CA2236427A1 - Methods and apparatus for distributed control of a multi-class network - Google Patents
Methods and apparatus for distributed control of a multi-class network Download PDFInfo
- Publication number
- CA2236427A1 CA2236427A1 CA002236427A CA2236427A CA2236427A1 CA 2236427 A1 CA2236427 A1 CA 2236427A1 CA 002236427 A CA002236427 A CA 002236427A CA 2236427 A CA2236427 A CA 2236427A CA 2236427 A1 CA2236427 A1 CA 2236427A1
- Authority
- CA
- Canada
- Prior art keywords
- traffic
- network
- link
- class
- admission request
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000005070 sampling Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 11
- 239000000872 buffer Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 235000008694 Humulus lupulus Nutrition 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 abstract description 6
- 238000000638 solvent extraction Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- XDXHAEQXIBQUEZ-UHFFFAOYSA-N Ropinirole hydrochloride Chemical compound Cl.CCCN(CCC)CCC1=CC=CC2=C1CC(=O)N2 XDXHAEQXIBQUEZ-UHFFFAOYSA-N 0.000 description 1
- SRVFFFJZQVENJC-IHRRRGAJSA-N aloxistatin Chemical compound CCOC(=O)[C@H]1O[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)NCCC(C)C SRVFFFJZQVENJC-IHRRRGAJSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/822—Collecting or measuring resource availability data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/15—Flow control; Congestion control in relation to multipoint traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/78—Architectures of resource allocation
- H04L47/783—Distributed allocation of resources, e.g. bandwidth brokers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/805—QOS or priority aware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
- H04L47/806—Broadcast or multicast traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/829—Topology based
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/83—Admission control; Resource allocation based on usage prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/64—Distributing or queueing
- H04Q3/66—Traffic distributors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13107—Control equipment for a part of the connection, distributed control, co-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13141—Hunting for free outlet, circuit or channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13164—Traffic (registration, measurement,...)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13166—Fault prevention
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13167—Redundant apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1325—Priority service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13251—Restricted service, class of service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1329—Asynchronous transfer mode, ATM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13293—TASI, irregular time division, burst switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13296—Packet switching, X.25, frame relay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13332—Broadband, CATV, dynamic bandwidth allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13352—Self-routing networks, real-time routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13353—Routing table, map memory
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1338—Inter-exchange connection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13389—LAN, internet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/13392—Channels assigned according to rules
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Methods and apparatus for control of a multi-class digital network are described. The network supports a plurality of digital services using dynamically-configured service bands to support various transport modes and qualities of service. Flexible controls with two degrees of freedom are used at the node level to dynamically configure the transport bands. The first degree of freedom is realized using adaptive alternate routing to balance the traffic intensity across the network and, hence, increase the efficiency of the band. The second degree of freedom is achieved through adaptive network partitioning to provide elasticity to the band structure. This permits band capacity to be adaptively reconfigured as connections are added and dropped. The switching nodes use rate controllers to divide the capacity of each link among the connection classes according to rules which ensure consistent service attributes for each band across the network. The rate controllers are adapted to support different transport modes and different packet sizes so that the deconstruction and reconstruction of packets at network edge devices is eliminated. The advantage is a flexible multi-class network which dynamically reconfigures to service traffic loads as service demands fluctuate.
Description
METHODS AND APPARATUS FOR DISTRIBUTED CONTROL
OF A MULTI-CLASS NETWORK
TECHNICAL FIELD
This invent:Lon relates generally to multi-class digital networks ancl, in particular, to methods and apparatus for the distributed control of a multi-class digital network in order to efficiently adapt to rapid fluctuations in traffic load and service demand.
:L 0 BACKGROUND OF THE INVENTION
A multi-class digital. network must accommodate traffic having different characteristics, quality of service (QOS) requirements, and transport modes. For example, a multi-cla~;s backbone network may be required to support both connection-based traffic and connectionless trafi=ic. F?urther complication is introduced by the f<3ct that within each category the traffic may include several classes differentiated by their characteristic: and service requirements. The traffic classes may require different and possibly conflicting controls in order to satisfy service commitments and ensure acceptable service quality.
Asynchronous Transfer Mode (ATM) switching technology was developed to provide multi-service digital tram>port. It was assumed that ATM networks would provide the flexibility and quality of service required to satisfy the demand for digital services.
One disadvantage of .ATM networks is that they are adapted to transport packets of only one size and format. Consequently, the packets of services which do not use ATM format must be deconstructed on admission to the F.TM network by network edge devices and reconstructed by network edge devices on egress from the ATM network.
This slows service delivery, increases computational requirements and complicates the structure and functionality of edge device ini~erfaces.
The varying service requirements in a multi-class network are difficult to satisfy without traffic segregation and network partitioning. For example, certain services such as voice and video are somewhat :LO loss tolerant but delay intolerant, while other services such as the exchange of data packets between computers are <~uite delay tolerant but completely loss intolerant.
In accommodating such variations in service, a multi-servi.ce network naturally segregates into a plurality of layers or "bands" which respectively serve the requirements of different types of traffic. This natural division of a network into service bands is well understood and has been widely discussed in the relevant literature.
A challenge in network management is designing network routing and admission. controls to manage the service bands in a multi-class network to efficiently acconunodate fluctuating service demands . It is well understood that while total network traffic may change relatively slowly over time, the traffic mix in a multi-clas:~ network may f7_uctuate rapidly and unpredictably.
To date, efficient methods of_ accommodating rapid and unpredictable fluctuations in traffic service demand have eluded network designers and traffic managers. There therE:fore exists a need for a multi-service, multi-class digital network and :methods for controlling the network which can accommodate the increasing demand for digital serv:_ces without unreasonablE~ investment in network infrastructure.
OF A MULTI-CLASS NETWORK
TECHNICAL FIELD
This invent:Lon relates generally to multi-class digital networks ancl, in particular, to methods and apparatus for the distributed control of a multi-class digital network in order to efficiently adapt to rapid fluctuations in traffic load and service demand.
:L 0 BACKGROUND OF THE INVENTION
A multi-class digital. network must accommodate traffic having different characteristics, quality of service (QOS) requirements, and transport modes. For example, a multi-cla~;s backbone network may be required to support both connection-based traffic and connectionless trafi=ic. F?urther complication is introduced by the f<3ct that within each category the traffic may include several classes differentiated by their characteristic: and service requirements. The traffic classes may require different and possibly conflicting controls in order to satisfy service commitments and ensure acceptable service quality.
Asynchronous Transfer Mode (ATM) switching technology was developed to provide multi-service digital tram>port. It was assumed that ATM networks would provide the flexibility and quality of service required to satisfy the demand for digital services.
One disadvantage of .ATM networks is that they are adapted to transport packets of only one size and format. Consequently, the packets of services which do not use ATM format must be deconstructed on admission to the F.TM network by network edge devices and reconstructed by network edge devices on egress from the ATM network.
This slows service delivery, increases computational requirements and complicates the structure and functionality of edge device ini~erfaces.
The varying service requirements in a multi-class network are difficult to satisfy without traffic segregation and network partitioning. For example, certain services such as voice and video are somewhat :LO loss tolerant but delay intolerant, while other services such as the exchange of data packets between computers are <~uite delay tolerant but completely loss intolerant.
In accommodating such variations in service, a multi-servi.ce network naturally segregates into a plurality of layers or "bands" which respectively serve the requirements of different types of traffic. This natural division of a network into service bands is well understood and has been widely discussed in the relevant literature.
A challenge in network management is designing network routing and admission. controls to manage the service bands in a multi-class network to efficiently acconunodate fluctuating service demands . It is well understood that while total network traffic may change relatively slowly over time, the traffic mix in a multi-clas:~ network may f7_uctuate rapidly and unpredictably.
To date, efficient methods of_ accommodating rapid and unpredictable fluctuations in traffic service demand have eluded network designers and traffic managers. There therE:fore exists a need for a multi-service, multi-class digital network and :methods for controlling the network which can accommodate the increasing demand for digital serv:_ces without unreasonablE~ investment in network infrastructure.
2 SLJI~1P,RY OF THE INVENT7;ON
It is an object of the invention to provide a method of controlling traffic admission and routing in a multi-class digital network wherein admission control is performed by computing an equivalent bit rate for each network admission request at a node in the network and traffic admission is based on the equivalent bit rate.
It is yet a further obj ect of the invention to LO provide a novel metr.od of computing an equivalent bit rate for a traffic admission request which significantly reduces computational effort in nodes subsequently to an edge node which recei~res the request.
It is yet a further obj ect of the invention to provide a method of controlling traffic admission and routing in a multi-class digital network which supports a plurality of routing schemes.
It is yet a further object of the invention to provide a method of controlling traffic admission and ?0 routing in a multi-class digital network in which routing schemes are linked to classes of service.
It is yet a further object of the invention to provide a link controller fo:r a transport link in a mufti.-class digital network which stores a sampling frequency for each c=Lass of service being served at any givers time by the link controller to ensure that the clas:> of service is guaranteed .a minimum service rate.
It is another object of the invention to provide a method of distributed control of a mufti-class digital network in which traffic normally allocated to a path is overflowed to a connection if the path is filled to capacity.
It is a farther object of the invention to provide a method of distributed control of a mufti-class
It is an object of the invention to provide a method of controlling traffic admission and routing in a multi-class digital network wherein admission control is performed by computing an equivalent bit rate for each network admission request at a node in the network and traffic admission is based on the equivalent bit rate.
It is yet a further obj ect of the invention to LO provide a novel metr.od of computing an equivalent bit rate for a traffic admission request which significantly reduces computational effort in nodes subsequently to an edge node which recei~res the request.
It is yet a further obj ect of the invention to provide a method of controlling traffic admission and routing in a multi-class digital network which supports a plurality of routing schemes.
It is yet a further object of the invention to provide a method of controlling traffic admission and ?0 routing in a multi-class digital network in which routing schemes are linked to classes of service.
It is yet a further object of the invention to provide a link controller fo:r a transport link in a mufti.-class digital network which stores a sampling frequency for each c=Lass of service being served at any givers time by the link controller to ensure that the clas:> of service is guaranteed .a minimum service rate.
It is another object of the invention to provide a method of distributed control of a mufti-class digital network in which traffic normally allocated to a path is overflowed to a connection if the path is filled to capacity.
It is a farther object of the invention to provide a method of distributed control of a mufti-class
3 digital network in which traffic belonging to a class that is normally served by connection is server by a path if tr.e path is temporarily idle.
It is yet another object of the invention to provide a method of distributed control of a multi-class digital network in which connectionless traffic without a quality of service guarantee is transported in time slots not used by other traffic having a guaranteed quality of service.
:LO In accordance with a further aspect of the inver.~tion there is provided a method of controlling traffic admission and routing in a multi-class digital network serving vari<~ble-size packets, comprising steps of:
computing an equivalent bit rate for each traffic admi~~sion request as received at a node in the network;
determining whether a connection for the traffic admi~,sion request can be established through the network;
in an instance wizen a connection can be established, adding the equivalent bit rate for the traffic admission request to a current service rate allocation of a class of traffic being served by an egress link through which the connection is esi=ablished, to permit a service rate controller to control transmission of each class of traffic on the egress link.
The invenv~ion further provides a link controller for a transport link in a multi-class digital network serving variable-length packets, comprising:
a service rate controller adapted to control an :30 egre~;s of digital traffic on the link, the service rate controller comprising a fair combinatorial circuit which includes for each cla:~s a) a sampling frequency memory for storing a sampling frequency computed by a node control element in
It is yet another object of the invention to provide a method of distributed control of a multi-class digital network in which connectionless traffic without a quality of service guarantee is transported in time slots not used by other traffic having a guaranteed quality of service.
