. In another suitable embodiment, the visually perceptible release of the aqueous phase occurs when an amorphous region of water having a size of at least 10 microns becomes visible at 500x magnification within about 45 second, 30 second, or 15 seconds of shear.
In certain embodiments, the visually perceptible release of the aqueous phase may be characterized by phase separation after milling according to the Milling Method provided in the Test Methods. The milling metliod involves the bulk milling of a 30g sample of the emulsion.
In one embodiment, a visually perceptible release of a portion of the aqueous phase occurs when at least about 0.5 g of the aqueous phase separates after 1 minute of milling at a rate of 24000 rpm. In further embodiments, at least about 1.0 g, 2.5 g, or 5.0 g of the aqueous phase separates after 1 minute of milling at a rate of 24000 rpm. In another embodiment, a visually perceptible release of a portion of the aqueous phase occurs when at least 0.25 g of the aqueous phase separates after 1 minute of milling at a rate of 13500 rpm. In other embodiments, the composition may result in the separation of at least about a 0.5 g portion of the aqueous phase after 1 minute of milling at a rate of 24000 rpm while yielding no visually perceptible release of the aqueous phase (i.e., < 0.1g of aqueous phase) after 1 minute of milling at a rate of 8000 rpm.
Such an embodiment is believed to have suitable shelf and processing stability while still exhibiting a perceptible release of the aqueous phase during typical skin application.
In certain embodiments, the tactilely perceptible release of the aqueous phase may be characterized by a viscosity drop as measured in the Rheological Method provided in the Test Methods. The rheological method involves applying a controlled stress to a sample of the emulsion to generate a rheology profile of the log of viscosity (y-axis) versus the log of shear 5 stress (x-axis). For an emulsion exhibiting an aqueous phase release upon application of shear, the plot of viscosity versus shear yields a sharp decrease in viscosity at a critical shear stress.
The slope of the region of the plot exhibiting a sharp decrease is less than about -5. In alternate embodiments, slope of the region of the plot exhibiting a sharp decrease is less than about -10, -25, -50, -75, or -100.
10 Without being bound by theory, the amount of aqueous phase released from the einulsion and the rate at which the aqueous phase is released from the emulsion can be controlled, depending upon how the oil phase is bonded to the aqueous phase in the emulsion. In addition, it is also believed that the amount of aqueous phase released from the emulsion and the rate at which it is released from the emulsion can be controlled, for example, by incorporating an 15 additional emulsifier for dispersing the aqueous phase as described below, by changing the level of the emulsifying crosslinked siloxane elastomer within the claimed range, and by varying the water/oil phase ratio.
Additional Emulsifier for Dis ep rsin the he Aqueous Phase The water-in-oil emulsions of the present invention can optionally contain an emulsifier in addition to an emulsifying elastomer. In some embodiments, the composition may contain from about 0% to about 5%, preferably from 0.01% to about 5% additional emulsifier, more preferably from about 0.1% to about 3%, still more preferably from about 0.1%
to about 2%, emulsifier by weight of the composition. The additional emulsifier if present helps disperse and suspend the aqueous phase witllin the continuous silicone phase.
A wide variety of emulsifying agents can be employed herein to form the preferred water-in-silicone emulsion. Known or conventional emulsifying agents can be used in the coinposition, provided that the selected einulsifying agent is chemically and physically compatible with coinponents of the composition of the present invention, and provides the desired dispersion characteristics. Suitable emulsifiers include silicone emulsifiers, non-silicon-containing emulsifiers, and mixtures thereof, known by those skilled in the art for use in topical personal care products. Preferably these emulsifiers have an HLB value of or less than about 14, more preferably from about 2 to about 14, and still more preferably from about 4 to about 10. Emulsifiers having an HLB value outside of these ranges can be used in combination with other emulsifiers to achieve an effective weighted average HLB for the combination that falls within these ranges.
Silicone emulsifiers are preferred. A wide variety of silicone emulsifiers are useful herein. These silicone emulsifiers are typically organically modified organopolysiloxanes, also known to those skilled in the art as silicone surfactants. Useful silicone emulsifiers include dimethicone copolyols. These materials are polydimethyl siloxanes which have been modified to include polyether side chains such as polyethylene oxide chains, polypropylene oxide chains, mixtures of these chains, and polyether chains containing moieties derived from both ethylene oxide and propylene oxide. Other examples include alkyl-modified dimethicone copolyols, i.e., compounds which contain C2-C30 pendant side chains. Still other useful dimethicone copolyols include materials having various cationic, anionic, ainphoteric, and zwitterionic pendant moieties.
Nonlimiting examples of dimethicone copolyols and other silicone surfactants useful as emulsifiers herein include polydimethylsiloxane polyether copolymers with pendant polyethylene oxide sidechains, polydimethylsiloxane polyether copolymers with pendant polypropylene oxide sidechains, polydimethylsiloxane polyether copolymers wit11 pendant mixed polyethylene oxide and polypropylene oxide sidechains, polydimethylsiloxane polyether copolymers with pendant mixed poly(ethylene)(propylene)oxide sidechains, polydimethylsiloxane polyether copolymers with pendant organobetaine sidechains, polydimethylsiloxane polyether copolymers with pendant carboxylate sidechains, polydimethylsiloxane polyether copolymers with pendant quaternary ammonium sidechains; and also further modifications of the preceding copolyiners containing pendant C2-C30 straight, branched, or cyclic alkyl moieties. Examples of commercially available dimethieone copolyols useful herein sold by Dow Corning Corporation are Dow Corning 190, 193, Q2-5220, 2501 Wax, 2-5324 fluid, and 3225C (this later material being sold as a mixture with cyclomethicone).
Cetyl diinethicone copolyol is commercially available under the trade name ABIL EM-90, and also available as a mixture with polyglyceryl-4 isostearate (and) hexyl laurate and is sold under the tradename ABIL WE-09 (available from Goldschmidt). Cetyl dimethicone copolyol is also commercially available as a mixture with hexyl laurate (and) polyglyceryl-3 oleate (and) cetyl dimethicone and is sold under the tradename ABIL WS-08 (also available from Goldschmidt). Polydimethylsiloxyethyl dimethicone copolyol is commercially available under the trade names KF-6028, KF-6104, KF-6105, and KF-6106 (from Shin-Etsu). Other nonlimiting examples of dimethicone copolyols also include lauryl dimethicone copolyol, lauryl polydimethylsiloxyethyl dimethicone copolyol, dimethicone copolyol acetate, dimethicone copolyol adipate, dimethicone copolyolainine, dimethicone copolyol behenate, dimethicone copolyol butyl ether, dimethicone copolyol hydroxy stearate, dimethicone copolyol isostearate, dimethicone copolyol laurate, dimethicone copolyol methyl ether, dimethicone copolyol phosphate, and dimethicone copolyol stearate.
Dimethicone copolyol emulsifiers useful herein are described, for example, in U.S. Patent No. 4,960,764, to Figueroa, Jr. et al.; European Patent No. EP 330,369, to SaNogueira; G.H.
Dahms, et al., "New Formulation Possibilities Offered by Silicone Copolyols,"
Cosmetics &
Toiletries, vol. 110, pp. 91-100, March 1995; M.E. Carlotti et al., "Optimization of W/O-S
Emulsions And Study Of The Quantitative Relationships Between Ester Structure And Emulsion Properties," J. Dispersion Science And Technology, 13(3), 315-336 (1992); P.
Hameyer, "Comparative Technological Investigations of Organic and Organosilicone Emulsifiers in, Cosmetic Water-in-Oil Emulsion Preparations," HAPPI 28(4), pp. 88-128 (1991);
J. Smid-Korbar et al., "Efficiency and usability of silicone surfactants in emulsions," Provisional Communication, International Journal of Cosmetic Science, 12, 135-139 (1990);
and D.G.
Krzysik et al., "A New Silicone Emulsifier For Water-in-Oil Systeins," Drug and Cosmetic Industry, vol. 146(4) pp. 28-81 (April 1990).
Among the non-silicone-containing emulsifiers useful herein are various non-ionic and anionic emulsifying agents such as sugar esters and polyesters, alkoxylated sugar )esters and polyesters, C1-C30 fatty acid esters of C1-C30 fatty alcohols, alkoxylated derivatives of C1-C30 fatty acid esters of C1-C30 fatty alcohols, alkoxylated ethers of Cl-C30 fatty alcohols, polyglyceryl esters of Cl-C30 fatty acids, Cl-C30 esters of polyols, C1-C30 eth.ers of polyols, alkyl phosphates, polyoxyalkylene fatty ether phosphates, fatty acid amides, acyl lactylates, soaps, and mixtures thereof.
Skin Care Active The topical compositions of the present invention preferably also include at least one skin care active. Actives that are typically characterized as "water-soluble" as well as actives that are typically characterized as "oil-soluble" are suitable for formulation herein. Without being bound by theory, it is believed the present compositions provide versatility in formulating a variety of actives.
In any embodiment of the present invention, however, the actives useful herein can be categorized by the benefit they provide or by their posttilated mode of action. However, it is to be understood that the actives useful herein can in sorne instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active to that particular application or applications listed.
Non-limiting examples of skin care actives suitable herein iuiclude niacinamide, hexamidine compounds, whitening actives, peptides, sugar amines, and mixtures thereof.
Niacinamide Niacinamide (or another solid at ambient teinperature vitainin B3 compound that is soluble in a solvent) is a preferred skin care active for use herein. The present invention preferably includes from about 2% to about 30%, more preferably from about 2%
to about 20%, even more preferably from about 2% to about 10% of a vitainin B3 compound.
As used herein, "niacinamide" means a compound having the formula:
R
wherein R is - CONH2.
The niacinamide may be included as the substantially pure material, or as an extract obtained by suitable physical and/or chemical isolation from natural (e.g., plant) sources. The vitamin B3 compound is preferably substantially pure, more preferably essentially pure.
Hexamidine Compound The topical compositions of the present invention comprise a safe and effective amount of one or more hexamidine and its salts. More preferably, the hexamidine is hexamidine diisethionate.
As used herein, "hexamidine" includes any isomers and tautomers of such and is commercially available as hexamidine diisethionate under the tradename Elestab HP 100 from Laboratoires Serobiologiques (Pulnoy, France).
In the composition of the present invention, the hexamidine preferably comprises from about 0.0001-25% by weiglit of the composition, more preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 5%, and most preferably from about 0.02% to about 2.5%.
Whitening Agents The present compositions may contain a whitening agent. The whitening agent useful herein refers to active ingredients that not only alter the appearance of the skin, but further improve hyperpigmentation as compared to pre-treatment. Useful whitening agents useful herein include ascorbic acid compounds, vitamin B3 compounds, azelaic acid, butyl hydroxy anisole, gallic acid and its derivatives, hydroquinoine, kojic acid, arbutin, mulberry extract, undecylenoyl phenylalanine, and mixtures thereof. Use of combinations of whitening agents are also believed to be advantageous in that they may,- provide whitening benefit through different mechanisms.
When used, the compositions preferably contain from about 0.1% to about 10%, more preferably from about 0.2% to about 5%, by weight of the composition, of a whitening agent.
Ascorbic acid compounds are useful whitening agents, and have the formula (I):
V w (I) O O = RI
H
wherein V and W are independently -OH; Rl is - CH(OH)-CH2OH; and salts thereof.
Preferably, the ascorbic acid compound useful herein is an ascorbic acid salt or derivative thereof, such as the non-toxic alkali metal, alkaline earth metal and ammonium salts commonly known by those skilled in the art including, but not limited to, the sodium, potassium, lithium, calciuin, magnesium, barium, ammonium and protamine salts which are prepared by metllods well known in the art.
More preferably, the ascorbic acid salt useful herein is a metal ascorbate having the following formula (II):
"
-o 0 O xMl (II) wherein R 2 and R3 are independently selected from hydrogen and linear or branched alkyl of 1 to about 8 carbons; Ml is a metal; and x is an integer of from 1 to about 3. More preferably, R2 and R3 are independently selected from hydrogen and linear or branched alkyl of 1 to about 3 carbons; MI is sodium, potassium, magnesium, or calcium.
Examples of other preferred ascorbic acid salts having formula (II) include monovalent metal salts (e.g., sodium ascorbate, potassium ascorbate), divalent metal salts (e.g., magnesium 5 ascorbate, calcium ascorbate) and trivalent metal salts (e.g., aluminum ascorbate) of ascorbic acid.
Preferably, the ascorbic acid salt useful herein is a water soluble ascorbyl ester having the following formula (III):
"AO O-~ yM2 (III) p CH-CH2OR5 10 wherein A is sulfate or phosphate; R4 and R5 are independently selected from hydrogen and linear or branched alkyl of 1 to about 8 carbons; M2 is a metal; and y is an integer of 1 to about 3. More preferably, R4 and RS are independently selected from hydrogen and linear or branched alkyl of 1 to about 3 carbons; M 2 is sodium, potassium, magnesium, or calcium.
Another particularly preferred ascorbic acid compound is 2-o-ct-D-glucopyranosyl-L-15 ascorbic acid, usually referred to as L-ascorbic acid 2-glucoside or ascorbyl glucoside, and its metal salts. Such compounds are available from Hayashibara.
Magnesium ascorbyl phosphate is a stable fonn of vitamin C. In-vivo, it is converted to Vitamin C. It is soluble and stable in a variety of solvents including water, propylene glycol, 1,3-butylene glycol, maltitol, and glycerin. Unlike vitamin C, it is percutaneously absorbed 20 into the skin. Magnesium ascorbyl phosphate is commercially available from Barnet Products Corp. as NIKKOL VC-PMG.
Exemplary water soluble salt derivatives include, but are not limited to, L-ascorbic acid 2-glucoside, L-ascorbyl phosphate ester salts such as sodium L-ascorbyl phosphate, potassium L-ascorbyl phosphate, magnesium L-ascorbyl phosphate, calcium L-ascorbyl phosphate, aluminum L-ascorbyl phosphate. L-ascorbyl sulfate ester salts can also be used. Examples are sodium L-ascorbyl sulfate, potassium L-ascorbyl sulfate, magnesium L-ascorbyl sulfate, calcium L-ascorbyl sulfate and aluminum L-ascorbyl sulfate.
When used, the compositions preferably contain from about 0.1% to about 10%, more preferably from about 0.2% to about 5%, by weight of the composition, of a whitening agent.
Ascorbic acid compounds are useful whitening agents, and have the formula (I):
V w (I) O O = RI
H
wherein V and W are independently -OH; Rl is - CH(OH)-CH2OH; and salts thereof.
Preferably, the ascorbic acid compound useful herein is an ascorbic acid salt or derivative thereof, such as the non-toxic alkali metal, alkaline earth metal and ammonium salts commonly known by those skilled in the art including, but not limited to, the sodium, potassium, lithium, calciuin, magnesium, barium, ammonium and protamine salts which are prepared by metllods well known in the art.
More preferably, the ascorbic acid salt useful herein is a metal ascorbate having the following formula (II):
"
-o 0 O xMl (II) wherein R 2 and R3 are independently selected from hydrogen and linear or branched alkyl of 1 to about 8 carbons; Ml is a metal; and x is an integer of from 1 to about 3. More preferably, R2 and R3 are independently selected from hydrogen and linear or branched alkyl of 1 to about 3 carbons; MI is sodium, potassium, magnesium, or calcium.
Examples of other preferred ascorbic acid salts having formula (II) include monovalent metal salts (e.g., sodium ascorbate, potassium ascorbate), divalent metal salts (e.g., magnesium 5 ascorbate, calcium ascorbate) and trivalent metal salts (e.g., aluminum ascorbate) of ascorbic acid.
Preferably, the ascorbic acid salt useful herein is a water soluble ascorbyl ester having the following formula (III):
"AO O-~ yM2 (III) p CH-CH2OR5 10 wherein A is sulfate or phosphate; R4 and R5 are independently selected from hydrogen and linear or branched alkyl of 1 to about 8 carbons; M2 is a metal; and y is an integer of 1 to about 3. More preferably, R4 and RS are independently selected from hydrogen and linear or branched alkyl of 1 to about 3 carbons; M 2 is sodium, potassium, magnesium, or calcium.