:LO In accordance with a further aspect of the inver.~tion there is provided a method of controlling traffic admission and routing in a multi-class digital network serving vari<~ble-size packets, comprising steps of:
computing an equivalent bit rate for each traffic admi~~sion request as received at a node in the network;
determining whether a connection for the traffic admi~,sion request can be established through the network;
in an instance wizen a connection can be established, adding the equivalent bit rate for the traffic admission request to a current service rate allocation of a class of traffic being served by an egress link through which the connection is esi=ablished, to permit a service rate controller to control transmission of each class of traffic on the egress link.
The invenv~ion further provides a link controller for a transport link in a multi-class digital network serving variable-length packets, comprising:
a service rate controller adapted to control an :30 egre~;s of digital traffic on the link, the service rate controller comprising a fair combinatorial circuit which includes for each cla:~s a) a sampling frequency memory for storing a sampling frequency computed by a node control element in
4 response to a traffic load for the class at a specific point in time:
b) an adder adapted to add a value of the sampling frequency memory to an adder memory after counting a predetermined number of clock signals;
c) a comparator adapted to compare a value in the adder memory to a normalized packet size;
d) a selector for visiting each comparator and writing a cla:~s number to a ready queue when the .LO comparator determines treat the value in the adder memory is greater than or equal to the normalized packet size; and e) a buffer for each class, the buffers storing packets to be transferred onto the link when the :15 class number reaches a head of the ready queue.
The multi-class digital network in accordance with the invention distributes the network processing load between a network control element which handles glob~~l functions that. are best performed at the network 20 level. and traffic fun~~tions which are best performed in a distributed fashion ~~t the node level of the network.
This distribution of functionality minimizes computational effort and maximizes transmission efficiency.
25 The network control element in accordance with the invention receives traffic intensity and network state information fr~~m the nodes in the network which periodically report such information to the network control element. U~;ing the network state information, 30 the network control element maintains a network topology.
The :network topology and the traffic intensity data are used by the network control element to compute network trafj=is routing sets which are identified to the nodes alone with an order of preference. The computed routing
b) an adder adapted to add a value of the sampling frequency memory to an adder memory after counting a predetermined number of clock signals;
c) a comparator adapted to compare a value in the adder memory to a normalized packet size;
d) a selector for visiting each comparator and writing a cla:~s number to a ready queue when the .LO comparator determines treat the value in the adder memory is greater than or equal to the normalized packet size; and e) a buffer for each class, the buffers storing packets to be transferred onto the link when the :15 class number reaches a head of the ready queue.
The multi-class digital network in accordance with the invention distributes the network processing load between a network control element which handles glob~~l functions that. are best performed at the network 20 level. and traffic fun~~tions which are best performed in a distributed fashion ~~t the node level of the network.
This distribution of functionality minimizes computational effort and maximizes transmission efficiency.
25 The network control element in accordance with the invention receives traffic intensity and network state information fr~~m the nodes in the network which periodically report such information to the network control element. U~;ing the network state information, 30 the network control element maintains a network topology.
The :network topology and the traffic intensity data are used by the network control element to compute network trafj=is routing sets which are identified to the nodes alone with an order of preference. The computed routing
5 sets are distributed t=o the network nodes and used by the network nodes in processing traffic admission requests.
The network nodes include node control elements which control traffic admission., traffic routing and the computation of service-rate allocations for classes of traffic served by egress links at the node.
Edge network node control elements receive traffic admission requests from subtending sources. The edge node control elements compute an equivalent bit rate .LO for each traffic admission request based on a novel methcd in accordance with the invention. In order to minin.ize further processing when it is necessary to estat~lish a connection across the network, the edge node control element also computer variables which enable :15 subsequent nodes involved in the connection to rapidly compL.te an approximate equivalent bit rate used in route selecaion.
The multi-class digital network in accordance with the invention preferably supports a plurality of ?0 digital services whi~~h may require different transport mode,, each transport/ mode consisting of at least one tran~;port protocol. Since the packets of the same protocol may be of variable size, a link controller is provided which accommodates variable packet sizes so that ?5 packets need not be disassembled and converted to a standard format by edge device :interfaces.
The multi-class digital network adopts a service-rate discipline comprising a guaranteed minimum rate per class in order to ensure efficient use of the 30 netwc>rk while meeting transmission rate and quality of service commitments. In order to minimize computing requi.reme_nts for routing, high-frequency, low bit-rate traffic is preferably served by paths commonly referred to as direct routes set up through the network. High
The network nodes include node control elements which control traffic admission., traffic routing and the computation of service-rate allocations for classes of traffic served by egress links at the node.
Edge network node control elements receive traffic admission requests from subtending sources. The edge node control elements compute an equivalent bit rate .LO for each traffic admission request based on a novel methcd in accordance with the invention. In order to minin.ize further processing when it is necessary to estat~lish a connection across the network, the edge node control element also computer variables which enable :15 subsequent nodes involved in the connection to rapidly compL.te an approximate equivalent bit rate used in route selecaion.
The multi-class digital network in accordance with the invention preferably supports a plurality of ?0 digital services whi~~h may require different transport mode,, each transport/ mode consisting of at least one tran~;port protocol. Since the packets of the same protocol may be of variable size, a link controller is provided which accommodates variable packet sizes so that ?5 packets need not be disassembled and converted to a standard format by edge device :interfaces.
The multi-class digital network adopts a service-rate discipline comprising a guaranteed minimum rate per class in order to ensure efficient use of the 30 netwc>rk while meeting transmission rate and quality of service commitments. In order to minimize computing requi.reme_nts for routing, high-frequency, low bit-rate traffic is preferably served by paths commonly referred to as direct routes set up through the network. High
6 bit-rate connection-oriented traffic is preferably served by connections set up on demand. Each service type is preferably assigned to at least one class and each class is preferably assigned to a separate band in the network.
The hands are dynamically configured and have elastic boundaries which fluctuate with traffic load. Unused time slots accept traffic from. any waiting source in a predetermined hierarchical order in which connectionless traffic without a qua7_ity of service is served last.
.L 0 BRIEF' DESCRIPTION OF THE DRAWINGS
The invention will now be further explained by way of example only and with reference to the following drawings wherein:
Fig. 1 is a schematic: diagram of a multi-class digital network in ac<:ordance with the invention;
Fig. 2 is a schematic diagram showing cost elli~~ses used by a :network control element to compute routing sets for the network node shown in Fig. 1;
Fig. 3 is a schematic diagram of an example network used to illustrate determining the routing sets for network nodes by a network control element;
Fig. 4 is a routing table for a destination node 11 shown in Fig. 3;
Fig. 5 is a3 schematic diagram showing network link; partitioned into banks corresponding to classes of traffic;
Fig. 6 is a schematic diagram illustrating network paths and network connections through a sample network;
Fig. 7 is a graph illustrating the relationship between transport efficiency and processing throughput in relation to a network which uses connections or paths;
The hands are dynamically configured and have elastic boundaries which fluctuate with traffic load. Unused time slots accept traffic from. any waiting source in a predetermined hierarchical order in which connectionless traffic without a qua7_ity of service is served last.
.L 0 BRIEF' DESCRIPTION OF THE DRAWINGS
The invention will now be further explained by way of example only and with reference to the following drawings wherein:
Fig. 1 is a schematic: diagram of a multi-class digital network in ac<:ordance with the invention;
Fig. 2 is a schematic diagram showing cost elli~~ses used by a :network control element to compute routing sets for the network node shown in Fig. 1;
Fig. 3 is a schematic diagram of an example network used to illustrate determining the routing sets for network nodes by a network control element;
Fig. 4 is a routing table for a destination node 11 shown in Fig. 3;
Fig. 5 is a3 schematic diagram showing network link; partitioned into banks corresponding to classes of traffic;
Fig. 6 is a schematic diagram illustrating network paths and network connections through a sample network;
Fig. 7 is a graph illustrating the relationship between transport efficiency and processing throughput in relation to a network which uses connections or paths;
7 Fig. 8 is a schematic diagram depicting intraband and interband controls in a multi-class digital network in accordance with the invention;
Fig. 9 is a schematic diagram illustrating capacity management in a multi-class digital network with paths and connection. where connection-level sharing is practised;
Fig. l0a is a schematic diagram illustrating capacity management with paths and connections in a network link;
Fig. lOb is a schematic diagram illustrating capacity management, as in Fig. 10a, except that a connection band is not subdivided, and any unallocated capacity is granted to connectionless-mode traffic;
:L5 Fig. 11 is a schematic diagram illustrating a rate controller in a node control element for a transport link in a multi-class digital network in accordance with the invention;
Fig. 12 is a schE~matic diagram of class :?0 allocations for variable packet sizes in a multi-class, multi-service network in accordance with the invention;
Fig. 13 is a schematic diagram illustrating a preferred arrangement for processing connection admission requests at node control elements in accordance with the 25 inver..tion; and Fig. 14 is a graph illustrating a method used for minimizing processing required to compute equivalent bit mates as connections are established across a multi-clas~~ digital network in accordance with the invention.
DETAILED DESCRIPTION OF THE PREFERRED E~DIMENTS
Fig. 1 is a schematic diagram of a multi-class network in accordan~~e with the invention, generally indicated by the reference 20. The network includes a
Fig. 9 is a schematic diagram illustrating capacity management in a multi-class digital network with paths and connection. where connection-level sharing is practised;
Fig. l0a is a schematic diagram illustrating capacity management with paths and connections in a network link;
Fig. lOb is a schematic diagram illustrating capacity management, as in Fig. 10a, except that a connection band is not subdivided, and any unallocated capacity is granted to connectionless-mode traffic;
:L5 Fig. 11 is a schematic diagram illustrating a rate controller in a node control element for a transport link in a multi-class digital network in accordance with the invention;
Fig. 12 is a schE~matic diagram of class :?0 allocations for variable packet sizes in a multi-class, multi-service network in accordance with the invention;
Fig. 13 is a schematic diagram illustrating a preferred arrangement for processing connection admission requests at node control elements in accordance with the 25 inver..tion; and Fig. 14 is a graph illustrating a method used for minimizing processing required to compute equivalent bit mates as connections are established across a multi-clas~~ digital network in accordance with the invention.
DETAILED DESCRIPTION OF THE PREFERRED E~DIMENTS
Fig. 1 is a schematic diagram of a multi-class network in accordan~~e with the invention, generally indicated by the reference 20. The network includes a
8 plurality of switching nodes 22, hereinafter referred to simply as "nodes". The nodes are interconnected by transport links 24, hereinafter referred to simply as "links". The links 24 may be any one of a number of types of transport links well known in the art. The links 24 are designed to support a transfer rate appropriate for the traffic loads that they must transport. The multi-class network 20 in accordance with the invention include: a network control element 26 which preferably performs at least the functions of network topology monitoring, and cornputing and distributing network traffic routing sets to the nodes 22, as required. The network control element 26 also preferably performs the function of network sizing computations :L5 which. produce periodic specifications for the sizes of the inter-nodal links 24. The network control element 26 is, for example, a server connected to a one of the nodes 22, or the like..
In the multi-class network 20, other network ;?0 functions are preferably distributed among node control elements 28. Consequently, the node control elements 28 perform traffic admission control, connection routing for connection-oriented traffic and the computation of service-rate allocations for classes served by egress 25 links managed by a node control element 28. Each of these functions will be described below in detail. Even though only one node control element 28 is shown in Fig. 1, it will be understood that each node 22 includes a noe.e control element: 28 30 The multi-class network 20 may carry classes of traffic having distinctly different characteristics and service requirements. The different service requirements for the various traffic classes are difficult to meet without traffic segregation and network partitioning into
In the multi-class network 20, other network ;?0 functions are preferably distributed among node control elements 28. Consequently, the node control elements 28 perform traffic admission control, connection routing for connection-oriented traffic and the computation of service-rate allocations for classes served by egress 25 links managed by a node control element 28. Each of these functions will be described below in detail. Even though only one node control element 28 is shown in Fig. 1, it will be understood that each node 22 includes a noe.e control element: 28 30 The multi-class network 20 may carry classes of traffic having distinctly different characteristics and service requirements. The different service requirements for the various traffic classes are difficult to meet without traffic segregation and network partitioning into
9 layers or "bands". :Eor example, open-loop controls and closed-loop controls have conflicting attributes and require distinctly different handling. Both can, however, operate efficiently in. the same network if each control is applied to a separate network band.
Connection-based traffic and connectionless traffic also have other distinctly different service requirements.
For Example, human-to-human communications such as voice and video are somewhat loss-tolerant in that a certain number of packets can be lost without detection by the human. participants, yet they are quite delay-intolerant in that any delay or "fitter" in packet delivery is quite noticeable. Data conununications between computers on the other hand are quite delay-tolerant but strictly :L5 intolerant to packet 7_oss .
Network sea~regation into bands is preferably done so that each network band. corresponds to a traffic clasp . The same control method applied to a given class should be practised across th.e network. In order to efficiently use the network, the boundaries between successive bands must be elastic to permit band capacity to e~:pand and shrink in response to variations in network traffic.
Topological design and overall network dimensioning are based on long-term traffic forecasts and other considerations well known in the art. Aggregate network design is a slow process which takes place over time. Network sizing is there:Eore preferably a function performed by the nei=work control element 26. Network sizing requires traffic characterization. Performance estimation is a function of traffic load and estimates of spatial traffic distribution. Given the difficulty of traffic characterization in a multi-band, multi-service network, effective network sizing computations may be based on traffic and performance measurements. As shown in Fig. 1, the network control element 26 therefore receives traffic measurement data from the node control elements 28. The traffic measurement data is transferred to the network control element 26 through the network.
The traffic measurement data is accumulated in apprcpriate tables and periodically analyzed in order to determine appropriate sizes i=or the links 24 in the network. The entire network 20 must be provisioned to :LO serve the combined traffic load of all classes. The combined traffic load is, of course, variable over time, however, the combined traffic 7_oad is less volatile than the traffic loads of the individual classes. The network traffic data may be sorted to determine traffic loads on each inter-nodal link 24 and the data can be used to determine when a link size is inadequate or when a direct link between unlinked nodes is warranted. Consequently, in addition to traffic data each node control element 28 involved in traffic admission control should report to the network control element 26 the details of admission request denied and the cause of admission failure. The frequency at which an analysis of this data is conducted depends on a number of factors well known in the art, including storage <:apacity at the network control element 26.
The node control elements 28 also pass network state information messages to the network control element 25 to permit the network control element 26 to maintain topological awareness of the network 20 and its state. In some networks, a topological map of the network is maintained in every node. Consequently, "flooding" of state information is required. This flooding of information uses network resources and ties up node computing cycles. In order to free resources for transport control, in the multi-class network in accordance with the invention, a complete topological network map is maintained only at the network control element 26. To ensure that the topological information is accurate and complete, each link 24 is preferably monitored by each of the nodes 22 at its opposite ends.
Consequently, if the status of a link 24 changes, the chanc,'e is reported by two nodes 22 to the network control element 26. Likewise, the state of each node 22 is LO monitored by two neighbouring nodes 22 appointed by the network control element 26. If any node 22 malfunctions or becomes inoperable, the network control element 26 appoints alternate monitors) for any other nodes that were monitored by that node. This method ensures that the network control element 26 receives accurate network state: information to guarantee that network topology is accurate and up to dai:e .
The network topology is used, as required, to compute network routing sets which are used by node control elements 28 t:o route traffic admission requests acro~;s the network. Direct routes, which may include direct links or shortest route paths through the network, are t;he routes of first preference. Indirect routes from an originating node 22 to a destination node 22 are preferably sorted according to cost ellipses 30 illu~~trated in Fig. 2. In using the cost ellipses 30 to sort route sets, the origin and destination nodes, X and Y, <~re placed at the two foci and paths along intermediate nodes are sorted according to cost as determined by an acceptable model. Transport cost models are ~rell known in the art and a number of good models are publicly available. Any path having intermediate nodes which fall between the same elliptical cost boundaries is considered to be of comparable cost. For example, the paths x-d-y and x-f-y in Fig. 2 are of comparable cost and a.re considered as equal alternatives.
Fig. 3 is a schematic diagram of an example network for illustrating the route sets computed by the network control element 26. Each node control element 28 is provided with a list of candidate routes to each destination. The list from node 0 to node 11 includes a direca route, a set of first-choice routes and a set of secor..d-choice routes, etc. The list includes only the first. adjacent node along the shortest path to the destination. Routes from each origin to the destination are determined according to cost criteria described above:. The routes are sorted according to static cost and assigned a selection priority. Each network node control element 28 maintains a table of routes received from the network control element 26. Whenever network topology changes, the network control element 26 determines which links 24 are affected by the change and reco~iputes network routing sets accordingly. In order to conserve time and ensure that nodes use effective routing sets, only those links 24 affected by a change in network topology are recomputed. When a new route set is recomputed for any particular network node 22, the recomputed route set is preferably transferred immediately to the associated node control elements 28.
Fig. 4 shows an exemplary routing table compL.ted by the network control element 26 for the destination 11 from each of the other 10 nodes in the network. As is apparent, a direct route is specified whenever it is available. The direct route is always preferred in traffic routing if free capacity exists on that route. As an alternative to the direct route, a first. set of lowest:-cost routes is specified. For exam~~le, from node 0 to node 1J_, the first alternate set includes nodes 5 and 6. The network control element 26 specifies only the immediately adjacent node for route selection. As will be explained below, during traffic admission the node control elements 28 select the two immediate links which are least occupied to find a route to service an admission request.
In a multi-class network in accordance with the invention, network traffic: is divided into a manageable number of classes, whose definition preferably depends on:
1) the transaction format (synchronous transfer mode (STM), asynchronous transfer mode (ATM), Internet protocol (IP), etc.):
2) the method of transaction processing, e.g., connection-oriented o:r connectionless; or 3) the method of flow control (open-loop or closed-loop) .
The term "transaction" a~~ used in this document is to denote the process of transferring information from a source to a sink in a single session. A class may include several connections of similar traffic or may represent a single connection which has a high bit-rate requirement. A class may also include connectionless traffic with no quality of service (QOS) requirements.
Fig. 5 shows the links 24 of a network node 22 partitioned into a plurality of bands, each of which supports one class of traffic. The total capacity of each link 24 is divided among the classes it supports.
The links 24 may be partitioned differently since the same mix of traffic is not necessarily transported over each link. Different routing schemes and admission criteria may be applied to the various network bands.
For example, a voice service class may use a simple routing scheme while clas:~es of higher-speed connections may use an elaborate stag-dependent selective routing scheme as will be explained below in some detail. In addition to the difference in routing and admission criteria, operational measurements, tariff setting and billing procedures may differ among the classes of traffic.
In order to maximize transport efficiency and minimize processing load, at least certain classes of traffic preferably use paths through the network for traffic routing. Fig. 6 schematically illustrates a relation between a path and a connection. In Fig. 6, a solid line through a node indicates a path 32 between non-adjacent nodes and the line connecting nodes indicates a connection 34. A path and a connection may exist on the same link at: the same time and within the same class. A path 32 is a reserved route between two nodes 22, possibly traversing several intermediate nodes 22. Intermediate nodes 22 in a path are involved in the path allocation process only when the path is first established or when its capacity allocation is modified. A path 32 may accommodate a large number of connections, possibly several hundreds, between its origin and destination nodes. The originating node 22 views the path as a direct connection to the destination node 22. The intermediate nodes 22 in a path are not involved in the admission of the individual connections belonging to the path 32. A path 32 may serve more than one class of traffic. However, the class definition is only relevant to the end nodes 22.
A connection 34 seeks admission at a specific ingress point in the network. A connection specifies a destination, but there is no fixed route between the originating node and the destination node of the connectiion. Rather, a route is negotiated when the connection is set up. Each node 22 traversed by a connection is involved in the interrelated decision regarding the admission, or otherwise of the traffic admission request for a connection and the actual selection of the end-to-end route for the request.
Paths and connections may or may not have a capacity reservation. A capacity reservation is necessary to achieve a specified QOS. Without a capacity reservation, the QOS i:~ based only on a weighted priority, or some other class differentiation, and the path 32 or connection 34 are used only to facilitate the forwarding of packets at the nodes.
As shown in Fig. 7, paths maximize processing throughput since admission control may be handled exclusively by an edge node which receives a traffic admission request. Establishing paths, however, is not the most efficient use of network resources unless adequate stable traffic exists to keep the path full. In general as shown in Fig. 7, transport efficiency decreases as the paths' allotment in the network increases. Conversely, transport efficiency increases with the increase in the connections' allotment, however processing throughput is significantly affected.
In the network 20 in accordance with the invention, flexible controls which permit two degrees of freedom are realized by employing adaptive routing in addition to adaptive nei~work partitioning. The two degrees of freedom are depicted in Fig. 8 which illustrates the intra-band and inter-band controls that may be used in a network 20 in accordance with the invention. Within each network band 36, adaptive alternate routing may be used to balance the traffic intensity across the network and thereby increase the efficiency of the band. The elastic boundaries of a band 36 may vary slowly, typically in seconds, between successive changes while adaptive routing is applied on a per-connection basis. The two degrees of freedom compliment each other to ensure a balanced, efficient network. The principal control element within a band is the routing scheme. Stage-dependent routing results in load distribution across the network band. The load distribution is further :improved with selective state-dependent routing.
As will be explained below, the network nodes 22 use rate controllers to divide the capacity of each link among the network bands 36 in accordance with predefined rules. Because a large proportion of connections traverses more than one link 24 in the network 20, the rate allocations for the bands cannot be done independently at each node. The rate allocations must be coordinated among~~t the nodes in order to ensure that the physical constraints of the link capacity are observed and that end-to-end service requirements are met.
As described above, a network band 36 may include both paths 32 and connections 34. Low bit-rate admission requests which occur at high frequency are prime candidates for paths 32. High bit-rate connections which are requested at a :Low frequency are better served by independent connections 34. By appropriately selecting path sizes, and with proper splitting of traffic between paths 32 and connections 34, a network divided into bands 36 with elastic boundaries can be almost as bandwidth-efficient as a fully shared network, while call processing load is reduced and QOS
differentiation is facilitated. The word "bandwidth" as used in this document is intended to denote capacity in bits/second.
The prior art approach to configuring a communications network has been to seek an optimal trade-off between transport efficiency and processing efficiency. Consequently, traffic was divided between a set of paths 32 and connections 34. Paths 32 consume less processing resources than connections 34. However, due to the random fluctuations of traffic intensity, a path 32 may occasionally suffer from low utilization.
This is particularly the case for low-intensity traffic streams which are normally quite variable in their volume. Connections 34 require more processing capabilities due to the signaling load and processing at one or more intermediate nodes 22.
The traffic eff=iciency of a path 32 can be increased by allowing limited queuing of traffic admission requests at edge nodes. Normally, if a path 32 does not have sufficient free capacity to accommodate a traffic admission request, the traffic admission request is either overflowed to a connection band or it is refused. However, permiti~ing traffic admission requests to wait until a sufficient free capacity in the designated path becomes available, or a time-out threshold is reached, significantly improves the path utilization while decreasing overall network processing effort. A compromise arrangement in accordance with the invention is to use paths 32 to reduce processing effort combined with a shared capacity allocation for connections 34. Such an arrangement is shown in Fig. 9.