Another particularly preferred ascorbic acid compound is 2-o-ct-D-glucopyranosyl-L-15 ascorbic acid, usually referred to as L-ascorbic acid 2-glucoside or ascorbyl glucoside, and its metal salts. Such compounds are available from Hayashibara.
Magnesium ascorbyl phosphate is a stable fonn of vitamin C. In-vivo, it is converted to Vitamin C. It is soluble and stable in a variety of solvents including water, propylene glycol, 1,3-butylene glycol, maltitol, and glycerin. Unlike vitamin C, it is percutaneously absorbed 20 into the skin. Magnesium ascorbyl phosphate is commercially available from Barnet Products Corp. as NIKKOL VC-PMG.
Exemplary water soluble salt derivatives include, but are not limited to, L-ascorbic acid 2-glucoside, L-ascorbyl phosphate ester salts such as sodium L-ascorbyl phosphate, potassium L-ascorbyl phosphate, magnesium L-ascorbyl phosphate, calcium L-ascorbyl phosphate, aluminum L-ascorbyl phosphate. L-ascorbyl sulfate ester salts can also be used. Examples are sodium L-ascorbyl sulfate, potassium L-ascorbyl sulfate, magnesium L-ascorbyl sulfate, calcium L-ascorbyl sulfate and aluminum L-ascorbyl sulfate.
Undecylenoyl Phenylalanine is the substituted amino acid that is also suitable for use herein as a whitening agent. It is available under the trade name Sepiwhite Msh, from Seppic.
Cetyl Pyridinium Chloride and Tetrahydrocurcumin are also suitable for use herein as whitening agents.
Glycyrrhizic acid, a natural material derived from Glycyrrhiza Glabra, and its derivatives such as Glychrrhetinic Acid are also suitable for use herein. Such materials are available from Maurzen or Ichimaru Pharcos.
Peptides Peptides, including but not limited to, di-, tri-, tetra-, and pentapeptides and derivatives thereof, may be included in the compositions of the present invention in amounts that are safe and effective. As used herein, "peptides" refers to both the naturally occurring peptides and synthesized peptides. Also useful herein are naturally occurring and cominercially available compositions that contain peptides.
Suitable dipeptides for use herein include Carnosine (beta-ala-his). Suitable tripeptides for use herein include, gly-his-lys, arg-lys-arg, his-gly-gly. Preferred tripeptides and derivatives thereof include palmitoyl-gly-his-lys, which may be purchased as Biopeptide CL
(100ppm of palmitoyl-gly-his-lys cominercially available from Sederma, France); Peptide CK
(arg-lys-arg); PEPTIDE CK+ (ac-arg-lys-arg-NH2); and a copper derivative of his-gly-gly sold commercially as IAMIN, from Sigma (St. Louis, Missouri). Tetrapeptides and pentapeptides are also suitable for use herein.
A preferred commercially available pentapeptide derivative-containing composition is Matrixyl , which contains 100 ppm of palmitoyl-lys-thr-thr-lys-ser (pal-KTTKS, commercially available from Sederma, France). Other preferred peptides include palmitoyl-lysine-threonine (pal-KT) and palmitoyl-glycine-glutamine-proline-arginine (pal-GQPR, available in a composition known as RIGINl), also available from Sederma, France.
When included in the present coinpositions, peptides are preferably included in amounts of from about 1x10-6% to about 10%, more preferably from about 1x10-6% to about 0.1%, even more preferably from about Ix10-5% to about 0.01%, by weight of the composition. In certain compositions where the peptide is Carnosine , the coinpositions preferably contain from about 0.1% to about 5%, by weight of the composition, of such peptides. In other embodiments wherein the peptide or peptide-containing composition palmitoyl-lys-thr-thr-lys-ser and/or Biopeptide CL are included, the compositions preferably contain from about 0.0001% to about 10%, of palmitoyl-lys-thr-thr-lys-ser and/or Biopeptide CL peptide-containing composition.
Sugar Amines The compositions of the present invention may include a safe and effective amount of a sugar amine, which'are also known as amino sugars. As used herein, "sugar amine" refers to an ainine derivative of a six-carbon sugar: Preferably, the composition contains from about 0.001% to about 20%, more preferably from about 1% to about 10%, even more preferably from about 2% to about 5%, by weight of the composition, of the sugar amine.
Examples of sugar amines that are useful herein include glucosamine, N-acetyl glucosamine, mannosamine, N-acetyl mannosamine, galactosamine, N-acetyl galactosamine.
Preferred for use herein is glucosamine. Additionally, combinations of two or more sugar amines may be used.
Skin ConditioningAg-ent The topical coinpositions of the present invention include from about 1% to about 60%, by weight of the composition, of a skin conditioning agent. Preferably, the composition includes from about 2% to about 50%, more preferably from about 5% to about 40%, by weight of the composition, of the skin conditioning agent. Typically, compositions with a high percentage of a skin conditioning agent may be perceived as greasy or tacky by a user. It has been surprisingly found that compositions of the present invention may compris,e a relatively high percentage (e.g., greater than 25%, by weight of the composition) of a skin conditioning agent without an appreciable increase in the perceived greasiness or tackiness.
Suitable skin conditioning agent for use herein include polyhydric alcohols such as polyalkylene glycols. Preferred for use hereiil are alkylene polyols and their derivatives.
Examples of polyhydric alcohols useful herein include propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol, trehalose, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexenetriol, glycerin, 1,2-hexanediol, pentylene glycol, ethoxylated glycerin, propoxylated glycerin, butanetriol, and mixtures thereof. A preferred polyhydric alcohol for use herein is glycerin.
The skin conditioning agent for use herein may be derived from any traditional means of manufacture and methods of purification.
Thickening Agents The compositions of the present invention, in some embodiments, may further include one or more thickening agents. When present, the composition preferably includes from about 0.1 % to about 5%, more preferably from about 0.1 % to about 4%, and still more preferably from about 0.25% to about 3%, by weight of the composition of the thickening agent.
Nonlimiting classes of thickening agents include those selected from the following:
a) Carboxylic Acid Polymers These polymers are crosslinked compounds containing one or more monomers derived from acrylic acid, substituted acrylic acids, and salts and esters of these acrylic acids and the substituted acrylic acids, wherein the crosslinking agent contains two or more carbon-carbon double bonds and is derived from a polyhydric alcohol.
Examples of commercially available carboxylic acid polymers useful herein include the carbomers, which are homopolymers of acrylic acid crosslinked with allyl ethers of sucrose or pentaerytritol. The carbomers are available as the Carbopol 900 series from B.F. Goodrich (e.g., Carbopol 954). In addition, other suitable carboxylic acid polymeric agents include copolymers of CI0_3o alkyl acrylates with one or more monomers of acrylic acid, methacrylic acid, or one of their short chain (i.e., C1_4 alcohol) esters, wherein the crosslinking agent is an allyl ether of sucrose or pentaerytritol. These copolymers are known as acrylates/Clo_30 alkyl acrylate crosspolymers and are commercially available as Carbopol 1342, Carbopol 1382, PEMULEN TR-1, and PEMULEN TR-2, from B.F. Goodrich. In other words, examples of carboxylic acid polymer thickeners useful herein are those selected from carbomers, acrylates/Clo-C30 alkyl acrylate crosspolymers, and mixtures thereof.
b) Crosslinked Polyacrylate Polymers The compositions of the present invention can optionally contain crosslinked polyacrylate polymers useful as thickeners or gelling agents including both cationic and nonionic polymers, with the cationics being generally preferred.
c) Polyacrylamide Polymers The compositions of the present invention can optionally contain polyacrylamide polymers, especially nonionic polyacrylamide polymers including substituted branched or unbranched polymers. More preferred among these polyacrylamide polymers is the nonionic polymer given the CTFA designation polyacrylamide and isoparaffin and laureth-7, available under the Tradename Sepigel 305 from Seppic Corporation (Fairfield, NJ).
Other polyacrylainide polymers useful herein include multi-block copolymers of acrylamides and substituted acrylamides with acrylic acids and substituted acrylic acids.
Cetyl Pyridinium Chloride and Tetrahydrocurcumin are also suitable for use herein as whitening agents.
Glycyrrhizic acid, a natural material derived from Glycyrrhiza Glabra, and its derivatives such as Glychrrhetinic Acid are also suitable for use herein. Such materials are available from Maurzen or Ichimaru Pharcos.
Peptides Peptides, including but not limited to, di-, tri-, tetra-, and pentapeptides and derivatives thereof, may be included in the compositions of the present invention in amounts that are safe and effective. As used herein, "peptides" refers to both the naturally occurring peptides and synthesized peptides. Also useful herein are naturally occurring and cominercially available compositions that contain peptides.
Suitable dipeptides for use herein include Carnosine (beta-ala-his). Suitable tripeptides for use herein include, gly-his-lys, arg-lys-arg, his-gly-gly. Preferred tripeptides and derivatives thereof include palmitoyl-gly-his-lys, which may be purchased as Biopeptide CL
(100ppm of palmitoyl-gly-his-lys cominercially available from Sederma, France); Peptide CK
(arg-lys-arg); PEPTIDE CK+ (ac-arg-lys-arg-NH2); and a copper derivative of his-gly-gly sold commercially as IAMIN, from Sigma (St. Louis, Missouri). Tetrapeptides and pentapeptides are also suitable for use herein.
A preferred commercially available pentapeptide derivative-containing composition is Matrixyl , which contains 100 ppm of palmitoyl-lys-thr-thr-lys-ser (pal-KTTKS, commercially available from Sederma, France). Other preferred peptides include palmitoyl-lysine-threonine (pal-KT) and palmitoyl-glycine-glutamine-proline-arginine (pal-GQPR, available in a composition known as RIGINl), also available from Sederma, France.
When included in the present coinpositions, peptides are preferably included in amounts of from about 1x10-6% to about 10%, more preferably from about 1x10-6% to about 0.1%, even more preferably from about Ix10-5% to about 0.01%, by weight of the composition. In certain compositions where the peptide is Carnosine , the coinpositions preferably contain from about 0.1% to about 5%, by weight of the composition, of such peptides. In other embodiments wherein the peptide or peptide-containing composition palmitoyl-lys-thr-thr-lys-ser and/or Biopeptide CL are included, the compositions preferably contain from about 0.0001% to about 10%, of palmitoyl-lys-thr-thr-lys-ser and/or Biopeptide CL peptide-containing composition.
Sugar Amines The compositions of the present invention may include a safe and effective amount of a sugar amine, which'are also known as amino sugars. As used herein, "sugar amine" refers to an ainine derivative of a six-carbon sugar: Preferably, the composition contains from about 0.001% to about 20%, more preferably from about 1% to about 10%, even more preferably from about 2% to about 5%, by weight of the composition, of the sugar amine.
Examples of sugar amines that are useful herein include glucosamine, N-acetyl glucosamine, mannosamine, N-acetyl mannosamine, galactosamine, N-acetyl galactosamine.
Preferred for use herein is glucosamine. Additionally, combinations of two or more sugar amines may be used.
Skin ConditioningAg-ent The topical coinpositions of the present invention include from about 1% to about 60%, by weight of the composition, of a skin conditioning agent. Preferably, the composition includes from about 2% to about 50%, more preferably from about 5% to about 40%, by weight of the composition, of the skin conditioning agent. Typically, compositions with a high percentage of a skin conditioning agent may be perceived as greasy or tacky by a user. It has been surprisingly found that compositions of the present invention may compris,e a relatively high percentage (e.g., greater than 25%, by weight of the composition) of a skin conditioning agent without an appreciable increase in the perceived greasiness or tackiness.
Suitable skin conditioning agent for use herein include polyhydric alcohols such as polyalkylene glycols. Preferred for use hereiil are alkylene polyols and their derivatives.
Examples of polyhydric alcohols useful herein include propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol, trehalose, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexenetriol, glycerin, 1,2-hexanediol, pentylene glycol, ethoxylated glycerin, propoxylated glycerin, butanetriol, and mixtures thereof. A preferred polyhydric alcohol for use herein is glycerin.
The skin conditioning agent for use herein may be derived from any traditional means of manufacture and methods of purification.
Thickening Agents The compositions of the present invention, in some embodiments, may further include one or more thickening agents. When present, the composition preferably includes from about 0.1 % to about 5%, more preferably from about 0.1 % to about 4%, and still more preferably from about 0.25% to about 3%, by weight of the composition of the thickening agent.
Nonlimiting classes of thickening agents include those selected from the following:
a) Carboxylic Acid Polymers These polymers are crosslinked compounds containing one or more monomers derived from acrylic acid, substituted acrylic acids, and salts and esters of these acrylic acids and the substituted acrylic acids, wherein the crosslinking agent contains two or more carbon-carbon double bonds and is derived from a polyhydric alcohol.
Examples of commercially available carboxylic acid polymers useful herein include the carbomers, which are homopolymers of acrylic acid crosslinked with allyl ethers of sucrose or pentaerytritol. The carbomers are available as the Carbopol 900 series from B.F. Goodrich (e.g., Carbopol 954). In addition, other suitable carboxylic acid polymeric agents include copolymers of CI0_3o alkyl acrylates with one or more monomers of acrylic acid, methacrylic acid, or one of their short chain (i.e., C1_4 alcohol) esters, wherein the crosslinking agent is an allyl ether of sucrose or pentaerytritol. These copolymers are known as acrylates/Clo_30 alkyl acrylate crosspolymers and are commercially available as Carbopol 1342, Carbopol 1382, PEMULEN TR-1, and PEMULEN TR-2, from B.F. Goodrich. In other words, examples of carboxylic acid polymer thickeners useful herein are those selected from carbomers, acrylates/Clo-C30 alkyl acrylate crosspolymers, and mixtures thereof.
b) Crosslinked Polyacrylate Polymers The compositions of the present invention can optionally contain crosslinked polyacrylate polymers useful as thickeners or gelling agents including both cationic and nonionic polymers, with the cationics being generally preferred.
c) Polyacrylamide Polymers The compositions of the present invention can optionally contain polyacrylamide polymers, especially nonionic polyacrylamide polymers including substituted branched or unbranched polymers. More preferred among these polyacrylamide polymers is the nonionic polymer given the CTFA designation polyacrylamide and isoparaffin and laureth-7, available under the Tradename Sepigel 305 from Seppic Corporation (Fairfield, NJ).
Other polyacrylainide polymers useful herein include multi-block copolymers of acrylamides and substituted acrylamides with acrylic acids and substituted acrylic acids.
Commercially available examples of these multi-block copolymers include HYPAN
SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson, NJ).
d) Polysaccharides A wide variety of polysaccharides are useful herein. "Polysaccharides" refer to gelling agents which contain a backbone of repeating sugar (i.e., carbohydrate) units.
Nonlimiting examples of polysaccharide gelling agents include those selected from cellulose, carboxymethyl hydroxyethylcellulose, cellulose acetate propionate carboxylate, hydroxyethylcellulose, hydroxyethyl ethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, methyl hydroxyethylcellulose, microcrystalline cellulose, sodium cellulose sulfate, and mixtures thereof.
Also useful herein are the alkyl substituted celluloses. In these polymers, the hydroxy groups of the cellulose polymer is hydroxyalkylated (preferably hydroxyethylated or hydroxypropylated) to form a hydroxyalkylated cellulose which is then further modified with a C -C3o straiglit chain or branched chain alkyl group through an ether linkage.
Typically these polymers are ethers of C10-C30 straight or branched chain alcohols with.hydroxyalkylcelluloses.
Examples of alkyl groups useful herein include those selected from stearyl, isostearyl, lauryl, myristyl, cetyl, isocetyl, cocoyl (i.e. alkyl groups derived from the alcohols of coconut oil), palmityl, oleyl, linoleyl, linolenyl, ricinoleyl, behenyl, and mixtures thereof. Preferred ainong the alkyl hydroxyalkyl cellulose ethers is the material given the CTFA
designation cetyl hydroxyethylcellulose, which is the ether of cetyl alcohol and hydroxyethylcellulose. This material is sold under the tradename Natrosol CS Plus from Aqualon Corporation (Wilmington, DE).