Traffic admission requests that occur too infrequently to justify establishing a path 32 may use the connections allocation. As shown :in Fig. 9, several paths are permitted to overflow to the connection allocation which may be within the same network band 36. Each of the paths shown in Fig. 9 is sized to accommodate most of the traffic between its end nodes. At the connection level, traffic admission requests allocated to a path may overflow to the shared connection allocation if the path cannot accept the admission request. At the data level, packet-type connection traffic may use vacant time slots allocated to paths, as illustrated in Fig. 10a. This significantly increases the traffic capacity of the link and brings the overall bandwidth efficiency closer to that of a fully-shared liIlk without affecting the path's performance. The optimal splitting of a link capacity between paths and connections is determined dynamically to follow the traffic load variation.
Fig. lOb shows a preferable pattern of partitioning the network transport capacity among the network links. End-to-end paths 32 are used for direct connections, and are established whenever the end-to-end traffic volumes exceed a certain threshold. The remaining capacity in each link, if any, is divided into bands, each of which corresponds to a traffic class. The capacity of each band is dynamically adjusted by the connection-admission process. The capacity of a band increases with each new connection admission, and decreases with each connection departure. Any leftover capacity is used for connectionless-type traffic. The arrows in Fig. lOb indicate that packets belonging to connections of any traffi~~ class may exploit the unused time slots allocated by the rate controller to any path.
The reverse is not allowed: packets belonging to a path may not be transmitted during unused time slots allocated by the rate controller to any connection class.
In order to ensure that each traffic class is guaranteed a minimum service rate, it is necessary to provide some form of serv_Lce-rate controller at the link level. In accordance with the invention there is provided a link service-rate controller shown in Fig. 11 and generally referred to by the reference 50. The combined service-rate al:Locations for all classes of traffic being served by an egress link must satisfy the condition:
x-~
0< f = R' <l,j=0,...,K-1, with ~f <1 =o wherein:
K is the number of classes;
R is the link rate in bits per second; and F~ is the required service allocation for class j in bits per second: and f~ is the normalized service rate-for class j.
Since the allocated service rate per class is less than the link rate, and since it is not possible to transfer a fraction of a packet at any time, it is necessary to wait for several clock cycles to be able to transfer a first packet from a given class buffer. In the link service-rate controller shown in Fig. 11, which shows four classes (K=4), a clock pulse transferred on a clock line 52 provides a clock signal to sampling frequency circuits 54. The clock pulse on clock line 52 is regulated to a predetermined nominal packet size, preferably equal to the minimum sized packet transfer rate of a link 24 served by the link service-rate controller 50. Other clock speeds may also be used.
Consequently, the clock pulse can be set to a rate which is some integer multiple of the minimum size packet transfer rate.
Each sampling frequency circuit 54 includes a memory register which stores a class service allocation represented by the character "D". This is, hereafter, called the class credit. The value of ~ is dynamically computed for each of classes 0 through K-1. The class service allocation ~ is preferably a floating point number between 0 and .99. When a connection admission request is accepted into a class band, an equivalent bit rate (EBR) normalized to the link capacity is added to the value of ~. When the connection is released, the normalized EBR is subtracaed from 0. The process for computing EBR is described below in detail.
The credit 0 for a given class is the ratio of the required service rage of the class (occasionally called the "bandwidth of: the class") divided by the capacity of the link under consideration. For example, the credit ~ of a class requiring a 100 Mb/sec in a link of capacity 620 Mb/sec is approximately:
~ = 0.16.
Note that D is dimensionless.
The accumulated credit for a given class is to be compared with the normalized packet size. The normalized packet size is. the packet length (in bytes, say) divided by a nominal packet size (64 bytes, say) which is applied uniformly for all classes traversing a link. Preferably, the normalized packet size should be standardized across the network using a value of 64 bytes, for example.
Each time a clock signal is received by the sampling frequency circuii~ 54, the value of D stored in the memory register is added by a adder 56 to a memory register which accumulates a class allocation sum. A
comparator 58 compares the class allocation sum with the "normalized packet size" 64. If a class buffer 62 is empty, the class allocation sum is set to zero.
Fig. 12 shows a schematic representation of the transmission of packets of variable size. At a top of the figure, a schematic representation of clock cycles is shown. At each clock cyc:Le b, which equals the transfer time for a predetermined nominal packet size, the value is transferred from the sampling frequency circuit 54 (Fig. 11) to the adder 56. At each clock signal, the comparator 58 compares the value of the memory register in adder 56 with the normalized packet size 64.
The accumulated credit in the adder 56 is stored in the memory register of the corresponding comparator 58 and used for comparison with the contents of adder 56 memory register. When the accumulated sum in the adder 56 is greater than or equal to the normalized packet size 64, a selector 66 writes an eligible class number 68 in the ready queue 60 and the comparator 58 subtracts the normalized packet size 64 from the accumulated sum in the adder 56 so that the balance is added to the class allocation 0 at the next clock signal, as shown in the table in F'ig. 12. When an eligible class number 68 arrives at the head of the ready queue 60, the link service-rate controller 50 selects a packet at a head of the corresponding class buffer 62 and transmits that packet over the link.
If the ready queue 60 becomes empty because there are no classes with a specified QOS to be transferred, traffic without a specified QOS is transferred until another class number 68 appears in the ready queue. In order tc> ensure equitable treatment, a rotating pointer is preferably used to track a next class to be served when the ready queue 60 is empty.
The traffic transferred through the network is preferably classified by the node control elements 28 into three types: connection-based traffic with a specified QOS; connection-based traffic without a specified QOS; and connectionless traffic without a specified QOS. Each node control element preferably monitors the amount of the connection-based traffic without a specified QOS and assigns it an appropriate service rate if there is an appreciable amount of that type of traffic and there is unused capacity on the link.
If the link capacity is required by traffic with a specified QOS, however, the service rate is withdrawn from that traffic.
As noted above, an important aspect of the invention is the distributed control of routing through the network. The network in accordance with the invention preferably supports a plurality of routing disciplines. The preferred routing disciplines are:
1) shortest path hop-by-hop routing;
2) selective routing by a conservative scheme; and 3) selective routing by a true state scheme.
Preferably, the different routing disciplines are assigned to different classes in order to best serve the requirements of the class.
In the shortest path hop-by-hop routing, each node has a list of candidate routes to a destination.
The list includes a direct route, if one exists, a set of first-choice routes, and a set of second-choice routes, etc. As described above, the list includes only the next node 22 to a destination along the shortest path. The routes from origin to e<~ch destination are determined according to cost criteria, as also described above.
Each node only maintains information about the occupancy of its outgoing links. When a new traffic admission request is received at a node 22, the node control element 28 first checks the occupancy of its outgoing link associated with its direct route, if one exists. If the direct route is ful:L or not available, the node control element 28 compares the occupancy state of the outgoing links of the first-choice set of routes and selects the most vacant route. If the available capacity is still not sufficient i~o accommodate the new traffic admission request, the second-choice set of routes is inspected, and so on. The number of hops to a destination using a given egress port is known by the node control element 28. The edge node control element 28 therefore assigns a number of "route selection credits" to a traffic admission request which is equal to the number of hops along path selected by the edge node to the destination, plus 2 to allow some variation in downstream route selection to accommodate link congestion. The traffic admission request is then forwarded to the next node selected from the routing table. Upon arrival at the next node, the node control element 28 of that node deducts 1 from the route selection credits assigned by the edge node control element 28, and checks the availability of its link to the shortest path to the destination. Each traversed node 22 subtracts 1 from the route selection credits. By ensuring that the number of remaining hops along the path is not greater that t:he available route selection credits, and by avoiding a return to the immediately preceding node, the route is guaranteed to be cycle-free.
By always looking for the most vacant link in the preferred order, the route is guaranteed to be efficient.
Shortest path hop-by-hop routing is best suited for low-bit-rate traffic where strict route optimization is not warranted.
For high-volume low or medium bit-rate traffic where more powerful route optimization is warranted, a conservative routing scheme may be used to route connections through the network 20 in accordance with the invention. A conservative routing scheme for ATM
networks was published by M. Beshai and J. Yan in November of 1996 at the International Network-Planning Symposium in Sydney, Australia in a paper entitled "Conflict-free Selective Routing in an ATM Network". In accordance with the conservative scheme, when a traffic admission request is received at an edge node 22, the node control element 28 computes an EBR for the connection and examines the availability of its outgoing links in the preferred order to determine which links) can accommodate the traffic admission request. On locating at most two available links with adequate bandwidth, the node control element 28 deducts the EBR
from the available capacity of each link, computes the route selection credits for the traffic admission request message and forwards the traffic admission request message to the next nodes) in the route path(s).
Meanwhile, other traffic admission requests permitted to use the conservative routing scheme are allowed to proceed, even though the prior traffic admission request may be denied at some other point in the network and, consequently, the availab7_e capacity of the links) may not reflect the true state of the link's current usage.
Since only relatively low or medium bit-rate connections use this scheme, the waste of network resources is minimal. The purpose of the conservative routing scheme is to find a lowest-cost route for the connection in a reasonable time without sacrificing too many network resources.
The third routing discipline is a true-state scheme in which traffic admission requests are processed sequentially and, while a true-state connection is being set up, no other traffic admission request is permitted to proceed in the same class of service. A true-state routing scheme for an ATM switching network is described in applicants' United States Patent No. 5,629,930 which issued on May 13, 1997.
When a traffic admission request is received at an edge node and the traffic admission request is determined to belong to a class of service which requires true-state routing, all oi:her traffic admission requests in that class of service are held until a connection for the request is established or denied. In true-state routing, the node control element 28 searches its links in the preferred order for the two links which have the highest free bandwidth to serve the request after the EBR
for the connection request. is computed. If a links) is found, the route selection credits are computed for the traffic admission request and the request is forwarded to a next nodes) in the route. Thereafter processing proceeds as described above until the connection is established or denied because of a lack of link capacity at some point in the route. While the true-state scheme has the advantage of admission given the true bandwidth capacity of the available link(s), it has the disadvantage of delaying the progress of other connections in the same class. Note that connection admission processing for other classes can proceed while a connection belonging to the true-state class, if any, is being processed.
It is estimated that in a typical case about 300 conservative scheme traffic admission requests can be processed per second assuming a processing time of about 1 millisecond per request. For a processing true-state routing, it is estimated that only about 20 requests per second may be processed :Eor an average link length of about 200 kilometers.
Preferably, a network 20 in accordance with the invention uses a hybrid scheme in which true-state routing coexists with conservative routing and shortest path routing. In that instance, true-state routing is limited to connections with high EBR values while conservative routing is used for connections with lower EBR values, in order to increase the permissible attempt rate. Hop-by-hop routing is used for lowest EBR values where there is no value in using resources to find a least-cost route.
As described above, the EBR must be computed for each traffic admission request received at an edge node 22 of the network 20. The value of the EBR is determined by traffic descriptors; QOS; and service rate for the class. The traffic descriptors include a peak rate of emission from the source; a mean rate of emission from the source; and, a mean packet size. These values are generally provided by the source when a traffic admission request is received. In some cases, however, they can only be determined by measurement. A QOS
request is submitted wii:h the admission request and defines the delay tolerance and loss tolerance for the connection.
In a single cla~;s network, the service rate at an egress port in a node is the entire link rate. In a multi-class, multi-band network where the bands do not share their free time slogs the service rate for a class is the capacity allocated to the band associated with the class. Since the service rate fluctuates dynamically, the boundaries between classes are elastic and the capacity per class varies over time. This means that an EBR for a given connection which is computed at a given instant may need to be revised when the band capacity changes. Such recomputation is impractical.
In the method in accordance with the invention, a policy of guaranteed minimum capacity allocation along with sharing among the bands is adopted. The computation of the EBR for a connection in any band can therefore be based on the entire link capacity, thus eliminating the need to revise EBR calculations. When a traffic admission request is accepted, the computed EBR is added to the memory register in the sampling frequency circuit 54 of the link service-rate controller 50 (Fig. 11). When a session ends and the connection is torn down, the EBR is deducted from the memory register in the sampling frequency circuit 54. Thus the size of a band 36 for a class of traffic fluctuates with traffic load. The EBR is readily calculated using, for example, the extended Gibbens-Hunt formula which is known in the art. The computation is preferably completed in the edge node while new traffic admission requests are queued for treatment, as shown in Fig. 13. If the EBR is calculated while the traffic admission request is queued, traffic admission request delay is reduced. In accordance with the method described above for computing EBR, the EBR is dependent on link capacity. It is therefore necessary when setting up a connect_LOn through several nodes 22 to compute an EBR at each intermediate node. In order to accomplish this, prior art. methods forwarded the traffic descriptors and QOS along with a traffic admission request message, and each subsequent node involved in the admission request recomput:ed the EBR using the extended Gibbens-Hunt formula which is known in the art. Other methods can also be used. For example, the EBR can be calculated using the Buffet-Duffield formula, as described in United States Patent Application No.
08/723,649 filed October 3,, 1996.
In accordance with the methods of the invention, recomputation is minimized and connection request processing is facilitated by computing parameters which are forwarded with traffic connection request messages that permit subsequent nodes to rapidly compute approximate EBRs. The approximate EBRs are adequately accurate to permit connections to be established with a high level of quality assurance. In accordance with the method, in order to reduce the computational effort, interpolation is used to derive approximate EBRs at subsequent links involved in the processing of traffic admission requests. In a method in accordance with the invention, a hyperbolic interpolation is used to yield a reliable approximation fo:r EBR based on link capacity.
Other types of interpolators may be used which could produce equally good results.
Fig. 14 shows a graph of a hyperbolic interpolator in accordance with the invention. Using the interpolator, when an edge node 22 receives a traffic admission request, it computes an EBR value for the connection using the capacity R1 of one of the links which the node control element 28 found to have adequate free capacity for the admission connection request.
Thereafter, the node contx-ol element computes values for SZ~, a, and b, and R using the following formulas S2o~ - yA ;
where y is the peak rate of the traffic stream requesting admission to the network; and 8 is the proportion of time that the source is active.
The value of b i;s computed using the formula:
S21 - S2~
b + Y = (FZ1 - Y) ~ - W
wherein R1 is a selected service rate, as indicated above;
n S2 is determined using the Gibbens-Hunt formula, which is well-known in the art; and S21 is determined using the extended Gibbens-Hunt method described in Unii=ed States Patent Application No. 08/723,649 filed October 3, 1996 and entitled ADMISSION CONTROL IN AN ATM SWITCHING NODE, which is incorporated herein by reference. Although the above-referenced application is related only to ATM networks, the methods it teaches are also applicable to unfragmented variable-sized packets.
The value of a i;s computed using the formula:
n a = (b + Y) ( ~ - ~~) .
The values of 5~~, a and b are then passed in the service admission request message to other nodes involved in connection setup. On receipt of those values, the following i=ormula is used compute the approximated EBR:
S2 = S2~ +
where:
a H + n SZ is an approximate EBR; and R is the link capacity of the link selected in response to the traffic admission request.
Using the formula a node is enabled to compute an approximated EBR with much less computational effort than recomputing EBR using the extended Gibbens-Hunt method or some other similar method. This significantly speeds up traffic admission request processing and thereby enhances overall network efficiency. This method is particularly useful in establishing multicast connections since dozens or hundreds of EBRs may have to be computed in order to establish the multicast connections. Using this method significantly improves the efficiency of processing traffic admission requests for multicast connections.
The invention therefore provides a multi-class network which is capable of transmitting variable-size packets without packet deconstruction. The multi-class network operates efficiently with reliable quality assurance. Since admission control, connection routing and service-rate control are distributed at the node level of the network, control messaging overhead is minimized and network resources are available for transport functions.
Modifications of the above-described embodiments will no doubt become apparent to those skilled in the art. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Connection-based traffic and connectionless traffic also have other distinctly different service requirements.
For Example, human-to-human communications such as voice and video are somewhat loss-tolerant in that a certain number of packets can be lost without detection by the human. participants, yet they are quite delay-intolerant in that any delay or "fitter" in packet delivery is quite noticeable. Data conununications between computers on the other hand are quite delay-tolerant but strictly :L5 intolerant to packet 7_oss .
Network sea~regation into bands is preferably done so that each network band. corresponds to a traffic clasp . The same control method applied to a given class should be practised across th.e network. In order to efficiently use the network, the boundaries between successive bands must be elastic to permit band capacity to e~:pand and shrink in response to variations in network traffic.
Topological design and overall network dimensioning are based on long-term traffic forecasts and other considerations well known in the art. Aggregate network design is a slow process which takes place over time. Network sizing is there:Eore preferably a function performed by the nei=work control element 26. Network sizing requires traffic characterization. Performance estimation is a function of traffic load and estimates of spatial traffic distribution. Given the difficulty of traffic characterization in a multi-band, multi-service network, effective network sizing computations may be based on traffic and performance measurements. As shown in Fig. 1, the network control element 26 therefore receives traffic measurement data from the node control elements 28. The traffic measurement data is transferred to the network control element 26 through the network.
The traffic measurement data is accumulated in apprcpriate tables and periodically analyzed in order to determine appropriate sizes i=or the links 24 in the network. The entire network 20 must be provisioned to :LO serve the combined traffic load of all classes. The combined traffic load is, of course, variable over time, however, the combined traffic 7_oad is less volatile than the traffic loads of the individual classes. The network traffic data may be sorted to determine traffic loads on each inter-nodal link 24 and the data can be used to determine when a link size is inadequate or when a direct link between unlinked nodes is warranted. Consequently, in addition to traffic data each node control element 28 involved in traffic admission control should report to the network control element 26 the details of admission request denied and the cause of admission failure. The frequency at which an analysis of this data is conducted depends on a number of factors well known in the art, including storage <:apacity at the network control element 26.
The node control elements 28 also pass network state information messages to the network control element 25 to permit the network control element 26 to maintain topological awareness of the network 20 and its state. In some networks, a topological map of the network is maintained in every node. Consequently, "flooding" of state information is required. This flooding of information uses network resources and ties up node computing cycles. In order to free resources for transport control, in the multi-class network in accordance with the invention, a complete topological network map is maintained only at the network control element 26. To ensure that the topological information is accurate and complete, each link 24 is preferably monitored by each of the nodes 22 at its opposite ends.
Consequently, if the status of a link 24 changes, the chanc,'e is reported by two nodes 22 to the network control element 26. Likewise, the state of each node 22 is LO monitored by two neighbouring nodes 22 appointed by the network control element 26. If any node 22 malfunctions or becomes inoperable, the network control element 26 appoints alternate monitors) for any other nodes that were monitored by that node. This method ensures that the network control element 26 receives accurate network state: information to guarantee that network topology is accurate and up to dai:e .
The network topology is used, as required, to compute network routing sets which are used by node control elements 28 t:o route traffic admission requests acro~;s the network. Direct routes, which may include direct links or shortest route paths through the network, are t;he routes of first preference. Indirect routes from an originating node 22 to a destination node 22 are preferably sorted according to cost ellipses 30 illu~~trated in Fig. 2. In using the cost ellipses 30 to sort route sets, the origin and destination nodes, X and Y, <~re placed at the two foci and paths along intermediate nodes are sorted according to cost as determined by an acceptable model. Transport cost models are ~rell known in the art and a number of good models are publicly available. Any path having intermediate nodes which fall between the same elliptical cost boundaries is considered to be of comparable cost. For example, the paths x-d-y and x-f-y in Fig. 2 are of comparable cost and a.re considered as equal alternatives.
Fig. 3 is a schematic diagram of an example network for illustrating the route sets computed by the network control element 26. Each node control element 28 is provided with a list of candidate routes to each destination. The list from node 0 to node 11 includes a direca route, a set of first-choice routes and a set of secor..d-choice routes, etc. The list includes only the first. adjacent node along the shortest path to the destination. Routes from each origin to the destination are determined according to cost criteria described above:. The routes are sorted according to static cost and assigned a selection priority. Each network node control element 28 maintains a table of routes received from the network control element 26. Whenever network topology changes, the network control element 26 determines which links 24 are affected by the change and reco~iputes network routing sets accordingly. In order to conserve time and ensure that nodes use effective routing sets, only those links 24 affected by a change in network topology are recomputed. When a new route set is recomputed for any particular network node 22, the recomputed route set is preferably transferred immediately to the associated node control elements 28.
Fig. 4 shows an exemplary routing table compL.ted by the network control element 26 for the destination 11 from each of the other 10 nodes in the network. As is apparent, a direct route is specified whenever it is available. The direct route is always preferred in traffic routing if free capacity exists on that route. As an alternative to the direct route, a first. set of lowest:-cost routes is specified. For exam~~le, from node 0 to node 1J_, the first alternate set includes nodes 5 and 6. The network control element 26 specifies only the immediately adjacent node for route selection. As will be explained below, during traffic admission the node control elements 28 select the two immediate links which are least occupied to find a route to service an admission request.
In a multi-class network in accordance with the invention, network traffic: is divided into a manageable number of classes, whose definition preferably depends on:
1) the transaction format (synchronous transfer mode (STM), asynchronous transfer mode (ATM), Internet protocol (IP), etc.):
2) the method of transaction processing, e.g., connection-oriented o:r connectionless; or 3) the method of flow control (open-loop or closed-loop) .
The term "transaction" a~~ used in this document is to denote the process of transferring information from a source to a sink in a single session. A class may include several connections of similar traffic or may represent a single connection which has a high bit-rate requirement. A class may also include connectionless traffic with no quality of service (QOS) requirements.
Fig. 5 shows the links 24 of a network node 22 partitioned into a plurality of bands, each of which supports one class of traffic. The total capacity of each link 24 is divided among the classes it supports.
The links 24 may be partitioned differently since the same mix of traffic is not necessarily transported over each link. Different routing schemes and admission criteria may be applied to the various network bands.
For example, a voice service class may use a simple routing scheme while clas:~es of higher-speed connections may use an elaborate stag-dependent selective routing scheme as will be explained below in some detail. In addition to the difference in routing and admission criteria, operational measurements, tariff setting and billing procedures may differ among the classes of traffic.
In order to maximize transport efficiency and minimize processing load, at least certain classes of traffic preferably use paths through the network for traffic routing. Fig. 6 schematically illustrates a relation between a path and a connection. In Fig. 6, a solid line through a node indicates a path 32 between non-adjacent nodes and the line connecting nodes indicates a connection 34. A path and a connection may exist on the same link at: the same time and within the same class. A path 32 is a reserved route between two nodes 22, possibly traversing several intermediate nodes 22. Intermediate nodes 22 in a path are involved in the path allocation process only when the path is first established or when its capacity allocation is modified. A path 32 may accommodate a large number of connections, possibly several hundreds, between its origin and destination nodes. The originating node 22 views the path as a direct connection to the destination node 22. The intermediate nodes 22 in a path are not involved in the admission of the individual connections belonging to the path 32. A path 32 may serve more than one class of traffic. However, the class definition is only relevant to the end nodes 22.