Other useful polysaccharides include scleroglucans which are a linear chain of (1-3) liidced glucose units with a (1-6) linked glucose every three units, a commercially available example of which is ClearogelTM CSl 1 from Michel Mercier Products Inc.
(Mountainside, NJ).
e) Gums Other thickening and gelling agents useful herein include materials which are primarily derived from natural sources. Nonlimiting examples of these gelling agent gums include acacia, agar, algin, alginic acid, ammonium alginate, amylopectin, calcium alginate, calcium carrageenan, carnitine, carrageenan, dextrin, gelatin, gellan gum, guar gum, guar hydroxypropyltrimonium chloride, hectorite, hyaluroinic acid, hydrated silica, hydroxypropyl chitosan, hydroxypropyl guar, karaya gum, kelp, locust bean gum, natto gum, potassium alginate, potassium carrageenan, propylene glycol alginate, sclerotium gum, sodium carboxyinethyl dextran, sodium carrageenan, tragacanth gum, xanthan gum, and mixtures thereof.
Particulate Material The compositions of the present invention may, in soine embodiments, contain a 5 particulate material to modify skin feel or appearance. Examples of suitable particulate materials are disclosed in U.S. Patent No. 5,997,887, to Ha, et al. Inorganic particulate materials, e.g., Ti02, ZnO, or Zr02 are commercially available from a number of sources. One example of a suitable particulate material contains the material available from U.S. Cosmetics (TRONOX Ti02 series, SAT-T CR837, a rutile Ti02). Examples of particulate materials with 10 inorganic chemical coinbination are, COVERLEAF AR-80 available in Catalysts and Chemicals Ind. Co. Ltd. which consists of layered inorganic chemicals, and Goddbal available in Suzuki Yushi Ind.Co.Ltd which is Silica powder encapsulating one or more inorganic chemicals.
Preferably, particulate matearials are present in the composition in levels of from about 0.01% to about 20%, more preferably from about 0.05% to about 15%, still more preferably from about 15 0.1% to about 12%, by weight of the composition.
Suitable organic powders/fillers include, but are not limited, to polymeric particles chosen from the methylsilsesquioxane resin microspheres such as for example those sold by Toshiba silicone under the name Tospearl 145A; microspheres of polymethylmethacrylates such as those sold by Seppic under the name Micropearl M 100; the spherical particles of crosslinked 20 polydimethylsiloxanes, especially such as those sold by Dow Corning Toray Silicone under the name Trefil E 506C or Trefil E 505C, sphericle particles of polyamide and more specifically Nylon 12, especially such as those sold by Atochem under the name Orgasol 2002D Nat C05, polystyerene microspheres such as for example those sold by Dyno Particles under the name Dynospheres, ethylene acrylate copolymer sold by Kobo under the name FloBead EA209 and 25 mixtures thereof.
The particulates may be hydrophobically treated to be more easily dispersed in the delivery vehicle. In addition, it may be useful to treat the pigments with a material that is compatible with a silicone phase. Particularly useful hydrophobic pigment treatments for use in water-in-silicone emulsions include polysiloxane treatments such as those disclosed in U.S.
Patent 5,143,722, incorporated herein by reference in its entirety. Also preferred are particulates having a primary average particle size of from about 10 nm to about 100,000 nm, more preferably from about 50nm to about 5,000nm, most preferably from about 100nm to about 1000nm. Mixtures of the same or different particulates having different particle sizes are also useful herein (e.g., incorporating a Ti02 having a primary particle size of from about 100 nm to about 400 nm with a Ti02 having a primary particle size of from about 10 nm to about 50 nm).
Optional Ingredients The compositions of the present invention may coiitain one or more additional skin care actives. In a preferred embodiment, where the composition is to be in contact with human keratinous tissue, the additional components should be suitable for application to keratinous tissue, that is, when incoiporated into the composition they are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like within the scope of sound medical judgment.
Non-luniting examples of additional skin care active ingredients that may be used in the present invention include sunscreen actives, oil-soluble terpene alcohols, phytosterols, oil-soluble vitamin compounds, additional vitamin B3 compounds, oil-soluble vitamin compounds, emollients and occlusives, dehydroacetic acid, anti-acne actives, beta-hydroxy acids, chelators, flavonoids, anti-inflammatory agents, anti-cellulite agents, topical anesthetics, desquamation actives, anti-oxidants/radical scavengers, topical anesthetics, tanning actives, skin soothing and skin healing agents, anti-microbial and antifungal agents, and mixtures thereof.
The CTFA Cosmetic Ingredient Handbook, Eleventh Edition (2004) describes a wide variety of nonlimiting cosinetic and pharmaceutical ingredients coinmonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Examples of 20~ these ingredient classes include: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, skin sensates, astringents, etc. (e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate), anti-acne agents, anti-caking agents, antifoaming agents, antioxidants, binders, biological additives, buffering agents, bulking agents, chelating agents, chemical additives, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the fllm-forming properties and substantivity of the composition (e.g., copolymer of eicosene and vinyl pyrrolidone), opacifying agents, pH adjusters, preservatives, propellants, reducing agents, sequestrants, skin bleaching and lightening agents (e.g., hydroquinone, kojic acid, ascorbic acid, ascorbyl glucosamine), skin-conditioning agents (e.g., humectants, including miscellaneous and occlusive), skin soothing and/or liealing agents (e.g., panthenol and derivatives (e.g., ethyl panthenol), aloe vera, pantothenic acid and its derivatives, allantoin, bisabolol, and dipotassium glycyrrhizinate), skin treating agents, thickeners, and vitamins and derivatives thereof. I
SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson, NJ).
d) Polysaccharides A wide variety of polysaccharides are useful herein. "Polysaccharides" refer to gelling agents which contain a backbone of repeating sugar (i.e., carbohydrate) units.
Nonlimiting examples of polysaccharide gelling agents include those selected from cellulose, carboxymethyl hydroxyethylcellulose, cellulose acetate propionate carboxylate, hydroxyethylcellulose, hydroxyethyl ethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, methyl hydroxyethylcellulose, microcrystalline cellulose, sodium cellulose sulfate, and mixtures thereof.
Also useful herein are the alkyl substituted celluloses. In these polymers, the hydroxy groups of the cellulose polymer is hydroxyalkylated (preferably hydroxyethylated or hydroxypropylated) to form a hydroxyalkylated cellulose which is then further modified with a C -C3o straiglit chain or branched chain alkyl group through an ether linkage.
Typically these polymers are ethers of C10-C30 straight or branched chain alcohols with.hydroxyalkylcelluloses.
Examples of alkyl groups useful herein include those selected from stearyl, isostearyl, lauryl, myristyl, cetyl, isocetyl, cocoyl (i.e. alkyl groups derived from the alcohols of coconut oil), palmityl, oleyl, linoleyl, linolenyl, ricinoleyl, behenyl, and mixtures thereof. Preferred ainong the alkyl hydroxyalkyl cellulose ethers is the material given the CTFA
designation cetyl hydroxyethylcellulose, which is the ether of cetyl alcohol and hydroxyethylcellulose. This material is sold under the tradename Natrosol CS Plus from Aqualon Corporation (Wilmington, DE).
Other useful polysaccharides include scleroglucans which are a linear chain of (1-3) liidced glucose units with a (1-6) linked glucose every three units, a commercially available example of which is ClearogelTM CSl 1 from Michel Mercier Products Inc.
(Mountainside, NJ).
e) Gums Other thickening and gelling agents useful herein include materials which are primarily derived from natural sources. Nonlimiting examples of these gelling agent gums include acacia, agar, algin, alginic acid, ammonium alginate, amylopectin, calcium alginate, calcium carrageenan, carnitine, carrageenan, dextrin, gelatin, gellan gum, guar gum, guar hydroxypropyltrimonium chloride, hectorite, hyaluroinic acid, hydrated silica, hydroxypropyl chitosan, hydroxypropyl guar, karaya gum, kelp, locust bean gum, natto gum, potassium alginate, potassium carrageenan, propylene glycol alginate, sclerotium gum, sodium carboxyinethyl dextran, sodium carrageenan, tragacanth gum, xanthan gum, and mixtures thereof.
Particulate Material The compositions of the present invention may, in soine embodiments, contain a 5 particulate material to modify skin feel or appearance. Examples of suitable particulate materials are disclosed in U.S. Patent No. 5,997,887, to Ha, et al. Inorganic particulate materials, e.g., Ti02, ZnO, or Zr02 are commercially available from a number of sources. One example of a suitable particulate material contains the material available from U.S. Cosmetics (TRONOX Ti02 series, SAT-T CR837, a rutile Ti02). Examples of particulate materials with 10 inorganic chemical coinbination are, COVERLEAF AR-80 available in Catalysts and Chemicals Ind. Co. Ltd. which consists of layered inorganic chemicals, and Goddbal available in Suzuki Yushi Ind.Co.Ltd which is Silica powder encapsulating one or more inorganic chemicals.
Preferably, particulate matearials are present in the composition in levels of from about 0.01% to about 20%, more preferably from about 0.05% to about 15%, still more preferably from about 15 0.1% to about 12%, by weight of the composition.
Suitable organic powders/fillers include, but are not limited, to polymeric particles chosen from the methylsilsesquioxane resin microspheres such as for example those sold by Toshiba silicone under the name Tospearl 145A; microspheres of polymethylmethacrylates such as those sold by Seppic under the name Micropearl M 100; the spherical particles of crosslinked 20 polydimethylsiloxanes, especially such as those sold by Dow Corning Toray Silicone under the name Trefil E 506C or Trefil E 505C, sphericle particles of polyamide and more specifically Nylon 12, especially such as those sold by Atochem under the name Orgasol 2002D Nat C05, polystyerene microspheres such as for example those sold by Dyno Particles under the name Dynospheres, ethylene acrylate copolymer sold by Kobo under the name FloBead EA209 and 25 mixtures thereof.
The particulates may be hydrophobically treated to be more easily dispersed in the delivery vehicle. In addition, it may be useful to treat the pigments with a material that is compatible with a silicone phase. Particularly useful hydrophobic pigment treatments for use in water-in-silicone emulsions include polysiloxane treatments such as those disclosed in U.S.
Patent 5,143,722, incorporated herein by reference in its entirety. Also preferred are particulates having a primary average particle size of from about 10 nm to about 100,000 nm, more preferably from about 50nm to about 5,000nm, most preferably from about 100nm to about 1000nm. Mixtures of the same or different particulates having different particle sizes are also useful herein (e.g., incorporating a Ti02 having a primary particle size of from about 100 nm to about 400 nm with a Ti02 having a primary particle size of from about 10 nm to about 50 nm).
Optional Ingredients The compositions of the present invention may coiitain one or more additional skin care actives. In a preferred embodiment, where the composition is to be in contact with human keratinous tissue, the additional components should be suitable for application to keratinous tissue, that is, when incoiporated into the composition they are suitable for use in contact with human keratinous tissue without undue toxicity, incompatibility, instability, allergic response, and the like within the scope of sound medical judgment.
Non-luniting examples of additional skin care active ingredients that may be used in the present invention include sunscreen actives, oil-soluble terpene alcohols, phytosterols, oil-soluble vitamin compounds, additional vitamin B3 compounds, oil-soluble vitamin compounds, emollients and occlusives, dehydroacetic acid, anti-acne actives, beta-hydroxy acids, chelators, flavonoids, anti-inflammatory agents, anti-cellulite agents, topical anesthetics, desquamation actives, anti-oxidants/radical scavengers, topical anesthetics, tanning actives, skin soothing and skin healing agents, anti-microbial and antifungal agents, and mixtures thereof.
The CTFA Cosmetic Ingredient Handbook, Eleventh Edition (2004) describes a wide variety of nonlimiting cosinetic and pharmaceutical ingredients coinmonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Examples of 20~ these ingredient classes include: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, skin sensates, astringents, etc. (e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthyl lactate, witch hazel distillate), anti-acne agents, anti-caking agents, antifoaming agents, antioxidants, binders, biological additives, buffering agents, bulking agents, chelating agents, chemical additives, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the fllm-forming properties and substantivity of the composition (e.g., copolymer of eicosene and vinyl pyrrolidone), opacifying agents, pH adjusters, preservatives, propellants, reducing agents, sequestrants, skin bleaching and lightening agents (e.g., hydroquinone, kojic acid, ascorbic acid, ascorbyl glucosamine), skin-conditioning agents (e.g., humectants, including miscellaneous and occlusive), skin soothing and/or liealing agents (e.g., panthenol and derivatives (e.g., ethyl panthenol), aloe vera, pantothenic acid and its derivatives, allantoin, bisabolol, and dipotassium glycyrrhizinate), skin treating agents, thickeners, and vitamins and derivatives thereof. I
In any einbodiment of the present invention, however, the actives useful herein can be categorized by the benefit they provide or by their postulated mode of action.
However, it is to be understood that the actives useful herein can in some instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active to that particular application or applications listed.
Sunscreen Actives Exposure to ultraviolet light can result in excessive scaling and texture changes of the stratum corneum. Therefore, the compositions of the subject invention may optionally contain a sunscreen active. As used herein, "sunscreen active" includes both sunscreen agents and physical sunblocks. Suitable sunscreen actives may be organic or inorganic.
Inorganic sunscreens useful herein include the following metallic oxides;
titanium dioxide having an average primary particle size of from about 15 nm to about 100 nm, zinc oxide having an average primary particle size of from about 15 nm to about 150 nm, zirconium oxide having an average primary particle size of from about 15 nm to about 150 nm, iron oxide having an average primary particle size of from about 15 nm to about 500nm, and mixtures thereof.
When used herein, the inorganic sunscreens are present in the amount of from about 0.1% to about 20%, preferably from about 0.5% to about 10%, more preferably from about 1% to about 5%, by weight of the composition.
A wide variety of conventional organic sunscreen actives are suitable for use herein.
Sagarin, et al., at Chapter VIII, pages 189 et seq., of Cosmetics Science and Technology (1972), discloses numerous suitable actives. Particulary preferred organic sunscreen actives useful in the compositions useful in the subject invention are hoinosalate, octocrylene, 2-ethylhexyl-p-methoxycinnamate (commercially available as PARSOL MCX), phenyl benzimidazole sulfonic acid, 2-hydroxy-4-methoxybenzophenone (Benzophenone-3), 2-ethylhexyl-salicylate, and mixtures thereof.
More preferred organic sunscreen actives useful in the compositions useful in the subject invention are 2-ethylhexyl-p-methoxycinnamate, butylmethoxydibenzoyl-methane, 2-hydroxy-4-methoxybenz6-phenone, 2-phenylbenzimidazole-5-sulfonic acid, octyldimethyl-p-aminobenzoic acid, octocrylene, zinc oxide, titanium dioxide, and mixtures thereof.
A safe and effective amount of the organic sunscreen active is used, typically from about 1% to about 20%, more typically from about 2% to about 10% by weight of the composition.
However, it is to be understood that the actives useful herein can in some instances provide more than one benefit or operate via more than one mode of action. Therefore, classifications herein are made for the sake of convenience and are not intended to limit the active to that particular application or applications listed.
Sunscreen Actives Exposure to ultraviolet light can result in excessive scaling and texture changes of the stratum corneum. Therefore, the compositions of the subject invention may optionally contain a sunscreen active. As used herein, "sunscreen active" includes both sunscreen agents and physical sunblocks. Suitable sunscreen actives may be organic or inorganic.
Inorganic sunscreens useful herein include the following metallic oxides;
titanium dioxide having an average primary particle size of from about 15 nm to about 100 nm, zinc oxide having an average primary particle size of from about 15 nm to about 150 nm, zirconium oxide having an average primary particle size of from about 15 nm to about 150 nm, iron oxide having an average primary particle size of from about 15 nm to about 500nm, and mixtures thereof.
When used herein, the inorganic sunscreens are present in the amount of from about 0.1% to about 20%, preferably from about 0.5% to about 10%, more preferably from about 1% to about 5%, by weight of the composition.