A connection 34 seeks admission at a specific ingress point in the network. A connection specifies a destination, but there is no fixed route between the originating node and the destination node of the connectiion. Rather, a route is negotiated when the connection is set up. Each node 22 traversed by a connection is involved in the interrelated decision regarding the admission, or otherwise of the traffic admission request for a connection and the actual selection of the end-to-end route for the request.
Paths and connections may or may not have a capacity reservation. A capacity reservation is necessary to achieve a specified QOS. Without a capacity reservation, the QOS i:~ based only on a weighted priority, or some other class differentiation, and the path 32 or connection 34 are used only to facilitate the forwarding of packets at the nodes.
As shown in Fig. 7, paths maximize processing throughput since admission control may be handled exclusively by an edge node which receives a traffic admission request. Establishing paths, however, is not the most efficient use of network resources unless adequate stable traffic exists to keep the path full. In general as shown in Fig. 7, transport efficiency decreases as the paths' allotment in the network increases. Conversely, transport efficiency increases with the increase in the connections' allotment, however processing throughput is significantly affected.
In the network 20 in accordance with the invention, flexible controls which permit two degrees of freedom are realized by employing adaptive routing in addition to adaptive nei~work partitioning. The two degrees of freedom are depicted in Fig. 8 which illustrates the intra-band and inter-band controls that may be used in a network 20 in accordance with the invention. Within each network band 36, adaptive alternate routing may be used to balance the traffic intensity across the network and thereby increase the efficiency of the band. The elastic boundaries of a band 36 may vary slowly, typically in seconds, between successive changes while adaptive routing is applied on a per-connection basis. The two degrees of freedom compliment each other to ensure a balanced, efficient network. The principal control element within a band is the routing scheme. Stage-dependent routing results in load distribution across the network band. The load distribution is further :improved with selective state-dependent routing.
As will be explained below, the network nodes 22 use rate controllers to divide the capacity of each link among the network bands 36 in accordance with predefined rules. Because a large proportion of connections traverses more than one link 24 in the network 20, the rate allocations for the bands cannot be done independently at each node. The rate allocations must be coordinated among~~t the nodes in order to ensure that the physical constraints of the link capacity are observed and that end-to-end service requirements are met.
As described above, a network band 36 may include both paths 32 and connections 34. Low bit-rate admission requests which occur at high frequency are prime candidates for paths 32. High bit-rate connections which are requested at a :Low frequency are better served by independent connections 34. By appropriately selecting path sizes, and with proper splitting of traffic between paths 32 and connections 34, a network divided into bands 36 with elastic boundaries can be almost as bandwidth-efficient as a fully shared network, while call processing load is reduced and QOS
differentiation is facilitated. The word "bandwidth" as used in this document is intended to denote capacity in bits/second.
The prior art approach to configuring a communications network has been to seek an optimal trade-off between transport efficiency and processing efficiency. Consequently, traffic was divided between a set of paths 32 and connections 34. Paths 32 consume less processing resources than connections 34. However, due to the random fluctuations of traffic intensity, a path 32 may occasionally suffer from low utilization.
This is particularly the case for low-intensity traffic streams which are normally quite variable in their volume. Connections 34 require more processing capabilities due to the signaling load and processing at one or more intermediate nodes 22.
The traffic eff=iciency of a path 32 can be increased by allowing limited queuing of traffic admission requests at edge nodes. Normally, if a path 32 does not have sufficient free capacity to accommodate a traffic admission request, the traffic admission request is either overflowed to a connection band or it is refused. However, permiti~ing traffic admission requests to wait until a sufficient free capacity in the designated path becomes available, or a time-out threshold is reached, significantly improves the path utilization while decreasing overall network processing effort. A compromise arrangement in accordance with the invention is to use paths 32 to reduce processing effort combined with a shared capacity allocation for connections 34. Such an arrangement is shown in Fig. 9.
Traffic admission requests that occur too infrequently to justify establishing a path 32 may use the connections allocation. As shown :in Fig. 9, several paths are permitted to overflow to the connection allocation which may be within the same network band 36. Each of the paths shown in Fig. 9 is sized to accommodate most of the traffic between its end nodes. At the connection level, traffic admission requests allocated to a path may overflow to the shared connection allocation if the path cannot accept the admission request. At the data level, packet-type connection traffic may use vacant time slots allocated to paths, as illustrated in Fig. 10a. This significantly increases the traffic capacity of the link and brings the overall bandwidth efficiency closer to that of a fully-shared liIlk without affecting the path's performance. The optimal splitting of a link capacity between paths and connections is determined dynamically to follow the traffic load variation.
Fig. lOb shows a preferable pattern of partitioning the network transport capacity among the network links. End-to-end paths 32 are used for direct connections, and are established whenever the end-to-end traffic volumes exceed a certain threshold. The remaining capacity in each link, if any, is divided into bands, each of which corresponds to a traffic class. The capacity of each band is dynamically adjusted by the connection-admission process. The capacity of a band increases with each new connection admission, and decreases with each connection departure. Any leftover capacity is used for connectionless-type traffic. The arrows in Fig. lOb indicate that packets belonging to connections of any traffi~~ class may exploit the unused time slots allocated by the rate controller to any path.
The reverse is not allowed: packets belonging to a path may not be transmitted during unused time slots allocated by the rate controller to any connection class.
In order to ensure that each traffic class is guaranteed a minimum service rate, it is necessary to provide some form of serv_Lce-rate controller at the link level. In accordance with the invention there is provided a link service-rate controller shown in Fig. 11 and generally referred to by the reference 50. The combined service-rate al:Locations for all classes of traffic being served by an egress link must satisfy the condition:
x-~
0< f = R' <l,j=0,...,K-1, with ~f <1 =o wherein:
K is the number of classes;
R is the link rate in bits per second; and F~ is the required service allocation for class j in bits per second: and f~ is the normalized service rate-for class j.
Since the allocated service rate per class is less than the link rate, and since it is not possible to transfer a fraction of a packet at any time, it is necessary to wait for several clock cycles to be able to transfer a first packet from a given class buffer. In the link service-rate controller shown in Fig. 11, which shows four classes (K=4), a clock pulse transferred on a clock line 52 provides a clock signal to sampling frequency circuits 54. The clock pulse on clock line 52 is regulated to a predetermined nominal packet size, preferably equal to the minimum sized packet transfer rate of a link 24 served by the link service-rate controller 50. Other clock speeds may also be used.
Consequently, the clock pulse can be set to a rate which is some integer multiple of the minimum size packet transfer rate.
Each sampling frequency circuit 54 includes a memory register which stores a class service allocation represented by the character "D". This is, hereafter, called the class credit. The value of ~ is dynamically computed for each of classes 0 through K-1. The class service allocation ~ is preferably a floating point number between 0 and .99. When a connection admission request is accepted into a class band, an equivalent bit rate (EBR) normalized to the link capacity is added to the value of ~. When the connection is released, the normalized EBR is subtracaed from 0. The process for computing EBR is described below in detail.
The credit 0 for a given class is the ratio of the required service rage of the class (occasionally called the "bandwidth of: the class") divided by the capacity of the link under consideration. For example, the credit ~ of a class requiring a 100 Mb/sec in a link of capacity 620 Mb/sec is approximately:
~ = 0.16.
Note that D is dimensionless.
The accumulated credit for a given class is to be compared with the normalized packet size. The normalized packet size is. the packet length (in bytes, say) divided by a nominal packet size (64 bytes, say) which is applied uniformly for all classes traversing a link. Preferably, the normalized packet size should be standardized across the network using a value of 64 bytes, for example.
Each time a clock signal is received by the sampling frequency circuii~ 54, the value of D stored in the memory register is added by a adder 56 to a memory register which accumulates a class allocation sum. A
comparator 58 compares the class allocation sum with the "normalized packet size" 64. If a class buffer 62 is empty, the class allocation sum is set to zero.
Fig. 12 shows a schematic representation of the transmission of packets of variable size. At a top of the figure, a schematic representation of clock cycles is shown. At each clock cyc:Le b, which equals the transfer time for a predetermined nominal packet size, the value is transferred from the sampling frequency circuit 54 (Fig. 11) to the adder 56. At each clock signal, the comparator 58 compares the value of the memory register in adder 56 with the normalized packet size 64.
The accumulated credit in the adder 56 is stored in the memory register of the corresponding comparator 58 and used for comparison with the contents of adder 56 memory register. When the accumulated sum in the adder 56 is greater than or equal to the normalized packet size 64, a selector 66 writes an eligible class number 68 in the ready queue 60 and the comparator 58 subtracts the normalized packet size 64 from the accumulated sum in the adder 56 so that the balance is added to the class allocation 0 at the next clock signal, as shown in the table in F'ig. 12. When an eligible class number 68 arrives at the head of the ready queue 60, the link service-rate controller 50 selects a packet at a head of the corresponding class buffer 62 and transmits that packet over the link.
If the ready queue 60 becomes empty because there are no classes with a specified QOS to be transferred, traffic without a specified QOS is transferred until another class number 68 appears in the ready queue. In order tc> ensure equitable treatment, a rotating pointer is preferably used to track a next class to be served when the ready queue 60 is empty.
The traffic transferred through the network is preferably classified by the node control elements 28 into three types: connection-based traffic with a specified QOS; connection-based traffic without a specified QOS; and connectionless traffic without a specified QOS. Each node control element preferably monitors the amount of the connection-based traffic without a specified QOS and assigns it an appropriate service rate if there is an appreciable amount of that type of traffic and there is unused capacity on the link.
If the link capacity is required by traffic with a specified QOS, however, the service rate is withdrawn from that traffic.
As noted above, an important aspect of the invention is the distributed control of routing through the network. The network in accordance with the invention preferably supports a plurality of routing disciplines. The preferred routing disciplines are:
1) shortest path hop-by-hop routing;
2) selective routing by a conservative scheme; and 3) selective routing by a true state scheme.
Preferably, the different routing disciplines are assigned to different classes in order to best serve the requirements of the class.
In the shortest path hop-by-hop routing, each node has a list of candidate routes to a destination.
The list includes a direct route, if one exists, a set of first-choice routes, and a set of second-choice routes, etc. As described above, the list includes only the next node 22 to a destination along the shortest path. The routes from origin to e<~ch destination are determined according to cost criteria, as also described above.
Each node only maintains information about the occupancy of its outgoing links. When a new traffic admission request is received at a node 22, the node control element 28 first checks the occupancy of its outgoing link associated with its direct route, if one exists. If the direct route is ful:L or not available, the node control element 28 compares the occupancy state of the outgoing links of the first-choice set of routes and selects the most vacant route. If the available capacity is still not sufficient i~o accommodate the new traffic admission request, the second-choice set of routes is inspected, and so on. The number of hops to a destination using a given egress port is known by the node control element 28. The edge node control element 28 therefore assigns a number of "route selection credits" to a traffic admission request which is equal to the number of hops along path selected by the edge node to the destination, plus 2 to allow some variation in downstream route selection to accommodate link congestion. The traffic admission request is then forwarded to the next node selected from the routing table. Upon arrival at the next node, the node control element 28 of that node deducts 1 from the route selection credits assigned by the edge node control element 28, and checks the availability of its link to the shortest path to the destination. Each traversed node 22 subtracts 1 from the route selection credits. By ensuring that the number of remaining hops along the path is not greater that t:he available route selection credits, and by avoiding a return to the immediately preceding node, the route is guaranteed to be cycle-free.
By always looking for the most vacant link in the preferred order, the route is guaranteed to be efficient.
Shortest path hop-by-hop routing is best suited for low-bit-rate traffic where strict route optimization is not warranted.
For high-volume low or medium bit-rate traffic where more powerful route optimization is warranted, a conservative routing scheme may be used to route connections through the network 20 in accordance with the invention. A conservative routing scheme for ATM
networks was published by M. Beshai and J. Yan in November of 1996 at the International Network-Planning Symposium in Sydney, Australia in a paper entitled "Conflict-free Selective Routing in an ATM Network". In accordance with the conservative scheme, when a traffic admission request is received at an edge node 22, the node control element 28 computes an EBR for the connection and examines the availability of its outgoing links in the preferred order to determine which links) can accommodate the traffic admission request. On locating at most two available links with adequate bandwidth, the node control element 28 deducts the EBR
from the available capacity of each link, computes the route selection credits for the traffic admission request message and forwards the traffic admission request message to the next nodes) in the route path(s).
Meanwhile, other traffic admission requests permitted to use the conservative routing scheme are allowed to proceed, even though the prior traffic admission request may be denied at some other point in the network and, consequently, the availab7_e capacity of the links) may not reflect the true state of the link's current usage.
Since only relatively low or medium bit-rate connections use this scheme, the waste of network resources is minimal. The purpose of the conservative routing scheme is to find a lowest-cost route for the connection in a reasonable time without sacrificing too many network resources.
The third routing discipline is a true-state scheme in which traffic admission requests are processed sequentially and, while a true-state connection is being set up, no other traffic admission request is permitted to proceed in the same class of service. A true-state routing scheme for an ATM switching network is described in applicants' United States Patent No. 5,629,930 which issued on May 13, 1997.
When a traffic admission request is received at an edge node and the traffic admission request is determined to belong to a class of service which requires true-state routing, all oi:her traffic admission requests in that class of service are held until a connection for the request is established or denied. In true-state routing, the node control element 28 searches its links in the preferred order for the two links which have the highest free bandwidth to serve the request after the EBR
for the connection request. is computed. If a links) is found, the route selection credits are computed for the traffic admission request and the request is forwarded to a next nodes) in the route. Thereafter processing proceeds as described above until the connection is established or denied because of a lack of link capacity at some point in the route. While the true-state scheme has the advantage of admission given the true bandwidth capacity of the available link(s), it has the disadvantage of delaying the progress of other connections in the same class. Note that connection admission processing for other classes can proceed while a connection belonging to the true-state class, if any, is being processed.
It is estimated that in a typical case about 300 conservative scheme traffic admission requests can be processed per second assuming a processing time of about 1 millisecond per request. For a processing true-state routing, it is estimated that only about 20 requests per second may be processed :Eor an average link length of about 200 kilometers.
Preferably, a network 20 in accordance with the invention uses a hybrid scheme in which true-state routing coexists with conservative routing and shortest path routing. In that instance, true-state routing is limited to connections with high EBR values while conservative routing is used for connections with lower EBR values, in order to increase the permissible attempt rate. Hop-by-hop routing is used for lowest EBR values where there is no value in using resources to find a least-cost route.
As described above, the EBR must be computed for each traffic admission request received at an edge node 22 of the network 20. The value of the EBR is determined by traffic descriptors; QOS; and service rate for the class. The traffic descriptors include a peak rate of emission from the source; a mean rate of emission from the source; and, a mean packet size. These values are generally provided by the source when a traffic admission request is received. In some cases, however, they can only be determined by measurement. A QOS
request is submitted wii:h the admission request and defines the delay tolerance and loss tolerance for the connection.
In a single cla~;s network, the service rate at an egress port in a node is the entire link rate. In a multi-class, multi-band network where the bands do not share their free time slogs the service rate for a class is the capacity allocated to the band associated with the class. Since the service rate fluctuates dynamically, the boundaries between classes are elastic and the capacity per class varies over time. This means that an EBR for a given connection which is computed at a given instant may need to be revised when the band capacity changes. Such recomputation is impractical.
In the method in accordance with the invention, a policy of guaranteed minimum capacity allocation along with sharing among the bands is adopted. The computation of the EBR for a connection in any band can therefore be based on the entire link capacity, thus eliminating the need to revise EBR calculations. When a traffic admission request is accepted, the computed EBR is added to the memory register in the sampling frequency circuit 54 of the link service-rate controller 50 (Fig. 11). When a session ends and the connection is torn down, the EBR is deducted from the memory register in the sampling frequency circuit 54. Thus the size of a band 36 for a class of traffic fluctuates with traffic load. The EBR is readily calculated using, for example, the extended Gibbens-Hunt formula which is known in the art. The computation is preferably completed in the edge node while new traffic admission requests are queued for treatment, as shown in Fig. 13. If the EBR is calculated while the traffic admission request is queued, traffic admission request delay is reduced. In accordance with the method described above for computing EBR, the EBR is dependent on link capacity. It is therefore necessary when setting up a connect_LOn through several nodes 22 to compute an EBR at each intermediate node. In order to accomplish this, prior art. methods forwarded the traffic descriptors and QOS along with a traffic admission request message, and each subsequent node involved in the admission request recomput:ed the EBR using the extended Gibbens-Hunt formula which is known in the art. Other methods can also be used. For example, the EBR can be calculated using the Buffet-Duffield formula, as described in United States Patent Application No.
08/723,649 filed October 3,, 1996.
In accordance with the methods of the invention, recomputation is minimized and connection request processing is facilitated by computing parameters which are forwarded with traffic connection request messages that permit subsequent nodes to rapidly compute approximate EBRs. The approximate EBRs are adequately accurate to permit connections to be established with a high level of quality assurance. In accordance with the method, in order to reduce the computational effort, interpolation is used to derive approximate EBRs at subsequent links involved in the processing of traffic admission requests. In a method in accordance with the invention, a hyperbolic interpolation is used to yield a reliable approximation fo:r EBR based on link capacity.
Other types of interpolators may be used which could produce equally good results.
Fig. 14 shows a graph of a hyperbolic interpolator in accordance with the invention. Using the interpolator, when an edge node 22 receives a traffic admission request, it computes an EBR value for the connection using the capacity R1 of one of the links which the node control element 28 found to have adequate free capacity for the admission connection request.
Thereafter, the node contx-ol element computes values for SZ~, a, and b, and R using the following formulas S2o~ - yA ;
where y is the peak rate of the traffic stream requesting admission to the network; and 8 is the proportion of time that the source is active.
The value of b i;s computed using the formula:
S21 - S2~
b + Y = (FZ1 - Y) ~ - W
wherein R1 is a selected service rate, as indicated above;
n S2 is determined using the Gibbens-Hunt formula, which is well-known in the art; and S21 is determined using the extended Gibbens-Hunt method described in Unii=ed States Patent Application No. 08/723,649 filed October 3, 1996 and entitled ADMISSION CONTROL IN AN ATM SWITCHING NODE, which is incorporated herein by reference. Although the above-referenced application is related only to ATM networks, the methods it teaches are also applicable to unfragmented variable-sized packets.
The value of a i;s computed using the formula:
n a = (b + Y) ( ~ - ~~) .
The values of 5~~, a and b are then passed in the service admission request message to other nodes involved in connection setup. On receipt of those values, the following i=ormula is used compute the approximated EBR:
S2 = S2~ +
where:
a H + n SZ is an approximate EBR; and R is the link capacity of the link selected in response to the traffic admission request.
Using the formula a node is enabled to compute an approximated EBR with much less computational effort than recomputing EBR using the extended Gibbens-Hunt method or some other similar method. This significantly speeds up traffic admission request processing and thereby enhances overall network efficiency. This method is particularly useful in establishing multicast connections since dozens or hundreds of EBRs may have to be computed in order to establish the multicast connections. Using this method significantly improves the efficiency of processing traffic admission requests for multicast connections.
The invention therefore provides a multi-class network which is capable of transmitting variable-size packets without packet deconstruction. The multi-class network operates efficiently with reliable quality assurance. Since admission control, connection routing and service-rate control are distributed at the node level of the network, control messaging overhead is minimized and network resources are available for transport functions.
Modifications of the above-described embodiments will no doubt become apparent to those skilled in the art. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Claims (23)
1. A method of controlling traffic admission and routing in a multi-class digital network serving variable-size packets, comprising steps of:
computing an equivalent bit rate for each network admission request as received at a node in the network;
determining whether a connection for the network admission request can be established through the network;
in an instance when a connection can be established, adding the equivalent bit rate for the network admission request to a current service rate allocation of a class of traffic being served by an egress link through which the connection is established, to permit a service rate controller to control transmission of each class of traffic on the egress link.
computing an equivalent bit rate for each network admission request as received at a node in the network;
determining whether a connection for the network admission request can be established through the network;
in an instance when a connection can be established, adding the equivalent bit rate for the network admission request to a current service rate allocation of a class of traffic being served by an egress link through which the connection is established, to permit a service rate controller to control transmission of each class of traffic on the egress link.
2. A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 1 wherein determining whether a connection for a traffic admission request can be established through the network includes step of:
a) determining a class of service to which the traffic admission request belongs;
b) selecting a direct path to a destination for the traffic admission request if a direct path exists for the class to which the traffic seeking admission belongs, and the path has adequate bandwidth available to accommodate the traffic;
else c) selecting a routing method associated with the class;
d) examining, in a predetermined order, route sets associated with the destination to determine if a link exists with adequate available bandwidth to accommodate the traffic; and e) if a link is found, attempting to establish a connection for the traffic on the link; else f) rejecting the traffic admission request.
a) determining a class of service to which the traffic admission request belongs;
b) selecting a direct path to a destination for the traffic admission request if a direct path exists for the class to which the traffic seeking admission belongs, and the path has adequate bandwidth available to accommodate the traffic;
else c) selecting a routing method associated with the class;
d) examining, in a predetermined order, route sets associated with the destination to determine if a link exists with adequate available bandwidth to accommodate the traffic; and e) if a link is found, attempting to establish a connection for the traffic on the link; else f) rejecting the traffic admission request.
3. A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 2 wherein the routing methods which may be associated with a class of service comprise:
a) shortest path hop-by-hop routing;
b) selective routing using a conservative scheme: and c) selective routing using true-state information.
a) shortest path hop-by-hop routing;
b) selective routing using a conservative scheme: and c) selective routing using true-state information.
4 A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 3 wherein the shortest path hop-by-hop routing comprises the steps of:
a) comparing in the predetermined order an occupancy state of link: in a set of routes associated with the destination, and selecting a most vacant link in the set of routes where at least one link has adequate available bandwidth for the traffic admission request;
b) determining a number of hops in a shortest path to the destination for the traffic admission request given the selected link;
c) assigning a number of route selection credits to the traffic admission request, the number of route selection credits equalling the number of hops in the shortest available path, plus two;
d) forwarding a traffic admission request message to a node associated with an opposite end of the selected link;
e) subtracting 1 from the credits at the node associated with the opposite end of the selected link; and f) repeating steps a), d) and e) without returning to an immediately preceding node until a connection is established to the destination, or the route selection credits are exhausted in which case the traffic admission request is rejected.
a) comparing in the predetermined order an occupancy state of link: in a set of routes associated with the destination, and selecting a most vacant link in the set of routes where at least one link has adequate available bandwidth for the traffic admission request;
b) determining a number of hops in a shortest path to the destination for the traffic admission request given the selected link;
c) assigning a number of route selection credits to the traffic admission request, the number of route selection credits equalling the number of hops in the shortest available path, plus two;
d) forwarding a traffic admission request message to a node associated with an opposite end of the selected link;
e) subtracting 1 from the credits at the node associated with the opposite end of the selected link; and f) repeating steps a), d) and e) without returning to an immediately preceding node until a connection is established to the destination, or the route selection credits are exhausted in which case the traffic admission request is rejected.