A wide variety of conventional organic sunscreen actives are suitable for use herein.
Sagarin, et al., at Chapter VIII, pages 189 et seq., of Cosmetics Science and Technology (1972), discloses numerous suitable actives. Particulary preferred organic sunscreen actives useful in the compositions useful in the subject invention are hoinosalate, octocrylene, 2-ethylhexyl-p-methoxycinnamate (commercially available as PARSOL MCX), phenyl benzimidazole sulfonic acid, 2-hydroxy-4-methoxybenzophenone (Benzophenone-3), 2-ethylhexyl-salicylate, and mixtures thereof.
More preferred organic sunscreen actives useful in the compositions useful in the subject invention are 2-ethylhexyl-p-methoxycinnamate, butylmethoxydibenzoyl-methane, 2-hydroxy-4-methoxybenz6-phenone, 2-phenylbenzimidazole-5-sulfonic acid, octyldimethyl-p-aminobenzoic acid, octocrylene, zinc oxide, titanium dioxide, and mixtures thereof.
A safe and effective amount of the organic sunscreen active is used, typically from about 1% to about 20%, more typically from about 2% to about 10% by weight of the composition.
Exact amounts will vary depending upon the sunscreen or sunscreens chosen and the desired Sun Protection Factor (SPF).
Oil-soluble Terpene Alcohols As used herein, "terpene alcohol" refers to organic compounds composed of two or more 5-carbon isoprene units [CH2=C(CH3)-CH=CH2] with a terminal hydroxyl group.
Examples of oil-soluble terpene alcohols that are useful herein include farnesol, derivatives of farnesol, isomers of farnesol, geraniol, derivatives of geraniol, isomers of geraniol, phytantriol, derivatives of phytantriol, isomers of phytantriol, and mixtures thereof. Preferred for use herein is famesol.
Farnesol is a naturally occurring substance which is believed to act as a precursor and/or intermediate in the biosynthesis of squalene and sterols, especially cholesterol. Famesol is also involved in protein modification and regulation (e.g., farnesylation of proteins), and there is a cell nuclear receptor which is responsive to farnesol.
Chemically, farnesol is [2E,6E]-3,7,11-trimethyl-2,6,10-dodecatrien-1-o1 and as used herein "farnesol" includes isomers and tautomers of such. Farnesol is commercially available, e.g., under the names famesol (a mixture of isomers from Dragoco, 10 Gordon Drive, Totowa, New Jersey) and trans-trans-farnesol (Sigma Chemical Company, P. O. Box 14508, St. Louis, Missouri). A suitable derivative of farnesol is farnesyl acetate which is commercially available from Aldrich Chemical Company, P. O. Box 2060, Milwaukee, WI.
Geraniol is the common name for the chemical known as 3,7-dimethyl-2,6-octadien-l-ol.
As used herein, "geraniol" includes isomers and tautomers of such. Geraniol is commercially available from Aldrich Chemical Company (P. O. Box 2060, Milwaukee, WI).
Suitable derivatives of geraniol include geranyl acetate, geranylgeraniol, geranyl pyrophosphate, and geranylgeranyl pyrophosphate, all of which are commercially available from Sigma Chemical Company, P. O. Box 14508, St. Louis, MO. For example, geraniol is useful as a spider vessel/
red blotchiness repair agent, a dark circle/puffy eye repair agent, sallowness repair agent, a sagging repair agent, an anti-itch agent, a skin thickening agent, a pore reduction agent, oil/shine reduction agent, a post-inflammatory hyperpigmentation repair agent, wound treating agent, an anti-cellulite agent, and regulating skin texture, including wrinkles and fine lines.
Phytantriol is the common name for the chemical known as 3,7,11,15,tetramethylhexadecane-1,2,3,-triol. Phytantriol is commercially available from BASF
(1609 Biddle Avenue, Whyandotte, MI). For example, phytantriol is useful as a spider vessel/
Oil-soluble Terpene Alcohols As used herein, "terpene alcohol" refers to organic compounds composed of two or more 5-carbon isoprene units [CH2=C(CH3)-CH=CH2] with a terminal hydroxyl group.
Examples of oil-soluble terpene alcohols that are useful herein include farnesol, derivatives of farnesol, isomers of farnesol, geraniol, derivatives of geraniol, isomers of geraniol, phytantriol, derivatives of phytantriol, isomers of phytantriol, and mixtures thereof. Preferred for use herein is famesol.
Farnesol is a naturally occurring substance which is believed to act as a precursor and/or intermediate in the biosynthesis of squalene and sterols, especially cholesterol. Famesol is also involved in protein modification and regulation (e.g., farnesylation of proteins), and there is a cell nuclear receptor which is responsive to farnesol.
Chemically, farnesol is [2E,6E]-3,7,11-trimethyl-2,6,10-dodecatrien-1-o1 and as used herein "farnesol" includes isomers and tautomers of such. Farnesol is commercially available, e.g., under the names famesol (a mixture of isomers from Dragoco, 10 Gordon Drive, Totowa, New Jersey) and trans-trans-farnesol (Sigma Chemical Company, P. O. Box 14508, St. Louis, Missouri). A suitable derivative of farnesol is farnesyl acetate which is commercially available from Aldrich Chemical Company, P. O. Box 2060, Milwaukee, WI.
Geraniol is the common name for the chemical known as 3,7-dimethyl-2,6-octadien-l-ol.
As used herein, "geraniol" includes isomers and tautomers of such. Geraniol is commercially available from Aldrich Chemical Company (P. O. Box 2060, Milwaukee, WI).
Suitable derivatives of geraniol include geranyl acetate, geranylgeraniol, geranyl pyrophosphate, and geranylgeranyl pyrophosphate, all of which are commercially available from Sigma Chemical Company, P. O. Box 14508, St. Louis, MO. For example, geraniol is useful as a spider vessel/
red blotchiness repair agent, a dark circle/puffy eye repair agent, sallowness repair agent, a sagging repair agent, an anti-itch agent, a skin thickening agent, a pore reduction agent, oil/shine reduction agent, a post-inflammatory hyperpigmentation repair agent, wound treating agent, an anti-cellulite agent, and regulating skin texture, including wrinkles and fine lines.
Phytantriol is the common name for the chemical known as 3,7,11,15,tetramethylhexadecane-1,2,3,-triol. Phytantriol is commercially available from BASF
(1609 Biddle Avenue, Whyandotte, MI). For example, phytantriol is useful as a spider vessel/
red blotchiness repair agent, a darlc circle/puffy eye repair agent, sallowness repair agent, a sagging repair agent, an anti-itch agent, a skin thickening agent, a pore reduction agent, oil/shine reduction agent, a post-inflammatory hyperpigmentation repair agent, wound treating agent, an anti-cellulite agent, and regulating skin texture, including wrinkles and fine lines.
Phytosterols Phytosterol and derivatives thereof are known for providing skin lightening benefits.
Non-limiting examples of oil-soluble phytosterol derivatives include (3-sitosterol, campesterol, brassicasterol, lupenol, a-spinasterol, stigmasterol, their derivatives, and combinations thereof.
More preferably, the phytosterol derivative is selected from the group consisting of (3-sitosterol, campesterol, brassicasterol, stigmasterol, their derivatives, and combinations thereof.
Oil-Soluble Vitamin Compounds A number of vitamins known by those in the art for providing various skin benefits are oil-soluble and soine or all of their derivatives are oil-soluble. As such, these oil-soluble vitamin compounds are useful as oil-soluble skin care actives hereul. Non-limiting examples of such oil-soluble vitamin compounds include retinoids, additional vitamin B3 compounds, vitamin C (e.g. ascorbyl palmitate), vitamin D, vitamin K, vitamin E, and mixtures thereof. Preferred for use herein are retinoids, additional vitamin B3 compounds, vitamin E, and mixtures thereof, each of which is discussed below.
As used herein, "retinoid" in.cludes all natural and/or synthetic analogs of Vitamin A or retinol-like compounds which possess the biological activity of Vitamin A in the skin as well as the geometric isomers and stereoisorriers of these conlpounds. Preferred retinoids are retinol, retinyl palmitate, retinyl acetate, retinyl propionate, retinal and combinations thereof, but any oil-soluble retinoid may be used herein.
The compositions of the present invention may also include, in some embodiments, an additional vitamin B3 compound (other than niacinamide). When present, the composition preferably includes from about 0.01% to about 50%, more preferably from about 0.1% to about 10%, even more preferably from about 0.5% to about 10%, and still more preferably from about 1% to about 5%, by weight of the composition, of the vitainin B3 compound.
As used herein, "additional vitamin B3 compound" means a compound having the formula:
R
N i wherein R is, - COOH (i.e., nicotinic acid) or - CH2OH (i.e., nicotinyl alcohol); derivatives 5 thereof; and salts of any of the foregoing. Exemplary derivatives of the foregoing vitamin B3 compounds include nicotinic acid esters, including non-vasodilating esters of nicotinic acid (e.g., tocopheryl nicotinate), nicotinyl amino acids, nicotinyl alcohol esters of carboxylic acids, nicotinic acid N-oxide and niacinamide N-oxide.
Vitamin E and several derivatives thereof are known to be especially useful as anti-10 oxidants/radical scavengers. Such antioxidants/radical scavengers are especially useful for providing protection against UV radiation which can cause increased scaling or texture changes in the stratum corneum and against other environmental agents which can cause skin damage.
Nonlimiting examples of oil soluble vitamin E compounds include tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, and other esters of tocopherol.
Preferred anti-15 oxidants/radical scavengers are selected from tocopherol sorbate, tocopherol acetate, and mixtures thereo~ Also useful herein are the class of materials, tocotrienols, which,are related to vitamin E.
Emollients and Occlusives Emollients are cosmetic ingredients which help to maintaiii the soft, smooth;
and pliable 20 appearance of skin. Emollients filnction by their ability to remain on the skin surface or in the stratum conieunl to act as lubricants, to reduce flaking, and to improve the skin's appearance.
Occlusives are cosmetic ingredients which retard with the evaporation of water from the skin surface. By blocking the evaporative loss of water, occlusive materials increase the water content of skin. Occlusive agents are generally lipids which tend to remain on the skin surface.
25 Enlollients may also sometimes exhibit occlusive properties upon application to the skin, and vice versa. Examples of suitable emollients and occlusives include Caprylic/Capric Glycerides, Isopropyl Isostearate, Mineral Oil, Cetyl Ricinoleate, and Petrolatum.
Dehydroacetic Acid Dehydroacetic acid is a compound that is useful for regulating oily and/or shiny 30 appearance of the skin, as disclosed in USP 6,150,403. Its chemical name is 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione, and it can be commercially purchased from Universal Preserv-A-Chem of Brooklyn, NY under the tradenaine Unisept DHA , from Tri-K
Industries (Northvale, NJ), and under the tradename GEOGARD(O 221 or GEOGARD 361 from Lonza (Annandale, NJ).
The compositions of the present invention may comprise from about 0.1% toa bout 10%, more preferably from about 0.5% to about 5%, and even more preferably from about 1% to about 5% of dehydroactic acid or dermatologically acceptable salts, derivatives, or tautomers thereof.
Hexanediol The compositions of the present invention may comprise an effective amount of hexanediol, its isomers, tautomers, salts and derivatives. Some technical names for hexanediol suitable for use herein include 1,6-dihydroxyhexane, 1,6-hexanediol, hexamethylenediol, hexamethylene glycol, and 1,2-hexanediol.
The compositions of the present invention may coinprise from about 0.0001% to about 50%, alternatively from about 0.001 % to about 10%, alternatively from about 0.01 % to about 5%, and alternatively from about 0.1% to about 2% hexanediol.
Anti-Acne Actives The compositions of the present invention may contain a safe and effective amount of one or more anti-acne actives. Examples of useful anti-acne actives include resorcinol, sulfur, salicylic acid, benzoyl peroxide, erythromycin, zinc, etc.
Beta-Hydroxv Acids Nonlimiting examples of oil-soluble beta-hydroxy acids include salicylic acid and derivatives thereof such as the octanoyl derivative. Beta-hydroxy acids are known to provide anti-acne and anti-aging benefits.
Chelators As used herein, "chelator" or "chelating agent" means an active agent capable of removing a metal ion from a system by forming a complex so that the metal ion cannot readily participate in or catalyze chemical reactions. The inclusion of a chelating agent is especially useful for providing protection against UV radiation which can contribute to excessive scaling or skin texture changes and against other environmental agents which can cause skin damage.
Preferred oil-soluble chelators useful in compositions of the subject invention are furildioxime, furilmonoxime, and derivatives thereof.
Phytosterols Phytosterol and derivatives thereof are known for providing skin lightening benefits.
Non-limiting examples of oil-soluble phytosterol derivatives include (3-sitosterol, campesterol, brassicasterol, lupenol, a-spinasterol, stigmasterol, their derivatives, and combinations thereof.
More preferably, the phytosterol derivative is selected from the group consisting of (3-sitosterol, campesterol, brassicasterol, stigmasterol, their derivatives, and combinations thereof.
Oil-Soluble Vitamin Compounds A number of vitamins known by those in the art for providing various skin benefits are oil-soluble and soine or all of their derivatives are oil-soluble. As such, these oil-soluble vitamin compounds are useful as oil-soluble skin care actives hereul. Non-limiting examples of such oil-soluble vitamin compounds include retinoids, additional vitamin B3 compounds, vitamin C (e.g. ascorbyl palmitate), vitamin D, vitamin K, vitamin E, and mixtures thereof. Preferred for use herein are retinoids, additional vitamin B3 compounds, vitamin E, and mixtures thereof, each of which is discussed below.
As used herein, "retinoid" in.cludes all natural and/or synthetic analogs of Vitamin A or retinol-like compounds which possess the biological activity of Vitamin A in the skin as well as the geometric isomers and stereoisorriers of these conlpounds. Preferred retinoids are retinol, retinyl palmitate, retinyl acetate, retinyl propionate, retinal and combinations thereof, but any oil-soluble retinoid may be used herein.
The compositions of the present invention may also include, in some embodiments, an additional vitamin B3 compound (other than niacinamide). When present, the composition preferably includes from about 0.01% to about 50%, more preferably from about 0.1% to about 10%, even more preferably from about 0.5% to about 10%, and still more preferably from about 1% to about 5%, by weight of the composition, of the vitainin B3 compound.
As used herein, "additional vitamin B3 compound" means a compound having the formula:
R
N i wherein R is, - COOH (i.e., nicotinic acid) or - CH2OH (i.e., nicotinyl alcohol); derivatives 5 thereof; and salts of any of the foregoing. Exemplary derivatives of the foregoing vitamin B3 compounds include nicotinic acid esters, including non-vasodilating esters of nicotinic acid (e.g., tocopheryl nicotinate), nicotinyl amino acids, nicotinyl alcohol esters of carboxylic acids, nicotinic acid N-oxide and niacinamide N-oxide.
Vitamin E and several derivatives thereof are known to be especially useful as anti-10 oxidants/radical scavengers. Such antioxidants/radical scavengers are especially useful for providing protection against UV radiation which can cause increased scaling or texture changes in the stratum corneum and against other environmental agents which can cause skin damage.
Nonlimiting examples of oil soluble vitamin E compounds include tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, and other esters of tocopherol.
Preferred anti-15 oxidants/radical scavengers are selected from tocopherol sorbate, tocopherol acetate, and mixtures thereo~ Also useful herein are the class of materials, tocotrienols, which,are related to vitamin E.
Emollients and Occlusives Emollients are cosmetic ingredients which help to maintaiii the soft, smooth;
and pliable 20 appearance of skin. Emollients filnction by their ability to remain on the skin surface or in the stratum conieunl to act as lubricants, to reduce flaking, and to improve the skin's appearance.
Occlusives are cosmetic ingredients which retard with the evaporation of water from the skin surface. By blocking the evaporative loss of water, occlusive materials increase the water content of skin. Occlusive agents are generally lipids which tend to remain on the skin surface.
25 Enlollients may also sometimes exhibit occlusive properties upon application to the skin, and vice versa. Examples of suitable emollients and occlusives include Caprylic/Capric Glycerides, Isopropyl Isostearate, Mineral Oil, Cetyl Ricinoleate, and Petrolatum.
Dehydroacetic Acid Dehydroacetic acid is a compound that is useful for regulating oily and/or shiny 30 appearance of the skin, as disclosed in USP 6,150,403. Its chemical name is 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione, and it can be commercially purchased from Universal Preserv-A-Chem of Brooklyn, NY under the tradenaine Unisept DHA , from Tri-K
Industries (Northvale, NJ), and under the tradename GEOGARD(O 221 or GEOGARD 361 from Lonza (Annandale, NJ).
The compositions of the present invention may comprise from about 0.1% toa bout 10%, more preferably from about 0.5% to about 5%, and even more preferably from about 1% to about 5% of dehydroactic acid or dermatologically acceptable salts, derivatives, or tautomers thereof.
Hexanediol The compositions of the present invention may comprise an effective amount of hexanediol, its isomers, tautomers, salts and derivatives. Some technical names for hexanediol suitable for use herein include 1,6-dihydroxyhexane, 1,6-hexanediol, hexamethylenediol, hexamethylene glycol, and 1,2-hexanediol.
The compositions of the present invention may coinprise from about 0.0001% to about 50%, alternatively from about 0.001 % to about 10%, alternatively from about 0.01 % to about 5%, and alternatively from about 0.1% to about 2% hexanediol.
Anti-Acne Actives The compositions of the present invention may contain a safe and effective amount of one or more anti-acne actives. Examples of useful anti-acne actives include resorcinol, sulfur, salicylic acid, benzoyl peroxide, erythromycin, zinc, etc.
Beta-Hydroxv Acids Nonlimiting examples of oil-soluble beta-hydroxy acids include salicylic acid and derivatives thereof such as the octanoyl derivative. Beta-hydroxy acids are known to provide anti-acne and anti-aging benefits.
Chelators As used herein, "chelator" or "chelating agent" means an active agent capable of removing a metal ion from a system by forming a complex so that the metal ion cannot readily participate in or catalyze chemical reactions. The inclusion of a chelating agent is especially useful for providing protection against UV radiation which can contribute to excessive scaling or skin texture changes and against other environmental agents which can cause skin damage.
Preferred oil-soluble chelators useful in compositions of the subject invention are furildioxime, furilmonoxime, and derivatives thereof.
Flavonoids Flavonoid compounds are broadly disclosed in U.S. Patents 5,686,082 and 5,686,367.
Nonlimiting examples of flavonoids useful herein include isoflavones, flavanones selected from the group consisting of unsubstituted flavanones, mono-substituted flavanones, and mixtures thereof; chalcones selected from the group consisting of unsubstituted chalcones, mono-substituted chalcones, di-substituted chalcones, tri-substituted chalcones, and mixtures thereof;
flavones selected from the group consisting of unsubstituted flavones, mono-substituted flavones, di-substituted flavones, and mixtures thereof; one or more isoflavones; coumarins selected from the group consisting of unsubstituted coumarins, mono-substituted coumarins, di-substituted coumarins, and mixtures thereof; chromones selected from the group consisting of unsubstituted chromones, mono-substituted chromones, di-substituted chromones, and inixtures , thereof; one or more dicoumarols; one or more chromanones; one or more chromanols; isomers (e.g., cis/trans isomers) thereof; and mixtures thereof. By the term "substituted" as used herein means flavonoids wherein one or more hydrogen atom of the flavonoid has been independently replaced with a hydroxyl, C1-C8 alkyl, or C1-C4 alkoxyl. Mixtures of the above flavonoid compounds may also be used.
Plant-derived isoflavones such as soy isoflavones are particularly useful herein. A
particularly useful type of flavonoid herein is glycoside flavonoid, preferably selected from the group consisting of glucosyl hesperidin, glucosyl rutin, glucosyl myricitrin, glucosyl isoquercitrin, glucosyl quercitirin, methyl hesperedin, and mixtures thereof.
Coinmercially available glycoside flavonoids include hesperidin, metllyl hesperidin and rutin available from Alps Pharmaceutical Industry Co. Ltd. (Japan), and glucosyl hesperidin and glucosyl rutin available from Hayashibara Biochemical Laboratories, Inc. (Japan).
Anti-Inflammatory Agents A safe and effective amount of an anti-inflammatory agent may be added to the compositions of the present invention, preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 5%, of the composition. The anti-inflammatory agent enhances the skin appearance benefits of the present invention, e.g., such agents contribute to a more uniform and acceptable skin tone or color. The exact amount of anti-inflammatory agent to be used in the compositions will depend on the particular anti-inflammatory agent utilized since such agents vary widely in potency.
Steroidal anti-inflammatory agents, including but not limited to hydrocortisone, are suitable for use herein. Nonsteroidal anti-inflammatory agents, including but not limited to ibuprofen, naproxen, flufenamic acid, etofenamate, aspirin, mefenamic acid, meclofenamic acid, piroxicam and felbinac, are also suitable for use herein. The variety of compounds encompassed by these groups are well-known to those skilled in the art.
Mixtures of non-steroidal anti-inflammatory agents may also be employed, as well as the derrnatologically acceptable salts and esters of these agents.
"Natural" anti-inflarnmatory agents are also useful in the present invention.
Such agents may suitably be obtained as an extract by suitable physical andlor chemical isolation from natural sources (e.g., plants, fungi, by-products of microorganisms) or can be synthetically prepared. For example, candelilla wax, bisabolol (e.g., alpha bisabolol), aloe vera, plant sterols (e.g., phytosterol), Manjistha (extracted from plants in the genus Rubia, particularly Rubia Cordifolia), and Guggal (extracted from plants in the genus Commiphora, particularly Commiphora Mukul), kola extract, chamomile, red clover extract, and sea whip extract, may be used.
Anti-Cellulite Agents The compositions of the present invention may also contain a safe and effective amount of an anti-cellulite agent. Suitable agents may include, but are not limited to, xanthine compounds (e.g., caffeine, theophylline, theobromine, and aininophylline).
Topical Anesthetics The compositions of the present invention may also contain a safe and effective amount of a topical anesthetic. Examples of topical anesthetic drugs include benzocaine, lidocaine, bupivacaine, chlorprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexyl-caine, procaine, cocaine, ketamine, pramoxine, phenol, and pllarmaceutically acceptable salts thereof.
Desguamation Actives A safe and effective amount of a desquamation active may be added to the compositions of the present invention, preferably from about 0.1% to about 10%, more preferably from about 0.2% to about 5%, even more preferably from about 0.5% to about 4%, by weight of the composition. Desquamation actives enhance the skin appearance benefits of the present invention. For example, the desquamation actives tend to improve the texture of the skin (e.g., smoothness). One desquamation system that is suitable for use herein contains sulfliydryl compounds and zwitterionic surfactants and is described in U.S. Patent No.
5,681,852, to Bissett, incorporated herein by reference. Another desquamation system that is suitable for use herein contains salicylic acid and zwitterionic surfactants and is described in U.S.
Patent No. 5,652,228 to Bissett, incorporated herein by reference. Zwitterionic surfactants such as described in these applications are also useful as desquamatory agents herein, with cetyl betaine being particularly preferred.
Anti-Oxidants/Radical Scavengers The compositions of the present invention may include a safe and effective amount of an anti-oxidant/radical scavenger. The anti-oxidant/radical scavenger is especially useful for providing protection against UV radiation which can cause increased scaling or texture changes in the stratum corneum and against other environmental agents which can cause skin damage.
A safe and effective amount of an anti-oxidant/radical scavenger may be added to the compositions of the subject invention, preferably from about 0.1% to about 10%, more preferably from about 0.1% to about 5%, of the composition.
Anti-oxidants/radical scavengers such as ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives (e.g., magnesium ascorbyl phosphate, sodium ascorbyl phosphate, ascorbyl sorbate), tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, BHT, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (commercially available under the tradename Trolox ), gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines (e.g., N,N-diethylhydroxylamine, amino-guanidine), sulfhydryl compounds (e.g., glutathione), dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts may be used. Preferred anti-oxidants/radical scavengers are selected from tocopherol acetate and other esters of tocopherol, more preferably tocopherol acetate. The use of tocopherol sorbate in topical compositions and applicable to the present invention is described in U.S. Patent No. 4,847,071, issued on July 11, 1989 to Donald L. Bissett, Rodney D. Bush and Ranjit Chatterjee.
Tanning Actives The compositions of the present invention may contain a tanning active. When present, it is preferable that the compositions contain from about 0.1% to about 20%, more preferably from about 2% to about 7%, and still more preferably fiom about 3% to about 6%, by weight of the composition, of dihydroxyacetone as an artificial tanning active.
Dihydroxyacetone, which is also known as DHA or 1,3-dihydroxy-2-propanone, is a white to off-white, crystalline powder. This material can be represented by the chemical formula C3H603.
Skin Soothing and Skin Healing Actives 5 The compositions of the present invention may include a skin soothing or skin healing active. Skin soothing or skin healing actives suitable for use herein include panthenoic acid derivatives (including panthenol, dexpanthenol, ethyl panthenol), aloe vera, allantoin, bisabolol, and dipotassium glycyrrhizinate. A safe and effective amount of a skin soothing or skin healing active may be added to the present composition, preferably, from about 0.001%
to about 30%, 10 more preferably from about 0.01% to about 20%, still more preferably from about 0.01% to about 10%, by weight of the composition formed.
Antimicrobial and Antifungal Actives The compositions of the present invention may contain an antimicrobial or antifungal active. Such actives are capable of destroying microbes, preventing the development of 15 microbes or preventing the pathogenic action of microbes and are known to those of skill in the art. A safe and effective amount of an antimicrobial or antifungal active may be added to the present compositions, preferably, from about 0.001% to about 10%, more preferably from about 0.0 1% to about 5%, and still mbre preferably from about 0.05% to about 2%.
Solvents for Oil-Soluble Actives 20 If oil-soluble actives are used for purpose of sunscreen, whitening, anti-oxidant, etc, an ester may be used as a solvent to ensure efficacy of the oil-soluble active(s). A wide variety of suitable ester compounds are known and may be used herein and numerous examples can be found in "International Cosmetic Ingredient Dictionary and Handbook, 11th Edition, 2004".
Examples of suitable esters include esters of amino acids and C2 -C8 alcohols such as Isopropyl 25 Lauroyl Sarcosinate (Eldew SL205 from Ajinomoto), and esters of benzoic acid and C2 -C8 alcohols such as Phenethyl Benzoate (X-tend 226 from International Specialty Products). The level of solvent to be used will depend on the type and amount oil-soluble active to be incorporated and can readily be determined by those of skill in the art.
Other Optional Ing,redients 30 A variety of additional ingredients can be incorporated into the compositions of the present invention. Nonlimiting examples of these additional ingredients include; colorants, dyes, pigments; agents suitable for aesthetic purposes such as essential oils, fragrances, skin sensates, opacifiers, aromatic compounds (e.g., clove oil, menthol, camphor, eucalyptus oil, and eugenol);
preservatives (e.g. alkyl esters of para-hydroxybenzoic acid, hydantoin derivatives such as 1,3-bis(hydroxymethyl)-5,5-dimthylhydantoin, propionate salts, and a variety of quatemary anunonium compounds such as benzalkonium chloride, quaternium 15 [Dowicil 200], benzethonium Chloride, and methylbenzethonium chloride). Particularly preferred preservatives are disodium EDTA, phenoxyethanol, ethyl paraben, methyl paraben, propyl paraben, imidazolidinyl urea (cominercially available as Germall 1157), sodium dehydroacetate, benzyl alcohol and sodium benzoate.
Composition Preparation The compositions useful for the methods of the present invention are generally prepared by conventional methods such as are known in the art of making topical compositions. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like.
The topical compositions of the present invention may be formulated into a facial skin cosmetic, eye cosmetic, lip cosmetic, scalp hair styling aid, facial hair styling aid, moisturizer, wrinkle soothing serum, lotion, mascara, skin facial mask, skin lotion, skin cream, skin gel, eye gel, eye cream, lip gel, lip cream, cosmetic, foundation, or any other commonly known skin product or treatment.
Methods of Use Applicants have found that the compositions of the present invention are useful in a variety of applications directed to enhancement of mammalian skin. The methods of use for the compositions disclosed and claimed herein include, but are not limited to: 1) methods of increasing the substantivity of a cosmetic to skin; 2) methods of moisturizing skin; 3) methods of improving the natural appearance of skin; 4) methods of applying a color cosmetic to skin; 5) metliods of preventing, retarding, and/or treating wrinkles; 6) methods of providing UV
protection to skin; 7) methods of preventing, retarding, and/or controlling the appearance of oil;
8) methods of modifying the feel and texture of skin; 9) metliods of providing even skin tone;
10) methods of preventing, retarding, and/or treating the appear of spider vessels and varicose veins; 11) methods of masking the appearance of vellus hair on skin; and 12) methods of concealing blemishes and/or imperfections in human skin, including acne, age spots, freckles, moles, scars, under eye circles, birth marks, post-inflammatory hyperpigmentation, etc.. Each of the methods discussed herein involve topical application of the claimed compositions to skin.
EXAMPLES
The following examples further describe and demonstrate embodiments within the scope of the present invention. The exarnples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.
Water in Oil emulsion skin care products are prepared by conventional methods from the following components.
Examples 1 2 3 4 5 6 7 8 9 10 11 12 13 (values in wt%) Phase A
Dimethicone * 1 4.0 4.0 6.0 3.0 4.0 4.0 5.0 7.5 4.0 4.09 4.0 4.0 4.0 Polymethyl 4.0 4.0 6.0 - 4.0 4.0 - - - 4.09 4.0 4.0 4.0 silsesquioxane *2 DC9040 *3 3.0 3.0 4.5 - - 3.0 - - - 8.6 3.0 15.0 3.0 DC9045 *4 - - - - 3.0 - - - - - - - -KSG-15 *5 - - - 2.5 - - 2.7 2.7 2.7 - - - -Cyclopenta- 3.0 3.0 6.0 - 3.0 3.0 5.0 7.5 4.0 11.43 7.0 6.0 3.0 siloxane *6 KSG-210 *7 2.5 5.0 4.0 5.0 2.75 2.75 2.3 2.3 2.3 5.37 2.75 2.75 2.75 KF-6028 *8 - 0.15 - - - - - - - - - -KF-6017 *9 - - - 0.3 - - - - - - - - -KF-6104 * 10 - - - - - - - - 0.5 - - - -Cover Leaf AR-80 - - 5.0 5% KF-9901 * 11 -KSG-18 *12 - - - 1.5 - - - - - - - - -DC-2503 *13 - - - - - - - - 7.08 - 1.5 -Isopropyl - - Isostearate 2'2 Jeenate 3H *14 - - - - - - - - - 3.54 - - -TiOz Dispersion - - - - 0.7 *15 Petrolatum - - - - - - - - - - - 0.5 -Cetyl Ricinoleate - - - - - - - - - - - 0.5 -SEFA Cottonate - - - - 0.5 -*16 Fragrance 0.1 0.1 0.1 - - - - - - 0.1 - 0.2 0.1 Phase B
Glycerin, USP 10.0 10.0 30.0 5.0 7.0 10.0 - - - 10.0 10.0 10.0 10.0 Niacinamide 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 Elestab HP 100 0.1 0.1 *17 Pentylene Glycol 2.0 2.0 2.0 3.0 - 3.0 2.0 2.0 2.0 3.0 3.0 3.0 1,2-Hexane Diol - - - - 3.0 - - - - - 3.0 - -Sodium Chloride 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Panthenol 0.5 0.5 0.5 - 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 N-Acetyl - 2.0 - - - - - - - - - - -Glucosamine Promatrixyl - - 0.353 - - - - - - - - - -*18 Methylparaben 0.2 0.2 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Sodium Citrate 0.2 0.2 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Citric Acid 0.03 0.03 0.03 - - 0.03 0.015 0.015 0.015 0.03 0.03 0.03 0.03 Sodium Benzoate 0.07 0.07 0.07 0.07 - 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.07, Ethylparaben 0.05 0.05 0.05 0.05 - 0,05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Benzyl Alcohol - - - 0.2 - - - - - - - - -Glydant Plus * 19 - - - - 0.3 - - - - - - - -Disodium EDTA - - - 0.1 - 0.1 0.1 0.1 0.1 - - - -Ascorbyl - - - 2.0 - - - -Glucoside L-Arginine - - - 1.02 - - - - - - - - -Hexamidine - - - - - - - - - 0.1 0.1 0.1 0.1 Diisethanoate q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s.
Water to to to to to to to to to to to to. to 1. E.g., KF96A (6cs). Available from Shin-Etsu, Tokyo, Japan.
2. E.g., Tospearl 145A, CF 600, or 2000. Available from GE Advanced Materials, Wilton, CT.
3. 12.5% Dimethicone Crosspolymer in Cyclopentasiloxane. Available from Dow Corning, Midland, MI.
4. 12.5% Dimethicone in Cyclopentasiloxane. Available from Dow Corning, Midland, MI.
5. 5% Dimethicone/Vinyl Dimethicone Crosspolymer in Diinethicone. Available from Shin-Etsu, Tokyo, Japan.
6. E.g., SF-1202 available from GE Advanced Materials, Wilton, CT; SH245 available from Dow Corning, Midland, MI.
7. 25% Dimethicone PEG-10/15 Crosspolymer in Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
8. PEG-9 Polydimethylsiloxyethyl Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
9. PEG-10 Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
10. Polyglyceryl-3 Polydiinethylsiloxyethyl Diinethicone. Available from Shin-Etsu, Tokyo, Japan.
11. Silica, Alumina, Titanium Dioxide, Talc with surface-coat by Dimethicone/Methicone Copolyiner. Available in Catalysts & Chemicals Ind. Co. Ltd., Kawasaki, Japan.
12. 25% Diinethicone/Vinyl Dimethicone Crosspolymer in Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
13. Stearyl Dimethicone wax. Available from Dow Corning, Midland, MI.
14. Polyethylene. Available from Jeen Int'l Corp., Fairfield, NJ.
15. Hydrophobically modified Ti02 dispersion available from Kobo Products, Inc., South Plainfield, NJ.
' 16. Available from Procter & Gamble Chemicals, Cincinnati, OH.
17. Hexamidine Diisethionate. Availabile from Laboratoires Serobiologiques, Paris, France.
18. 0.085% Palmitoyl Pentapeptide-3 in water. Available from Sederma, Edison, NJ.
19. DMDM Hydantoin, Iodopropynyl butylcarbamate, 1,3 butylenel glycol in water.
Available from Lonza Inc., Basel, Switzerland.
In separate suitable containers are added the ingredients of Phase A and Phase B and each phase is mixed using a suitable mixer (e.g., Anchor blade, propeller blade, IKA T25).
When each phase is homogenous, slowly add Phase B to Phase A while mixing Phase A with a suitable mixer (e.g., Anchor blade, propeller blade, IKA T25). Maintain mixing until batch is uniform. Pour product into suitable containers.
TEST METHODS
Microscopy Method - This method is a microscope-assisted visual analysis of the 5 presence and size of the water domains within a sample composition. The method uses a standard optical microscope with Differential Interference Contrast and Crossed Polarized Light capabilities and a optical shear stage. Optionally, cross polarization may be used for sample coinpositions that have low translucency or for characterization of the watery domains. With the cross polarization technique, watery domains will appear dark in the resulting image. A
10 suitable configuration includes a Zeiss Axioplan 2 microscope (available from Carl Zeiss, Inc, Thornwood, NY) coupled with a MTI 3CCD camera (available from DAGE-MTI, Michigan City, IN). Images are acquired using Metamorph software version 6.1 (available from Molecular Devices Corporation, Sunnyvale, CA) that is used to measure droplet size and save the resulting image. The microscope is paired with a CSS450 optical shear stage (available 15 from Linkam Scientific Instruments, Surrey, UK). The microscope is configured to provide 500x magnification. About 1.5 g of the emulsion ("Sample") is carefully loaded onto the shear stage to minimize shear. The shear system is configured for a steady mode having a gap width of 1mm and a constant shear rate of 16 s-1. Temperature is held constant at approximately 25 C. An initial micrograph is captured of the Sample prior to initiation of shear by the shear 20 stage. The sample should have an average water droplet size of about 3 microns or less. If a Sample exhibits an average water droplet size of greater than 3 microns, the Sample inay not be properly characterized by microscopy; however, the Sample may be characterized by the Milling method or the Rheological method. The Sample is subjected to 15 seconds of shear, the shear is discontinued, and a micrograph is captured. This is repeated three times (e.g., Sample is 25 subjected to a cumulative 60 seconds of shear) to yield five micrographs (e.g., taken at time = 0, 15, 30, 45, and 60 seconds). The visible water domains of the Sample are analyzed to provide a maximum linear dimension for each of the visible water domains. Compositions that do not release when applied to the skin do not exhibit a significant change in the water droplet size when exposed to these conditions. Three Samples of each emulsion are tested.
30 Micrographs for select examples tested according to the microscopy method are provided as Figs. lA-B, 2A-C, and 3A-C. The values shown in the micrographs are the approximate longest dimension (in micrometers) of the aqueous domains. Figs. 1A-B are micrographs of Example 13 taken at 0 seconds and 15 seconds, respectively. Fig. 1B shows an aqueous domain of approximately 74.05 m after 15 seconds of shear. Figs. 2A-C are micrographs of Example 12 taken at 0 seconds, 15 seconds, and 60 seconds, respectively. Fig. 2C shows an aqueous domain of approximately 56.04~tm after 60 seconds of shear. Figs. 3A-C are micrographs of a Comparative Example (commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company) taken at 0 seconds, 15 seconds, and 60 seconds, respectively. Fig. 3C shows silicone elastomer domains that are readily characterized to a skilled microscopist; however, no aqueous domains greater than 10[Lm are present.
Milling Method - This method involves the bulk milling of the sample emulsion ("Sample") to yield a visible (to the naked eye) phase separation. The milling method involves the bulk milling of a 30g Sample in 50 mL beaker using an Ultra Turrax T25 mixer with a S 25 KR-18G dispersing element available from IKA Works, Wilmington, NC. The method is conducted at a temperature of approximately 25 C. The Sample is milled for about 1 minute at a speed of either about 13500 rpm (which corresponds to a shear rate of about 30000 s 1) or about 24000 rpm (which corresponds to a shear rate of about 53000 s I). During the 1 minute of milling, the beaker may be gently (i.e., reciprocating motion of no more than about 1 Hz) moved by hand in a direction parallel to the rotor axis of the mixer. Optionally, a Sample may be milled at a speed of 8000 rpm (which corresponds to a shear rate of about 18000 s 1). After no more than 5 minutes after milling is ended, phase separation is visually observed. The aqueous phase is removed from the beaker using standard separation techniques. The separated aqueous phase is weighed. The method is repeated with two additional samples and the weights are averaged.
Select examples tested according to the Milling Method provide the following water release:
Comparative Exam le 7 Exam le 8 Exam le 9 Example * p p p 8000rpm 0.0 g 2.35 g 0.0 g 0.0 g 13500 rpm 0.0 g 13.68 g 5.22 g 0.43 g 24000 rpm 0.0 g 18.39 g 15.05 g 5.68 g *The Comparative Example is the commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company.
Rheological Method - This method provides a rheological profile for the emulsion ("Sample"). The Sample is evaluated using an AR 2000 Rheometer available from TA
Instruments, New Castle, DE that is interfaced with a computer having software that provides data recordation and analysis. The rheometer is configured with 4 cm flat plates at a gap setting of 1000 microns, a temperature of 25 C, and in a controlled stress mode. The rheometer is configured to ramp stress from 1Pa to 1000Pa with a duration of 3 minutes and to sample at a rate of 10 points per decade. A rheology profile is plotted using the logio viscosity (Pa=s) on the y-axis versus the loglo shear stress (Pa) on the x-axis. Water-releasing Samples exhibit a sharp decrease in viscosity at a critical shear stress. This decrease in viscosity may be measured as the slope of the plot between the regions wherein the viscosity has a substantially constant high viscosity and a substantially constant lower viscosity. The slope is calculated according to the formula [(log viscosity(t2) - log viscosity(tl))/[(log shear stress(t2) - log shear stress (tl)], where viscosity (tl) and viscosity (t2) are the viscosity readings before and after the viscosity value decreases 10 fold (which on the log scale is a change of 1.0) between two readings, and the shear stress (tl) and shear stress (t2) are the corresponding shear stress readings.. If the viscosity decreases gradually and no sudden viscosity drop of more than 10 fold between two readings occurs, any representative readings on the plot can be used for the slope calculation. It is believed that the sharp decrease in viscosity evidences the release of water from the Sample.
Graphs of the resulting data for select examples tested according to the rheological method are provided in Figs. 4-7. Fig. 4 is the graph that results from Example 12. Fig. 4 shows a steep drop in viscosity (e.g., slope of about -106) between data points at a shear stress of approximately 1.8 (log). Fig. 5 is the graph that results from Example 11.
Fig. 5 shows a drop in viscosity (e.g., slope of about -14.7) between data points at a shear stress of approximately 0.8 (log). Fig. 6 is the graph that results from Example 10. Fig. 6 shows a drop in viscosity (e.g., slope of about -12) between data points at a shear stress of approximately 1.7 (log). Fig. 7 is the graph that results from testing a Comparative Example (commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company). The largest point to point drop in viscosity for the Comparative Example is about -3.4 It is understood that the foregoing detailed description of examples and embodiments of the present invention are given merely by way of illustration, and that numerous modifications and variations may beconie apparent to those skilled in the art without departing from the spirit and scope of the invention; and such apparent modifications and variations are to be included in the scope of the appended claims.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 min" is intended to mean "about 40 mm".
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meanulg or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Nonlimiting examples of flavonoids useful herein include isoflavones, flavanones selected from the group consisting of unsubstituted flavanones, mono-substituted flavanones, and mixtures thereof; chalcones selected from the group consisting of unsubstituted chalcones, mono-substituted chalcones, di-substituted chalcones, tri-substituted chalcones, and mixtures thereof;
flavones selected from the group consisting of unsubstituted flavones, mono-substituted flavones, di-substituted flavones, and mixtures thereof; one or more isoflavones; coumarins selected from the group consisting of unsubstituted coumarins, mono-substituted coumarins, di-substituted coumarins, and mixtures thereof; chromones selected from the group consisting of unsubstituted chromones, mono-substituted chromones, di-substituted chromones, and inixtures , thereof; one or more dicoumarols; one or more chromanones; one or more chromanols; isomers (e.g., cis/trans isomers) thereof; and mixtures thereof. By the term "substituted" as used herein means flavonoids wherein one or more hydrogen atom of the flavonoid has been independently replaced with a hydroxyl, C1-C8 alkyl, or C1-C4 alkoxyl. Mixtures of the above flavonoid compounds may also be used.
Plant-derived isoflavones such as soy isoflavones are particularly useful herein. A
particularly useful type of flavonoid herein is glycoside flavonoid, preferably selected from the group consisting of glucosyl hesperidin, glucosyl rutin, glucosyl myricitrin, glucosyl isoquercitrin, glucosyl quercitirin, methyl hesperedin, and mixtures thereof.
Coinmercially available glycoside flavonoids include hesperidin, metllyl hesperidin and rutin available from Alps Pharmaceutical Industry Co. Ltd. (Japan), and glucosyl hesperidin and glucosyl rutin available from Hayashibara Biochemical Laboratories, Inc. (Japan).
Anti-Inflammatory Agents A safe and effective amount of an anti-inflammatory agent may be added to the compositions of the present invention, preferably from about 0.1% to about 10%, more preferably from about 0.5% to about 5%, of the composition. The anti-inflammatory agent enhances the skin appearance benefits of the present invention, e.g., such agents contribute to a more uniform and acceptable skin tone or color. The exact amount of anti-inflammatory agent to be used in the compositions will depend on the particular anti-inflammatory agent utilized since such agents vary widely in potency.
Steroidal anti-inflammatory agents, including but not limited to hydrocortisone, are suitable for use herein. Nonsteroidal anti-inflammatory agents, including but not limited to ibuprofen, naproxen, flufenamic acid, etofenamate, aspirin, mefenamic acid, meclofenamic acid, piroxicam and felbinac, are also suitable for use herein. The variety of compounds encompassed by these groups are well-known to those skilled in the art.
Mixtures of non-steroidal anti-inflammatory agents may also be employed, as well as the derrnatologically acceptable salts and esters of these agents.
"Natural" anti-inflarnmatory agents are also useful in the present invention.
Such agents may suitably be obtained as an extract by suitable physical andlor chemical isolation from natural sources (e.g., plants, fungi, by-products of microorganisms) or can be synthetically prepared. For example, candelilla wax, bisabolol (e.g., alpha bisabolol), aloe vera, plant sterols (e.g., phytosterol), Manjistha (extracted from plants in the genus Rubia, particularly Rubia Cordifolia), and Guggal (extracted from plants in the genus Commiphora, particularly Commiphora Mukul), kola extract, chamomile, red clover extract, and sea whip extract, may be used.
Anti-Cellulite Agents The compositions of the present invention may also contain a safe and effective amount of an anti-cellulite agent. Suitable agents may include, but are not limited to, xanthine compounds (e.g., caffeine, theophylline, theobromine, and aininophylline).
Topical Anesthetics The compositions of the present invention may also contain a safe and effective amount of a topical anesthetic. Examples of topical anesthetic drugs include benzocaine, lidocaine, bupivacaine, chlorprocaine, dibucaine, etidocaine, mepivacaine, tetracaine, dyclonine, hexyl-caine, procaine, cocaine, ketamine, pramoxine, phenol, and pllarmaceutically acceptable salts thereof.
Desguamation Actives A safe and effective amount of a desquamation active may be added to the compositions of the present invention, preferably from about 0.1% to about 10%, more preferably from about 0.2% to about 5%, even more preferably from about 0.5% to about 4%, by weight of the composition. Desquamation actives enhance the skin appearance benefits of the present invention. For example, the desquamation actives tend to improve the texture of the skin (e.g., smoothness). One desquamation system that is suitable for use herein contains sulfliydryl compounds and zwitterionic surfactants and is described in U.S. Patent No.
5,681,852, to Bissett, incorporated herein by reference. Another desquamation system that is suitable for use herein contains salicylic acid and zwitterionic surfactants and is described in U.S.
Patent No. 5,652,228 to Bissett, incorporated herein by reference. Zwitterionic surfactants such as described in these applications are also useful as desquamatory agents herein, with cetyl betaine being particularly preferred.
Anti-Oxidants/Radical Scavengers The compositions of the present invention may include a safe and effective amount of an anti-oxidant/radical scavenger. The anti-oxidant/radical scavenger is especially useful for providing protection against UV radiation which can cause increased scaling or texture changes in the stratum corneum and against other environmental agents which can cause skin damage.
A safe and effective amount of an anti-oxidant/radical scavenger may be added to the compositions of the subject invention, preferably from about 0.1% to about 10%, more preferably from about 0.1% to about 5%, of the composition.
Anti-oxidants/radical scavengers such as ascorbic acid (vitamin C) and its salts, ascorbyl esters of fatty acids, ascorbic acid derivatives (e.g., magnesium ascorbyl phosphate, sodium ascorbyl phosphate, ascorbyl sorbate), tocopherol (vitamin E), tocopherol sorbate, tocopherol acetate, other esters of tocopherol, butylated hydroxy benzoic acids and their salts, BHT, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (commercially available under the tradename Trolox ), gallic acid and its alkyl esters, especially propyl gallate, uric acid and its salts and alkyl esters, sorbic acid and its salts, lipoic acid, amines (e.g., N,N-diethylhydroxylamine, amino-guanidine), sulfhydryl compounds (e.g., glutathione), dihydroxy fumaric acid and its salts, lycine pidolate, arginine pilolate, nordihydroguaiaretic acid, bioflavonoids, curcumin, lysine, methionine, proline, superoxide dismutase, silymarin, tea extracts, grape skin/seed extracts, melanin, and rosemary extracts may be used. Preferred anti-oxidants/radical scavengers are selected from tocopherol acetate and other esters of tocopherol, more preferably tocopherol acetate. The use of tocopherol sorbate in topical compositions and applicable to the present invention is described in U.S. Patent No. 4,847,071, issued on July 11, 1989 to Donald L. Bissett, Rodney D. Bush and Ranjit Chatterjee.
Tanning Actives The compositions of the present invention may contain a tanning active. When present, it is preferable that the compositions contain from about 0.1% to about 20%, more preferably from about 2% to about 7%, and still more preferably fiom about 3% to about 6%, by weight of the composition, of dihydroxyacetone as an artificial tanning active.
Dihydroxyacetone, which is also known as DHA or 1,3-dihydroxy-2-propanone, is a white to off-white, crystalline powder. This material can be represented by the chemical formula C3H603.
Skin Soothing and Skin Healing Actives 5 The compositions of the present invention may include a skin soothing or skin healing active. Skin soothing or skin healing actives suitable for use herein include panthenoic acid derivatives (including panthenol, dexpanthenol, ethyl panthenol), aloe vera, allantoin, bisabolol, and dipotassium glycyrrhizinate. A safe and effective amount of a skin soothing or skin healing active may be added to the present composition, preferably, from about 0.001%
to about 30%, 10 more preferably from about 0.01% to about 20%, still more preferably from about 0.01% to about 10%, by weight of the composition formed.
Antimicrobial and Antifungal Actives The compositions of the present invention may contain an antimicrobial or antifungal active. Such actives are capable of destroying microbes, preventing the development of 15 microbes or preventing the pathogenic action of microbes and are known to those of skill in the art. A safe and effective amount of an antimicrobial or antifungal active may be added to the present compositions, preferably, from about 0.001% to about 10%, more preferably from about 0.0 1% to about 5%, and still mbre preferably from about 0.05% to about 2%.
Solvents for Oil-Soluble Actives 20 If oil-soluble actives are used for purpose of sunscreen, whitening, anti-oxidant, etc, an ester may be used as a solvent to ensure efficacy of the oil-soluble active(s). A wide variety of suitable ester compounds are known and may be used herein and numerous examples can be found in "International Cosmetic Ingredient Dictionary and Handbook, 11th Edition, 2004".
Examples of suitable esters include esters of amino acids and C2 -C8 alcohols such as Isopropyl 25 Lauroyl Sarcosinate (Eldew SL205 from Ajinomoto), and esters of benzoic acid and C2 -C8 alcohols such as Phenethyl Benzoate (X-tend 226 from International Specialty Products). The level of solvent to be used will depend on the type and amount oil-soluble active to be incorporated and can readily be determined by those of skill in the art.
Other Optional Ing,redients 30 A variety of additional ingredients can be incorporated into the compositions of the present invention. Nonlimiting examples of these additional ingredients include; colorants, dyes, pigments; agents suitable for aesthetic purposes such as essential oils, fragrances, skin sensates, opacifiers, aromatic compounds (e.g., clove oil, menthol, camphor, eucalyptus oil, and eugenol);
preservatives (e.g. alkyl esters of para-hydroxybenzoic acid, hydantoin derivatives such as 1,3-bis(hydroxymethyl)-5,5-dimthylhydantoin, propionate salts, and a variety of quatemary anunonium compounds such as benzalkonium chloride, quaternium 15 [Dowicil 200], benzethonium Chloride, and methylbenzethonium chloride). Particularly preferred preservatives are disodium EDTA, phenoxyethanol, ethyl paraben, methyl paraben, propyl paraben, imidazolidinyl urea (cominercially available as Germall 1157), sodium dehydroacetate, benzyl alcohol and sodium benzoate.
Composition Preparation The compositions useful for the methods of the present invention are generally prepared by conventional methods such as are known in the art of making topical compositions. Such methods typically involve mixing of the ingredients in one or more steps to a relatively uniform state, with or without heating, cooling, application of vacuum, and the like.
The topical compositions of the present invention may be formulated into a facial skin cosmetic, eye cosmetic, lip cosmetic, scalp hair styling aid, facial hair styling aid, moisturizer, wrinkle soothing serum, lotion, mascara, skin facial mask, skin lotion, skin cream, skin gel, eye gel, eye cream, lip gel, lip cream, cosmetic, foundation, or any other commonly known skin product or treatment.
Methods of Use Applicants have found that the compositions of the present invention are useful in a variety of applications directed to enhancement of mammalian skin. The methods of use for the compositions disclosed and claimed herein include, but are not limited to: 1) methods of increasing the substantivity of a cosmetic to skin; 2) methods of moisturizing skin; 3) methods of improving the natural appearance of skin; 4) methods of applying a color cosmetic to skin; 5) metliods of preventing, retarding, and/or treating wrinkles; 6) methods of providing UV
protection to skin; 7) methods of preventing, retarding, and/or controlling the appearance of oil;
8) methods of modifying the feel and texture of skin; 9) metliods of providing even skin tone;
10) methods of preventing, retarding, and/or treating the appear of spider vessels and varicose veins; 11) methods of masking the appearance of vellus hair on skin; and 12) methods of concealing blemishes and/or imperfections in human skin, including acne, age spots, freckles, moles, scars, under eye circles, birth marks, post-inflammatory hyperpigmentation, etc.. Each of the methods discussed herein involve topical application of the claimed compositions to skin.
EXAMPLES
The following examples further describe and demonstrate embodiments within the scope of the present invention. The exarnples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.
Water in Oil emulsion skin care products are prepared by conventional methods from the following components.
Examples 1 2 3 4 5 6 7 8 9 10 11 12 13 (values in wt%) Phase A
Dimethicone * 1 4.0 4.0 6.0 3.0 4.0 4.0 5.0 7.5 4.0 4.09 4.0 4.0 4.0 Polymethyl 4.0 4.0 6.0 - 4.0 4.0 - - - 4.09 4.0 4.0 4.0 silsesquioxane *2 DC9040 *3 3.0 3.0 4.5 - - 3.0 - - - 8.6 3.0 15.0 3.0 DC9045 *4 - - - - 3.0 - - - - - - - -KSG-15 *5 - - - 2.5 - - 2.7 2.7 2.7 - - - -Cyclopenta- 3.0 3.0 6.0 - 3.0 3.0 5.0 7.5 4.0 11.43 7.0 6.0 3.0 siloxane *6 KSG-210 *7 2.5 5.0 4.0 5.0 2.75 2.75 2.3 2.3 2.3 5.37 2.75 2.75 2.75 KF-6028 *8 - 0.15 - - - - - - - - - -KF-6017 *9 - - - 0.3 - - - - - - - - -KF-6104 * 10 - - - - - - - - 0.5 - - - -Cover Leaf AR-80 - - 5.0 5% KF-9901 * 11 -KSG-18 *12 - - - 1.5 - - - - - - - - -DC-2503 *13 - - - - - - - - 7.08 - 1.5 -Isopropyl - - Isostearate 2'2 Jeenate 3H *14 - - - - - - - - - 3.54 - - -TiOz Dispersion - - - - 0.7 *15 Petrolatum - - - - - - - - - - - 0.5 -Cetyl Ricinoleate - - - - - - - - - - - 0.5 -SEFA Cottonate - - - - 0.5 -*16 Fragrance 0.1 0.1 0.1 - - - - - - 0.1 - 0.2 0.1 Phase B
Glycerin, USP 10.0 10.0 30.0 5.0 7.0 10.0 - - - 10.0 10.0 10.0 10.0 Niacinamide 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 Elestab HP 100 0.1 0.1 *17 Pentylene Glycol 2.0 2.0 2.0 3.0 - 3.0 2.0 2.0 2.0 3.0 3.0 3.0 1,2-Hexane Diol - - - - 3.0 - - - - - 3.0 - -Sodium Chloride 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Panthenol 0.5 0.5 0.5 - 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 N-Acetyl - 2.0 - - - - - - - - - - -Glucosamine Promatrixyl - - 0.353 - - - - - - - - - -*18 Methylparaben 0.2 0.2 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Sodium Citrate 0.2 0.2 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Citric Acid 0.03 0.03 0.03 - - 0.03 0.015 0.015 0.015 0.03 0.03 0.03 0.03 Sodium Benzoate 0.07 0.07 0.07 0.07 - 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.07, Ethylparaben 0.05 0.05 0.05 0.05 - 0,05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Benzyl Alcohol - - - 0.2 - - - - - - - - -Glydant Plus * 19 - - - - 0.3 - - - - - - - -Disodium EDTA - - - 0.1 - 0.1 0.1 0.1 0.1 - - - -Ascorbyl - - - 2.0 - - - -Glucoside L-Arginine - - - 1.02 - - - - - - - - -Hexamidine - - - - - - - - - 0.1 0.1 0.1 0.1 Diisethanoate q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s. q.s.
Water to to to to to to to to to to to to. to 1. E.g., KF96A (6cs). Available from Shin-Etsu, Tokyo, Japan.
2. E.g., Tospearl 145A, CF 600, or 2000. Available from GE Advanced Materials, Wilton, CT.
3. 12.5% Dimethicone Crosspolymer in Cyclopentasiloxane. Available from Dow Corning, Midland, MI.
4. 12.5% Dimethicone in Cyclopentasiloxane. Available from Dow Corning, Midland, MI.
5. 5% Dimethicone/Vinyl Dimethicone Crosspolymer in Diinethicone. Available from Shin-Etsu, Tokyo, Japan.
6. E.g., SF-1202 available from GE Advanced Materials, Wilton, CT; SH245 available from Dow Corning, Midland, MI.
7. 25% Dimethicone PEG-10/15 Crosspolymer in Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
8. PEG-9 Polydimethylsiloxyethyl Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
9. PEG-10 Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
10. Polyglyceryl-3 Polydiinethylsiloxyethyl Diinethicone. Available from Shin-Etsu, Tokyo, Japan.
11. Silica, Alumina, Titanium Dioxide, Talc with surface-coat by Dimethicone/Methicone Copolyiner. Available in Catalysts & Chemicals Ind. Co. Ltd., Kawasaki, Japan.
12. 25% Diinethicone/Vinyl Dimethicone Crosspolymer in Dimethicone. Available from Shin-Etsu, Tokyo, Japan.
13. Stearyl Dimethicone wax. Available from Dow Corning, Midland, MI.
14. Polyethylene. Available from Jeen Int'l Corp., Fairfield, NJ.
15. Hydrophobically modified Ti02 dispersion available from Kobo Products, Inc., South Plainfield, NJ.
' 16. Available from Procter & Gamble Chemicals, Cincinnati, OH.
17. Hexamidine Diisethionate. Availabile from Laboratoires Serobiologiques, Paris, France.
18. 0.085% Palmitoyl Pentapeptide-3 in water. Available from Sederma, Edison, NJ.
19. DMDM Hydantoin, Iodopropynyl butylcarbamate, 1,3 butylenel glycol in water.
Available from Lonza Inc., Basel, Switzerland.
In separate suitable containers are added the ingredients of Phase A and Phase B and each phase is mixed using a suitable mixer (e.g., Anchor blade, propeller blade, IKA T25).
When each phase is homogenous, slowly add Phase B to Phase A while mixing Phase A with a suitable mixer (e.g., Anchor blade, propeller blade, IKA T25). Maintain mixing until batch is uniform. Pour product into suitable containers.
TEST METHODS
Microscopy Method - This method is a microscope-assisted visual analysis of the 5 presence and size of the water domains within a sample composition. The method uses a standard optical microscope with Differential Interference Contrast and Crossed Polarized Light capabilities and a optical shear stage. Optionally, cross polarization may be used for sample coinpositions that have low translucency or for characterization of the watery domains. With the cross polarization technique, watery domains will appear dark in the resulting image. A
10 suitable configuration includes a Zeiss Axioplan 2 microscope (available from Carl Zeiss, Inc, Thornwood, NY) coupled with a MTI 3CCD camera (available from DAGE-MTI, Michigan City, IN). Images are acquired using Metamorph software version 6.1 (available from Molecular Devices Corporation, Sunnyvale, CA) that is used to measure droplet size and save the resulting image. The microscope is paired with a CSS450 optical shear stage (available 15 from Linkam Scientific Instruments, Surrey, UK). The microscope is configured to provide 500x magnification. About 1.5 g of the emulsion ("Sample") is carefully loaded onto the shear stage to minimize shear. The shear system is configured for a steady mode having a gap width of 1mm and a constant shear rate of 16 s-1. Temperature is held constant at approximately 25 C. An initial micrograph is captured of the Sample prior to initiation of shear by the shear 20 stage. The sample should have an average water droplet size of about 3 microns or less. If a Sample exhibits an average water droplet size of greater than 3 microns, the Sample inay not be properly characterized by microscopy; however, the Sample may be characterized by the Milling method or the Rheological method. The Sample is subjected to 15 seconds of shear, the shear is discontinued, and a micrograph is captured. This is repeated three times (e.g., Sample is 25 subjected to a cumulative 60 seconds of shear) to yield five micrographs (e.g., taken at time = 0, 15, 30, 45, and 60 seconds). The visible water domains of the Sample are analyzed to provide a maximum linear dimension for each of the visible water domains. Compositions that do not release when applied to the skin do not exhibit a significant change in the water droplet size when exposed to these conditions. Three Samples of each emulsion are tested.
30 Micrographs for select examples tested according to the microscopy method are provided as Figs. lA-B, 2A-C, and 3A-C. The values shown in the micrographs are the approximate longest dimension (in micrometers) of the aqueous domains. Figs. 1A-B are micrographs of Example 13 taken at 0 seconds and 15 seconds, respectively. Fig. 1B shows an aqueous domain of approximately 74.05 m after 15 seconds of shear. Figs. 2A-C are micrographs of Example 12 taken at 0 seconds, 15 seconds, and 60 seconds, respectively. Fig. 2C shows an aqueous domain of approximately 56.04~tm after 60 seconds of shear. Figs. 3A-C are micrographs of a Comparative Example (commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company) taken at 0 seconds, 15 seconds, and 60 seconds, respectively. Fig. 3C shows silicone elastomer domains that are readily characterized to a skilled microscopist; however, no aqueous domains greater than 10[Lm are present.
Milling Method - This method involves the bulk milling of the sample emulsion ("Sample") to yield a visible (to the naked eye) phase separation. The milling method involves the bulk milling of a 30g Sample in 50 mL beaker using an Ultra Turrax T25 mixer with a S 25 KR-18G dispersing element available from IKA Works, Wilmington, NC. The method is conducted at a temperature of approximately 25 C. The Sample is milled for about 1 minute at a speed of either about 13500 rpm (which corresponds to a shear rate of about 30000 s 1) or about 24000 rpm (which corresponds to a shear rate of about 53000 s I). During the 1 minute of milling, the beaker may be gently (i.e., reciprocating motion of no more than about 1 Hz) moved by hand in a direction parallel to the rotor axis of the mixer. Optionally, a Sample may be milled at a speed of 8000 rpm (which corresponds to a shear rate of about 18000 s 1). After no more than 5 minutes after milling is ended, phase separation is visually observed. The aqueous phase is removed from the beaker using standard separation techniques. The separated aqueous phase is weighed. The method is repeated with two additional samples and the weights are averaged.
Select examples tested according to the Milling Method provide the following water release:
Comparative Exam le 7 Exam le 8 Exam le 9 Example * p p p 8000rpm 0.0 g 2.35 g 0.0 g 0.0 g 13500 rpm 0.0 g 13.68 g 5.22 g 0.43 g 24000 rpm 0.0 g 18.39 g 15.05 g 5.68 g *The Comparative Example is the commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company.
Rheological Method - This method provides a rheological profile for the emulsion ("Sample"). The Sample is evaluated using an AR 2000 Rheometer available from TA
Instruments, New Castle, DE that is interfaced with a computer having software that provides data recordation and analysis. The rheometer is configured with 4 cm flat plates at a gap setting of 1000 microns, a temperature of 25 C, and in a controlled stress mode. The rheometer is configured to ramp stress from 1Pa to 1000Pa with a duration of 3 minutes and to sample at a rate of 10 points per decade. A rheology profile is plotted using the logio viscosity (Pa=s) on the y-axis versus the loglo shear stress (Pa) on the x-axis. Water-releasing Samples exhibit a sharp decrease in viscosity at a critical shear stress. This decrease in viscosity may be measured as the slope of the plot between the regions wherein the viscosity has a substantially constant high viscosity and a substantially constant lower viscosity. The slope is calculated according to the formula [(log viscosity(t2) - log viscosity(tl))/[(log shear stress(t2) - log shear stress (tl)], where viscosity (tl) and viscosity (t2) are the viscosity readings before and after the viscosity value decreases 10 fold (which on the log scale is a change of 1.0) between two readings, and the shear stress (tl) and shear stress (t2) are the corresponding shear stress readings.. If the viscosity decreases gradually and no sudden viscosity drop of more than 10 fold between two readings occurs, any representative readings on the plot can be used for the slope calculation. It is believed that the sharp decrease in viscosity evidences the release of water from the Sample.
Graphs of the resulting data for select examples tested according to the rheological method are provided in Figs. 4-7. Fig. 4 is the graph that results from Example 12. Fig. 4 shows a steep drop in viscosity (e.g., slope of about -106) between data points at a shear stress of approximately 1.8 (log). Fig. 5 is the graph that results from Example 11.
Fig. 5 shows a drop in viscosity (e.g., slope of about -14.7) between data points at a shear stress of approximately 0.8 (log). Fig. 6 is the graph that results from Example 10. Fig. 6 shows a drop in viscosity (e.g., slope of about -12) between data points at a shear stress of approximately 1.7 (log). Fig. 7 is the graph that results from testing a Comparative Example (commercially available Regenerist Daily Regenerating Serum available from The Procter & Gamble Company). The largest point to point drop in viscosity for the Comparative Example is about -3.4 It is understood that the foregoing detailed description of examples and embodiments of the present invention are given merely by way of illustration, and that numerous modifications and variations may beconie apparent to those skilled in the art without departing from the spirit and scope of the invention; and such apparent modifications and variations are to be included in the scope of the appended claims.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 min" is intended to mean "about 40 mm".
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meanulg or definition of a term in this written document conflicts with any meaning or definition of the term in a document incorporated by reference, the meaning or definition assigned to the term in this written document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (13)
1. A water in oil emulsion composition comprising:
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein when shear stress is applied to the composition during spreading on skin, aqueous phase is released from the emulsion.
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein when shear stress is applied to the composition during spreading on skin, aqueous phase is released from the emulsion.
2. A composition according to Claim 1 further comprising a skin care active selected from the group consisting of niacinamide, hexamidine compounds, whitening agents, peptides, sugar amines, and mixtures thereof.
3. A composition according to Claim 1 further comprising a skin conditioning agent.
4. A composition according to Claim 3 wherein the skin conditioning agent is selected from the group consisting of propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol, sorbitol, hydroxypropyl sorbitol, trehalose, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexanetriol, glycerin, 1,2-hexanediol, pentylene glycol, ethoxylated glycerin, propoxylated glycerin, and mixtures thereof.
5. A composition according to Claim 1 further comprising a particulate material.
6. A composition according to Claim 1, wherein the emulsifying crosslinked siloxane elastomer is dimethicone copolyol crosspolymer and dimethicone.
7. A composition according to Claim 1, wherein the non-emulsifying crosslinked siloxane elastomer is selected from the group consisting of dimethicone/vinyl dimethicone crosspolymers, and mixtures thereof.
8. A composition according to Claim 1, wherein the solvent for the elastomer is selected from the group consisting of volatile, non-polar oils; non-volatile, polar oils; non-volatile, non-polar oils; non-volatile paraffinic hydrocarbon oils; and mixtures thereof.
9. A composition according to Claim 1, wherein the composition further comprises from 0.1% to 50% of an additional skin care active selected from the group consisting of sunscreen actives, oil-soluble terpene alcohols, phytosterol, oil-soluble vitamin compounds, emollients and occlusives, dehydroacetic acid, hexanediol, anti-acne actives, beta hydroxy acids, chelators, flavanoids, anti-inflammatory agents, anti-cellulite agents, topical anesthetics, desquamation actives, anti-oxidants/free radical scavengers, tanning actives, skin soothing and healing agents, anti-microbial actives, anti-fungal actives, and mixtures thereof.
10. A method of regulating the condition of skin, said method comprising applying to the skin of a human in need of treatment, a safe and effective amount of a composition according to Claim 1.
11. A water in oil emulsion composition comprising:
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition releases of an amorphous region of the aqueous phase having a maximum linear dimension of at least 10 microns within 1 minute of shear according to Microscopy Method described herein.
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition releases of an amorphous region of the aqueous phase having a maximum linear dimension of at least 10 microns within 1 minute of shear according to Microscopy Method described herein.
12. A water in oil emulsion composition comprising:
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition releases a portion of the aqueous phase weighing at least 0.25g after 1 minute of milling at a rate of 13500 rpm according to Milling Method described herein.
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition releases a portion of the aqueous phase weighing at least 0.25g after 1 minute of milling at a rate of 13500 rpm according to Milling Method described herein.
13. A water in oil emulsion composition comprising:
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition yields a plot of log shear stress versus log viscosity having a slope of less than -5 as measured according to the Rheological Method described herein.
a) from 0.1% to 15% of a non-emulsifying crosslinked siloxane elastomer;
b) from 0.1% to 15% of an emulsifying crosslinked siloxane elastomer;
c) from 1% to 40% of a solvent for the non-emulsifying and emulsifying crosslinked siloxane elastomers;
d) optionally, from 0% to 5% of an additional emulsifier;
e) from 50% to 99% of aqueous phase;
wherein said composition yields a plot of log shear stress versus log viscosity having a slope of less than -5 as measured according to the Rheological Method described herein.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74207305P | 2005-12-02 | 2005-12-02 | |
US60/742,073 | 2005-12-02 | ||
US80055406P | 2006-05-15 | 2006-05-15 | |
US60/800,554 | 2006-05-15 | ||
US81279106P | 2006-06-12 | 2006-06-12 | |
US60/812,791 | 2006-06-12 | ||
PCT/US2006/045657 WO2007064687A1 (en) | 2005-12-02 | 2006-11-30 | Water in oil emulsion compositions containing siloxane elastomers |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2629853A1 true CA2629853A1 (en) | 2007-06-07 |
Family
ID=37820579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002629853A Abandoned CA2629853A1 (en) | 2005-12-02 | 2006-11-30 | Water in oil emulsion compositions containing siloxane elastomers |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1979054A1 (en) |
JP (1) | JP2009517478A (en) |
KR (1) | KR101171803B1 (en) |
CA (1) | CA2629853A1 (en) |
WO (1) | WO2007064687A1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5230954B2 (en) * | 2007-02-15 | 2013-07-10 | 株式会社コーセー | Water-in-oil emulsified sunscreen |
US20080311058A1 (en) * | 2007-06-18 | 2008-12-18 | Connopco, Inc., D/B/A Unilever | Stable high internal phase emulsions and compositions comprising the same |
US20090011035A1 (en) * | 2007-07-03 | 2009-01-08 | Joseph Michael Zukowski | Personal care composition |
WO2010059466A1 (en) * | 2008-11-24 | 2010-05-27 | The Procter & Gamble Company | Cosmetic compositions |
JP5667383B2 (en) * | 2009-06-19 | 2015-02-12 | 花王株式会社 | Water-in-oil emulsified cosmetic |
US20110033512A1 (en) * | 2009-08-10 | 2011-02-10 | Laurie Ellen Breyfogle | Personal care composition with improved spreadability |
JP5610739B2 (en) * | 2009-10-30 | 2014-10-22 | 株式会社ミルボン | High internal water phase oil-in-water hair treatment agent and container containing the same |
FR2954104B1 (en) | 2009-12-18 | 2012-03-09 | Oreal | W / O EMULSION COMPRISING EMULSIFYING SILICONE ELASTOMER AND VOLATILE LINEAR ALKANE |
JP5892720B2 (en) * | 2010-04-06 | 2016-03-23 | 株式会社ノエビア | Skin preparation |
US8821839B2 (en) | 2010-10-22 | 2014-09-02 | Conopco, Inc. | Compositions and methods for imparting a sunless tan with a vicinal diamine |
JP2013116870A (en) * | 2011-12-02 | 2013-06-13 | Rohto Pharmaceutical Co Ltd | Skin care composition |
US8961942B2 (en) | 2011-12-13 | 2015-02-24 | Conopco, Inc. | Sunless tanning compositions with adjuvants comprising sulfur comprising moieties |
JP5373046B2 (en) * | 2011-12-19 | 2013-12-18 | 株式会社 資生堂 | Oil-in-water emulsion composition |
US20130345316A1 (en) * | 2012-06-21 | 2013-12-26 | L'oreal | Water-releasing cosmetic composition |
JP5974843B2 (en) * | 2012-11-13 | 2016-08-23 | 信越化学工業株式会社 | Silicone oil-in-water macroemulsion cosmetic composition |
JP2014097936A (en) * | 2012-11-13 | 2014-05-29 | Shin Etsu Chem Co Ltd | Water-in-silicone oil macroemulsion cosmetic composition |
WO2015095711A1 (en) * | 2013-12-20 | 2015-06-25 | L'oreal | Carrier system for water-soluble active ingredients |
GB2525894A (en) * | 2014-05-07 | 2015-11-11 | Boots Co Plc | Skin care composition |
GB2525895A (en) * | 2014-05-07 | 2015-11-11 | Boots Co Plc | Skin care composition |
CN105168045B (en) * | 2015-09-07 | 2018-07-17 | 天津嘉氏堂科技有限公司 | A kind of sun-proof reparation Silica hydrogel of scar and preparation method |
US10413487B2 (en) | 2015-12-01 | 2019-09-17 | Shanghai O'Nine Technologies Ltd. | Nail gel polish and its manufacturing method |
CN105434187A (en) * | 2015-12-01 | 2016-03-30 | 上海零玖科技有限公司 | Gel polish and preparation method thereof |
EP3432898A4 (en) * | 2016-03-24 | 2020-03-11 | Bioclenz PH LLC | Treatment of skin conditions and diseases associated with microbial biofilms |
JP2018087165A (en) * | 2016-11-29 | 2018-06-07 | ロレアル | Water-in-oil emulsion composition |
US11510863B2 (en) | 2016-12-21 | 2022-11-29 | Shiseido Company, Ltd. | Water-in-oil emulsion cosmetics |
CN110662528B (en) * | 2017-05-25 | 2022-12-27 | 富士胶片株式会社 | Water-in-oil type cosmetic |
JP7356228B2 (en) * | 2018-01-31 | 2023-10-04 | 株式会社コーセー | Composition |
JP6460504B1 (en) * | 2018-05-31 | 2019-01-30 | 株式会社コスモビューティー | Water-in-oil emulsion composition |
JP7202159B2 (en) * | 2018-12-04 | 2023-01-11 | ポーラ化成工業株式会社 | Cosmetics containing powder |
US10959933B1 (en) * | 2020-06-01 | 2021-03-30 | The Procter & Gamble Company | Low pH skin care composition and methods of using the same |
KR102569047B1 (en) * | 2021-02-24 | 2023-08-23 | 한국콜마주식회사 | Cosmetic composition containing high concentration of vitamin c |
FR3130816B1 (en) * | 2021-12-17 | 2023-12-15 | Elkem Silicones France Sas | Silicone composition crosslinkable by irradiation |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3671327B2 (en) * | 1998-09-14 | 2005-07-13 | 株式会社コーセー | Water-in-oil cosmetics |
US6221979B1 (en) * | 1999-11-08 | 2001-04-24 | Dow Corning Corporation | Mixtures of silicone elastomers |
JP2002193754A (en) * | 2000-12-27 | 2002-07-10 | Kose Corp | Water-in-oil type emulsion hair cosmetic |
US20040234477A1 (en) * | 2001-09-14 | 2004-11-25 | Koji Sakuta | Composition and cosmetic preparation containing the same |
EP1935924B1 (en) * | 2002-09-12 | 2012-06-06 | Shin-Etsu Chemical Company, Ltd. | Pasty composition, and cosmetic preparation containing the same |
JP3979922B2 (en) | 2002-11-08 | 2007-09-19 | 信越化学工業株式会社 | Hydrophilized powder and composition containing the same |
US7285570B2 (en) * | 2003-04-17 | 2007-10-23 | The Procter & Gamble Company | Compositions and methods for regulating mammalian keratinous tissue |
JP2004339106A (en) * | 2003-05-14 | 2004-12-02 | Takashi Fukazawa | Water-in-oil type emulsified composition |
JP2004346046A (en) * | 2003-05-26 | 2004-12-09 | Shin Etsu Chem Co Ltd | Cosmetic |
KR101031755B1 (en) * | 2003-06-10 | 2011-04-29 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Cosmetic preparation |
JP5037782B2 (en) * | 2003-07-07 | 2012-10-03 | 信越化学工業株式会社 | Novel alternating organopolysiloxane-glycerin derivative copolymer and cosmetic containing the same |
JP2005041809A (en) * | 2003-07-28 | 2005-02-17 | Nonogawa Shoji Kk | Water-in-oil emulsified cosmetic |
JP4113093B2 (en) * | 2003-10-28 | 2008-07-02 | ポーラ化成工業株式会社 | External preparation for skin containing ascorbic acids |
JP2005179305A (en) * | 2003-12-22 | 2005-07-07 | Lion Corp | Antiperspirant composition |
JP4520903B2 (en) * | 2005-06-02 | 2010-08-11 | 花王株式会社 | Water-in-oil emulsion composition |
JP4993983B2 (en) * | 2005-09-28 | 2012-08-08 | 信越化学工業株式会社 | Organopolysiloxane surface treatment agent system, powder surface-treated with the treatment agent system, and cosmetics containing the powder |
-
2006
- 2006-11-30 JP JP2008543414A patent/JP2009517478A/en active Pending
- 2006-11-30 KR KR1020087012206A patent/KR101171803B1/en active IP Right Grant
- 2006-11-30 EP EP06844620A patent/EP1979054A1/en not_active Withdrawn
- 2006-11-30 WO PCT/US2006/045657 patent/WO2007064687A1/en active Application Filing
- 2006-11-30 CA CA002629853A patent/CA2629853A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2009517478A (en) | 2009-04-30 |
EP1979054A1 (en) | 2008-10-15 |
KR101171803B1 (en) | 2012-08-13 |
KR20080063851A (en) | 2008-07-07 |
WO2007064687A1 (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070128137A1 (en) | Water in oil emulsion compositions containing siloxane elastomers | |
KR101171803B1 (en) | Water in oil emulsion compositions containing siloxane elastomers | |
US20070274932A1 (en) | Water in oil emulsion compositions containing sunscreen actives and siloxane elastomers | |
US7175836B1 (en) | Oil continuous phase cosmetic emulsions with conjugated linoleic acid | |
US8063097B2 (en) | Compositions and methods for regulating mammalian keratinous tissue | |
KR100833831B1 (en) | Regulation of mammalian keratinous tissue using n-acyl amino acid compositions | |
US20080139453A1 (en) | Multiple emulsion compositions | |
KR20030020916A (en) | Methods of enhancing delivery of oil-soluble skin care actives | |
US20080299058A1 (en) | Multi-formulation cosmetic compositions | |
CN101321561A (en) | Water in oil emulsion compositions containing siloxane elastomers | |
CN101443081A (en) | Water in oil emulsion compositions containing sunscreen actives and siloxane elastomers | |
AU2001271930B2 (en) | Methods of enhancing delivery of oil-soluble skin care actives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |
Effective date: 20131016 |