5. A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 3 wherein the selective routing using a conservative scheme comprises the steps of:
a) selecting at most two links with adequate bandwidth to accommodate the admission request;
b) debiting an available capacity of the at most two links selected. by the equivalent bit rate computed for the traffic admission request;
c) forwarding a traffic admission request message to a node associated with an opposite end of the at most two links;
d) repeating steps a)-c) until a connection for the traffic admission request is established or the traffic admission request is rejected; and e) crediting an available capacity of any link debited which did not become a link in the connection after the connection is established or the traffic admission request is rejected.
a) selecting at most two links with adequate bandwidth to accommodate the admission request;
b) debiting an available capacity of the at most two links selected. by the equivalent bit rate computed for the traffic admission request;
c) forwarding a traffic admission request message to a node associated with an opposite end of the at most two links;
d) repeating steps a)-c) until a connection for the traffic admission request is established or the traffic admission request is rejected; and e) crediting an available capacity of any link debited which did not become a link in the connection after the connection is established or the traffic admission request is rejected.
6. A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 3 wherein the selective routing using a true-state scheme comprises the steps of:
a) selecting at most two links with adequate bandwidth at an originating node to accommodate the traffic admission request;
b) declaring the at most two links unavailable to another route selection process of a same class of service until a connection to a destination is established or rejected;
c) forwarding a traffic admission request message to a node associated with an opposite end of the at most two links;
d) determining if a next link in a route associated with each of the at most two links has adequate bandwidth to accommodate the traffic admission request and repeating steps b) and c) until a connection for the traffic admission request is established or the traffic admission request is rejected; and e) if the connection is established, instructing from a controlling node all other nodes to debit an available capacity of links in the connection;
else f) declaring the at most two links available to other route selection processes.
a) selecting at most two links with adequate bandwidth at an originating node to accommodate the traffic admission request;
b) declaring the at most two links unavailable to another route selection process of a same class of service until a connection to a destination is established or rejected;
c) forwarding a traffic admission request message to a node associated with an opposite end of the at most two links;
d) determining if a next link in a route associated with each of the at most two links has adequate bandwidth to accommodate the traffic admission request and repeating steps b) and c) until a connection for the traffic admission request is established or the traffic admission request is rejected; and e) if the connection is established, instructing from a controlling node all other nodes to debit an available capacity of links in the connection;
else f) declaring the at most two links available to other route selection processes.
7. A method of controlling traffic admission and routing in a multi-class digital network as claimed in claim 3 where the three routing schemes coexist in the same network.
8. A method of controlling a multi-class digital network as claimed in claim 1 wherein the combined service rate allocations for all classes of traffic being served by an egress link satisfies the condition:
wherein:
K is the number of classes;
R is the link rate in bits per second; and Fj is the required service allocation for class j in bits per second; and fj is the normalized service rate for class j.
wherein:
K is the number of classes;
R is the link rate in bits per second; and Fj is the required service allocation for class j in bits per second; and fj is the normalized service rate for class j.
9. A link controller for a transport link in a multi-class digital network serving variable-length packets, comprising:
a service rate controller adapted to control an egress of variable-sized packets on the link, the service rate controller comprising:
a) a sampling frequency memory for storing a class service allocation computed by a node control element in response to a traffic load for the class at a specific point in time;
b) an adder adapted to add a value of the class service allocation to an adder memory after counting a predetermined number of clock signals;
c) a comparator adapted to compare a value in the adder memory to a normalized packet size;
d) a selector for visiting each comparator and writing a class number to a ready queue when the comparator determines that the value in the adder memory is greater than or equal to the normalized packet size; and e) a buffer for each class, the buffers storing packets to be transferred onto the link when the class number reaches a head of the ready queue.
a service rate controller adapted to control an egress of variable-sized packets on the link, the service rate controller comprising:
a) a sampling frequency memory for storing a class service allocation computed by a node control element in response to a traffic load for the class at a specific point in time;
b) an adder adapted to add a value of the class service allocation to an adder memory after counting a predetermined number of clock signals;
c) a comparator adapted to compare a value in the adder memory to a normalized packet size;
d) a selector for visiting each comparator and writing a class number to a ready queue when the comparator determines that the value in the adder memory is greater than or equal to the normalized packet size; and e) a buffer for each class, the buffers storing packets to be transferred onto the link when the class number reaches a head of the ready queue.
10. A link controller for a transport link in a multi-class digital network as claimed in claim 9 wherein a clock that produces the clock signals is a clock that is local to the link controller.
11. A link controller for a transport link in a multi-class digital network as claimed in claim 10 wherein the clock produces clock signals at a rate which is equal to a time required to transfer a smallest packet accommodated by the link.
12. A link controller for a transport link in a multi-class digital network as claimed in claim 9 wherein the service rate controller is adapted to control an egress of variable-sized packets using different transport modes, each transport mode consisting of at least one transport protocol and traffic using different transport modes are assigned to different classes.
13. A link controller for a transport link in a multi-class digital network as claimed in claim 9 wherein the normalized packet size is representative of a time required to transfer a given packet.
14. A method of computing an equivalent bit rate (EBR) for a traffic admission request to a multi-class network, comprising the steps of:
a) receiving from the traffic admission request source traffic descriptors which indicate the type and intensity of the traffic to be admitted to the network, or directly measuring the traffic to determine the type and intensity;
b) selecting a quality of service (QOS) for the traffic admission request; and c) computing the EBR using the traffic descriptors, the QOS and the entire capacity of a link which will be used to transport the traffic if the admission request is accepted.
a) receiving from the traffic admission request source traffic descriptors which indicate the type and intensity of the traffic to be admitted to the network, or directly measuring the traffic to determine the type and intensity;
b) selecting a quality of service (QOS) for the traffic admission request; and c) computing the EBR using the traffic descriptors, the QOS and the entire capacity of a link which will be used to transport the traffic if the admission request is accepted.
15. A method of computing an equivalent bit rate (EBR) as claimed in claim 14 wherein the traffic descriptors include traffic peak rate, traffic mean rate and mean packet size.
16. A method of computing an equivalent bit rate (EBR) for a traffic admission request to a multi-class network, comprising the steps of:
a) computing at a node control element where a traffic admission request is received, an EBR and parameters which may be used in subsequent nodes to compute an approximated EBR, the approximated EBR being used to determine in subsequent nodes whether link capacity exists to accept the traffic admission request;
b) passing the parameters to an adjacent node control element;
c) computing at the adjacent node an approximated EBR
using the parameters in a simplified interpolation formula that conserves computational efforts and d) repeating steps b) and c) until a connection is established or the admission request is rejected.
a) computing at a node control element where a traffic admission request is received, an EBR and parameters which may be used in subsequent nodes to compute an approximated EBR, the approximated EBR being used to determine in subsequent nodes whether link capacity exists to accept the traffic admission request;
b) passing the parameters to an adjacent node control element;
c) computing at the adjacent node an approximated EBR
using the parameters in a simplified interpolation formula that conserves computational efforts and d) repeating steps b) and c) until a connection is established or the admission request is rejected.
17. A method of computing an equivalent bit rate (EBR) as claimed in claim 16 wherein the parameters are computed using a hyperbolic approximation.
18. A method of computing an equivalent bit rate (EBR) as claimed in claim 17 wherein three parameters are computed.
19. A method of computing an equivalent bit rate (EBR) as claimed in claim 18 wherein the three parameters are .OMEGA.~, a and b and they are computed using the formulas:
.OMEGA.~ = .gamma..theta. ;
where .gamma. is the peak rate of the traffic stream requesting admission to the network; and .theta. is proportion of time the source is active;
the value of b is computed by the formula:
wherein R1 is a selected service rate R;
~ is determined using the Gibbens-Hunt formula; and .OMEGA.1 is determined using an extended Gibbens-Hunt method;
the value of a is computed using the formula:
a = (b + Y) (~ - .OMEGA.~).
.OMEGA.~ = .gamma..theta. ;
where .gamma. is the peak rate of the traffic stream requesting admission to the network; and .theta. is proportion of time the source is active;
the value of b is computed by the formula:
wherein R1 is a selected service rate R;
~ is determined using the Gibbens-Hunt formula; and .OMEGA.1 is determined using an extended Gibbens-Hunt method;
the value of a is computed using the formula:
a = (b + Y) (~ - .OMEGA.~).
20. A method of computing an equivalent bit rate (EBR) as claimed in claim 16 wherein the traffic admission request is for traffic to be multicast.
21. A method of. controlling a multi-class digital network wherein the traffic in the network is classified by node control elements into three types, comprising:
a) connection-based traffic with a specified QOS
b) connection-based traffic: without a specified QOS;
and c) connectionless traffic without a QOS
specification.
a) connection-based traffic with a specified QOS
b) connection-based traffic: without a specified QOS;
and c) connectionless traffic without a QOS
specification.
22. A method of controlling a multi-class digital network as claimed in claim 21 wherein each node control element monitors the traffic of type b) and allocates an appropriate service rate to that traffic if there is sufficient free capacity on a link used by the traffic until. the capacity is required by traffic of type a).
23. A method of controlling a multi-class digital network as claimed in claim 21 wherein type c) traffic is transferred on a link only when there is no traffic of type a) or b) waiting to be transferred on the link.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002236427A CA2236427A1 (en) | 1998-04-30 | 1998-04-30 | Methods and apparatus for distributed control of a multi-class network |
US09/071,344 US6404735B1 (en) | 1998-04-30 | 1998-05-01 | Methods and apparatus for distributed control of a multi-class network |
EP99303448A EP0957648A3 (en) | 1998-04-30 | 1999-04-30 | Method and apparatus for distributed control of a multi-class network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002236427A CA2236427A1 (en) | 1998-04-30 | 1998-04-30 | Methods and apparatus for distributed control of a multi-class network |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2236427A1 true CA2236427A1 (en) | 1999-10-30 |
Family
ID=29275632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002236427A Abandoned CA2236427A1 (en) | 1998-04-30 | 1998-04-30 | Methods and apparatus for distributed control of a multi-class network |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2236427A1 (en) |
-
1998
- 1998-04-30 CA CA002236427A patent/CA2236427A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6404735B1 (en) | Methods and apparatus for distributed control of a multi-class network | |
US6667956B2 (en) | Multi-class network | |
US6400681B1 (en) | Method and system for minimizing the connection set up time in high speed packet switching networks | |
US7061910B2 (en) | Universal transfer method and network with distributed switch | |
US6842463B1 (en) | Automated and adaptive management of bandwidth capacity in telecommunications networks | |
US6304552B1 (en) | Memory and apparatus for input based control of discards in a lossy packet network | |
KR100542401B1 (en) | An Admission Control Method in Differentiated Service Networks | |
JP4964046B2 (en) | Packet data traffic scheduling and acceptance control | |
US7310349B2 (en) | Routing and rate control in a universal transfer mode network | |
EP0784895B1 (en) | Flow control method and apparatus for cell-based communication networks | |
US7092395B2 (en) | Connection admission control and routing by allocating resources in network nodes | |
US20050083842A1 (en) | Method of performing adaptive connection admission control in consideration of input call states in differentiated service network | |
JP2002543669A (en) | Route setting device | |
JPH06209329A (en) | Virtual path band assigning system in asynchronous transfer mode | |
EP0814583A2 (en) | Method and system for minimizing the connection set up time in high speed packet switching networks | |
JPH1174909A (en) | Service request reception/management method in system of sharing resource | |
CA2236317C (en) | Multi-class network | |
JP2003511976A (en) | Link capacity sharing for throughput blocking optimization | |
Cisco | Traffic Management | |
Cisco | Traffic Management | |
Cisco | Traffic Management | |
CA2236427A1 (en) | Methods and apparatus for distributed control of a multi-class network | |
Cisco | Traffic Management | |
Cisco | Traffic Management | |
Cisco | Traffic Management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |