CA1185083A - Water dispersed rust inhibitive coating compositions - Google Patents
Water dispersed rust inhibitive coating compositionsInfo
- Publication number
- CA1185083A CA1185083A CA000415524A CA415524A CA1185083A CA 1185083 A CA1185083 A CA 1185083A CA 000415524 A CA000415524 A CA 000415524A CA 415524 A CA415524 A CA 415524A CA 1185083 A CA1185083 A CA 1185083A
- Authority
- CA
- Canada
- Prior art keywords
- composition
- group
- water
- styrene
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
WATER DISPERSED RUST INHIBITIVE COATING COMPOSITIONS
Abstract of Disclosure This invention relates to water dispersed rust inhibitive coating compositions comprising in admixture a film forming organic polymer and a non-Newtonian colloidal disperse system comprising (1) solid metal containing col loidal particles, (2) a liquid dispersing medium and (3) an organic compound the molecules of which contain a hydro-phobic portion and at least one polar substituent.
Abstract of Disclosure This invention relates to water dispersed rust inhibitive coating compositions comprising in admixture a film forming organic polymer and a non-Newtonian colloidal disperse system comprising (1) solid metal containing col loidal particles, (2) a liquid dispersing medium and (3) an organic compound the molecules of which contain a hydro-phobic portion and at least one polar substituent.
Description
L~20~0 TITLE: WATER DISPERSED RUST I~HIBITVE COATING COMPOSITIONS
Field of the Invention This invention relates to water dispersed coating compositions capable of irreversibly forming hardened, corrosion inhibitive coatings or films. More particularly, this invention relates to protective water dispersed film forming compositions comprising in intimate admlxture, a film forming organic polymer and a non-Newtonian colloid disperse system Articles of manufactures wherein metallic surfaces are coated with such film forming compositions also form a part of this invention.
Background of the Invention The corrosion of metal surfaces is of obvious eco-nomic significance in many industrial applications and, as a consequence, the inhibition of corrosion is a matter of prime consideration. It is of particular significance to users of steel and other ferrous alloys. The corrosion of such ferrous metal alloys is largely a matter of rust forma-tion which in turn involves the overall conversion of the 2G free metal to its oxides.
The theory which best explains such oxidation of ferrous metal articles postulates the essential presence of both water and oxygen. Even minute traces of moisture are sufficient, according to this theory, to induce dissolution of the iron therein and the formation of ferrous oxide until the water becomes saturated with ferrous ions. The pr~sence of oxygen causes oxidation of the resulting ferric hydroxide whicn settles out of solution and is ultimately converted to ferric oxide or rust.
~5~
The above sequence of reactions can be prevented or at leas-t to a large measure inhibited, by relative im-permeable coatings or films which have the effect of ex-cluding moisture and/or oxygen from contact with the metal 5 surface. Sucn coatings are often exposed to high humidity, corrosive atmosphere, etc., and to the extent that these coatings or films are penetrated or otherwise harmed by such influences they become inefective for the desired purpose.
It is also important that such coatings adhere tightly to lO the metal surface and resist flaking, crazing, blistering, powdering and other forms of loss of adhesion. A satisfac-tory corrosion-proofing coating or film then, must have the ability to resist weathering, high humidity, and corrosive atmospheres such as salt-laden mist or fogs, air contaminated 15 with industrial wastes, road dirt, calcium chloride, etc , so that the protective coating or film is maintained on most, if not all, of the metal surface The corrosion of metal sufaces is of particular economic concern to owners and manufacturers of automotive 20 vehicles. For instance, every car owner is aware of the corrosion which begins on the inner or underside of auto-mobile bodies such as inside rocker panels, fender wells, headlight assemblies and door panels. The corrosive rate is especially high in certain geographic areas which are sub-25 jected to severe weather during the winter months neces-sitating the use of sand, salt, calcium chloride, cinders, etc., to maintain roads in usable condition. Under these conditions, it generally is only a matter of time before the relatively light gauge automotive body steel is completely 30 converted to ferric oxide or rust. When this point is reached, the high quality exterior finishes flake off and reveal tne metal destruction which has occurred to the body of the vehicle.
Automotive manufacturers have waged a constant 35 battle against such body corrosion. Mastics and sealers have been used extensively as physical barriers to corrosive agents, and corrosion inhibiting primers have been used on underbody surfaces when they do not lnterfere with produc-5~3~
~ion line welding operations. When possible, zinc coatedgalvanized steel is used in substantial amounts to produce many body components directly exposed to corrosive agents.
These efforts and many others, however, have onl~ reduced underbody corrosion problems; the problem remains. The asphaltic mastic undexcoatings failed to give the desired permanent protection against corrosion since on hardening due to age, these coatings would crack and lose adhesion, especially when exposed to low ambient temperatures.
Corrosion inhibiting paints have also been utilized as underbody coatings, but these are not particularly desir-able because of the degree of metal preparation required prior to their application.
It is therefore, an object of this invention to pxovide novel rust inhibitive water dispersed coating compo-sitions for the protection of metals.
It is also the object of this invention to provide novel rust-inhibitive coating compositions which composi-tions may be easily and inexpensively applied to metal surfaces.
It is also the object of this invention to provide novel rust lnhibitive coating compositions which can be applied to such metal surfaces in the form of water dis-persed coating compositions.
These and o~her objects of the invention will become apparent from a reading of this specification.
Summary of the Invention The above objects are attained in accordance with the present invention by providing water dispersed coating compositions which coalesce at drying temperatures into hardened, rust-inhibitive coatings or films said water dispersed compositions comprising (A) at least one film forming organic polymer (B) at least one non-Newtonian colloidal disperse system comprising (1) solid, metal containing colloidal par-ticles, (2) a liquid dispexsing medium and (3) an organic compound, tne molecules of which contain a hydrophobic portion and at least one polar substituent said disperse system being characterized by having a base neutraliæation number of ~bout 7.~ or less.
lS~
Detailed Descr ption of the Invention The water dispersed coating compositions of the present invention are comprised of two major, essential in-gredients. The first of these is a film forming, organic polymer, component (A). Representative classes of suitable film forming organic polymers suitable for use in the coating compositions of the present invention include poly-olefins, polyamides, acrylics, polystyrenes, polyethers, polyfluorocarbons, polymercaptans, polyesters, polymethanes, acetal resins, polyterpenes, phenolics, cellulosics, melamine resins, furane resins, alkyd resins, silicone resins, natural resins, mixtures of natural resins, mixtures of natural and synthetic resins and the like. These classes of resins are well known as evidenced by such prior art publications as Modern Plastics Encyclopedia, Vol. 56, No. lOA (1979-1980), McGraw-Hill Publications. This publication contains many illustrative examples falling within the above classes of polymers including cellulosics such as cellulos~ nitrates, cellulose acetates, cellulose proprionates, cellulose buty-rates, ethyl cellulose and the like; and mixed ester cellu-losics such as cellulose acetate butyrate and the like;
polyolefins such as polyethylene, polypropylene, polybu-tenes, polyisobutylenes, ethylene-propylene copolymers and ethylene-propylene copolymers containing up to 3 weight percent of a diolefin such as isoprene and butadiene; poly-halo olefins such as polytetrafluoroethylenes, polychloro trifluoroethylenes and the like; polyamides including poly-coprolactum, polyhexamethylenediamide, polyhexamethylene-sebacamide and polyamide derived bassylic acid or tere-phthalic acid and alkylene diamines such as hexamethylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylene diamine;
polystyrene and styrene containing copolymers and terpoly-mers such as copolymers of styrene and acrylonitrile or terpolymers of styrene, 1,3-butadiene and acrylonitrile;
copolymers of vinyl chloride, vinylidene chloride, and vi-nyl esters such as vinyl acetate; polyvinyl acetates such as polyvinyl acetyl per se and polyvinyl butyral; urea formal-dehyde resins; melamine-formaldehyde resins; phenol-formal-dehyde resins, phenol-fufural resins and the like.
A more preferred class of fllm formlng organlc polymers useful in the coating composltlons of the present inventlon are the acryllc polymers such as the polymers and 5 copolymers of acrylic and methacrylic acids and copolymers derlved from mlxtures of two or more acryllc type monomers selected from the group conslsting of esters of acrylic and methacryllc aclds wherein the alcohollc molety ls derlved from (1) alkanols of one to about 20 carbon atoms, e.g.
10 methanol, ethanol, butanol, octanol, lauryl alcohol, stearyl alcohol, ethylene glycol, polyethylene glycol and the like;
Field of the Invention This invention relates to water dispersed coating compositions capable of irreversibly forming hardened, corrosion inhibitive coatings or films. More particularly, this invention relates to protective water dispersed film forming compositions comprising in intimate admlxture, a film forming organic polymer and a non-Newtonian colloid disperse system Articles of manufactures wherein metallic surfaces are coated with such film forming compositions also form a part of this invention.
Background of the Invention The corrosion of metal surfaces is of obvious eco-nomic significance in many industrial applications and, as a consequence, the inhibition of corrosion is a matter of prime consideration. It is of particular significance to users of steel and other ferrous alloys. The corrosion of such ferrous metal alloys is largely a matter of rust forma-tion which in turn involves the overall conversion of the 2G free metal to its oxides.
The theory which best explains such oxidation of ferrous metal articles postulates the essential presence of both water and oxygen. Even minute traces of moisture are sufficient, according to this theory, to induce dissolution of the iron therein and the formation of ferrous oxide until the water becomes saturated with ferrous ions. The pr~sence of oxygen causes oxidation of the resulting ferric hydroxide whicn settles out of solution and is ultimately converted to ferric oxide or rust.
~5~
The above sequence of reactions can be prevented or at leas-t to a large measure inhibited, by relative im-permeable coatings or films which have the effect of ex-cluding moisture and/or oxygen from contact with the metal 5 surface. Sucn coatings are often exposed to high humidity, corrosive atmosphere, etc., and to the extent that these coatings or films are penetrated or otherwise harmed by such influences they become inefective for the desired purpose.
It is also important that such coatings adhere tightly to lO the metal surface and resist flaking, crazing, blistering, powdering and other forms of loss of adhesion. A satisfac-tory corrosion-proofing coating or film then, must have the ability to resist weathering, high humidity, and corrosive atmospheres such as salt-laden mist or fogs, air contaminated 15 with industrial wastes, road dirt, calcium chloride, etc , so that the protective coating or film is maintained on most, if not all, of the metal surface The corrosion of metal sufaces is of particular economic concern to owners and manufacturers of automotive 20 vehicles. For instance, every car owner is aware of the corrosion which begins on the inner or underside of auto-mobile bodies such as inside rocker panels, fender wells, headlight assemblies and door panels. The corrosive rate is especially high in certain geographic areas which are sub-25 jected to severe weather during the winter months neces-sitating the use of sand, salt, calcium chloride, cinders, etc., to maintain roads in usable condition. Under these conditions, it generally is only a matter of time before the relatively light gauge automotive body steel is completely 30 converted to ferric oxide or rust. When this point is reached, the high quality exterior finishes flake off and reveal tne metal destruction which has occurred to the body of the vehicle.
Automotive manufacturers have waged a constant 35 battle against such body corrosion. Mastics and sealers have been used extensively as physical barriers to corrosive agents, and corrosion inhibiting primers have been used on underbody surfaces when they do not lnterfere with produc-5~3~
~ion line welding operations. When possible, zinc coatedgalvanized steel is used in substantial amounts to produce many body components directly exposed to corrosive agents.
These efforts and many others, however, have onl~ reduced underbody corrosion problems; the problem remains. The asphaltic mastic undexcoatings failed to give the desired permanent protection against corrosion since on hardening due to age, these coatings would crack and lose adhesion, especially when exposed to low ambient temperatures.
Corrosion inhibiting paints have also been utilized as underbody coatings, but these are not particularly desir-able because of the degree of metal preparation required prior to their application.
It is therefore, an object of this invention to pxovide novel rust inhibitive water dispersed coating compo-sitions for the protection of metals.
It is also the object of this invention to provide novel rust-inhibitive coating compositions which composi-tions may be easily and inexpensively applied to metal surfaces.
It is also the object of this invention to provide novel rust lnhibitive coating compositions which can be applied to such metal surfaces in the form of water dis-persed coating compositions.
These and o~her objects of the invention will become apparent from a reading of this specification.
Summary of the Invention The above objects are attained in accordance with the present invention by providing water dispersed coating compositions which coalesce at drying temperatures into hardened, rust-inhibitive coatings or films said water dispersed compositions comprising (A) at least one film forming organic polymer (B) at least one non-Newtonian colloidal disperse system comprising (1) solid, metal containing colloidal par-ticles, (2) a liquid dispexsing medium and (3) an organic compound, tne molecules of which contain a hydrophobic portion and at least one polar substituent said disperse system being characterized by having a base neutraliæation number of ~bout 7.~ or less.
lS~
Detailed Descr ption of the Invention The water dispersed coating compositions of the present invention are comprised of two major, essential in-gredients. The first of these is a film forming, organic polymer, component (A). Representative classes of suitable film forming organic polymers suitable for use in the coating compositions of the present invention include poly-olefins, polyamides, acrylics, polystyrenes, polyethers, polyfluorocarbons, polymercaptans, polyesters, polymethanes, acetal resins, polyterpenes, phenolics, cellulosics, melamine resins, furane resins, alkyd resins, silicone resins, natural resins, mixtures of natural resins, mixtures of natural and synthetic resins and the like. These classes of resins are well known as evidenced by such prior art publications as Modern Plastics Encyclopedia, Vol. 56, No. lOA (1979-1980), McGraw-Hill Publications. This publication contains many illustrative examples falling within the above classes of polymers including cellulosics such as cellulos~ nitrates, cellulose acetates, cellulose proprionates, cellulose buty-rates, ethyl cellulose and the like; and mixed ester cellu-losics such as cellulose acetate butyrate and the like;
polyolefins such as polyethylene, polypropylene, polybu-tenes, polyisobutylenes, ethylene-propylene copolymers and ethylene-propylene copolymers containing up to 3 weight percent of a diolefin such as isoprene and butadiene; poly-halo olefins such as polytetrafluoroethylenes, polychloro trifluoroethylenes and the like; polyamides including poly-coprolactum, polyhexamethylenediamide, polyhexamethylene-sebacamide and polyamide derived bassylic acid or tere-phthalic acid and alkylene diamines such as hexamethylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylene diamine;
polystyrene and styrene containing copolymers and terpoly-mers such as copolymers of styrene and acrylonitrile or terpolymers of styrene, 1,3-butadiene and acrylonitrile;
copolymers of vinyl chloride, vinylidene chloride, and vi-nyl esters such as vinyl acetate; polyvinyl acetates such as polyvinyl acetyl per se and polyvinyl butyral; urea formal-dehyde resins; melamine-formaldehyde resins; phenol-formal-dehyde resins, phenol-fufural resins and the like.
A more preferred class of fllm formlng organlc polymers useful in the coating composltlons of the present inventlon are the acryllc polymers such as the polymers and 5 copolymers of acrylic and methacrylic acids and copolymers derlved from mlxtures of two or more acryllc type monomers selected from the group conslsting of esters of acrylic and methacryllc aclds wherein the alcohollc molety ls derlved from (1) alkanols of one to about 20 carbon atoms, e.g.
10 methanol, ethanol, butanol, octanol, lauryl alcohol, stearyl alcohol, ethylene glycol, polyethylene glycol and the like;
(2) halo-alkanols such as 2-chloroethanol; (3) aminoalkanols, e.g., 2-(tert-butylamino) ethanol and 2-diethylamino-ethanol;
(4) alkoxy alkanols exempllfied by 2-methoxy-ethanol, 2-15 ethoxy-ethanol and 3-ethoxy-propanol; and (5) cycloalkanols such as cyclohexanol and cyclopropanol and the corresponding amides and polyamides of these acids including acrylamides and methacrylamides, alkylene bis-amides and N-substituted amides such as N-tert-butylacrylamide. Further representa-20 tive examples of suitable acrylic polymers usefu] as compo-nent (A) of the invention are those derived from mixtures of at least one of the above described acrylic or methacrylic acid esters and amldes wlth at least one monomer containing vinyl double bond unsaturation such as for example, vinyl 25 esters as represented by vinyl acetate, vinyl proprlonate, vinyl butyrates, vinyl benzoate and the like; styrene, ring-substituted alkyl and alkoxy styrene such as, for example, the ortho-, meta- and para-methyl and ethyl styrenes, the meta- and para-isopropyl styrenes, para-butyl styrene, para-30 heptyl styrene, para-cyclohexyl styrene, the ortho-, meta-and para-methoxy and ethoxy styrenes, 2,6-dimethoxy styrene and 2-methoxy-isopropyl styrene and the like, alpha methyl styrene and ring-substituted alpha methyl styrene such as, for example, 4-methyl alpha methyl styrene, 4-isopropyl alpha methyl styrene, 2,3-dimethyl alpha methyl styrene and the like. Preferred acrylic polymers for use as component Jl.~ r~3 (A) of the coating compositions of this inventlon are those derived from mixtures of two or more esters of acryLic and methacrylic acids wherein the alcohol moiety is derived from Cl to C4 alkanols and amides of acrylic and methacryllc 5 acids and one or more of such esters and amides with one or more monomers containing vinyl double bond unsaturation such as the above described substituted and unsubstituted sty-renes and alpha methyl styrenes. Most preferred acrylic polymers are those dexived Erom two or more of the lower C
10 to C4 alkyl esters of acrylic acid and methacrylic acid or one or more of such esters with styrenes. A most preferred class of polymers for use in this invention has been found to be those derived from the lower Cl to C4 esters of acrylic acid or methacrylic acid and styrene.
The film forming organic polymers suitable for use in the present invention can be either water soluble or water insoluble~ When the organic polymers are water in-soluble, they will generally be present in the water phase in the form of disperse particles ranging in size from 0.1 20 to about 10.0 microns. ~ more preferred range is from about 0 5 to about 5.0 microns.
In general, the amount of the film forming organic polymer useful in the coating compositions of this invention will range from about 10.0 to about 65.0 weight percent 25 based on the total weight of the particular coating composi-tion. A more preferred range for the polymer is from about 15.0 to about 35.0 weight percent and a most preferred range is from about 22.0 to about 28.0 weight percent.
The second major essential ingredient of the coating compositions of the present invention is the non-Newtonian colloid disperse system, component (B) comprised of overbased salts of organic acids, said non-Newtonian colloidal disperse systems having a base neutralization number, as determined against phenolphthalein, ranging from 0 to about 7Ø
The colloidal disperse systems useful in the pre-paration of the aqueous coating compositions of this inven tion exhibit nor-Newtonian flow characteristics, i.e. thixo---7--tropic characteristics. The apparent viscosity of a thixo-tropic material depends on both the rate of shear and length of time in which said shearing action is applied. The rheological characteristics of such materials are more fully ciscussed in such standard texts as s. Jirgensons and M.E.
Straumonis, A Short Textbook on Colloidal Chemistry (2nd Ed.), The l~acMillan Co., N.Y. 1962, particularly pages 178 through 183.
The terminology "disperse system" as used in the specification and claims is a term of art generic to col-loids or colloidal solutions, e.g., "any homogeneous medium containing dispersed entities of any size and state," Jirgen-sons and Straumanis, supra. However, the particular dis-perse systems of the present invention form a subgenus within this broad class of disperse system, this subgenus being characterized by several important features.
This subgenus comprises those disperse systems wherein at least a portion of the particles dispersed therein are solid, metal-containing particles formed in situ. At least about 10% to about 50% are particles of this type and preferably, substantially all of said solid par-ticles are formed in situ.
So long as the solid particles remain dispersed in the dispersing medium as colloidal particles the particle size is not critical. Ordinarily, the particles will not exceed 5000 A. However, it is preferred that the maximum unit particle size be less than about 1000 A. In a par-ticularly preferred aspect of the invention, the unit par-ticle size is less than about 400 A. Systems having a unit particle size in the range of 30 A. to 200 A. give excellent results. The minimum unit particle size is at least 20 A.
and preferably at least about 30 A.
The language "unit particle size" is intended to designate the average particle size of the solid, metal-con-taining particles assuming maximum dispersion of the indi~vidual particles throughout the disperse medium. That is, the unit particle is that particle which corresponds in size -to the average slze of -the me-tal-containing particles and is capable of independent existence within the disperse system as a discrete colloidal particle. These metal-containing particles are found in two forms in the disperse systems.
Individual unit particles can be dispersed as such through out the medium or unit particles can form an agglomerate, in combination with other materials (e.g , another metal-con-taining particle, the disperse medium, etc.) whlch are present in the disperse systems. These agglomerates are dispersed through the system as "metal-containing particles."
Obviously, the "particle size" of the agglomerate is sub-stantially greater than the unit particle size. Further-more, it is equally apparent that this agglomerate size is subject to wide variations, even within the same disperse system. The agglomerate size varies, for example, with the ~egree of shearing action employed in dispersing the unit particles. That is, mechanical agitation of the disperse system tends to break down the agglomerates into the indi-vidual components thereof and disperse these individual components throughout the disperse medium. The ultimate in dispersion is achieved when each solid, metal-containing particle is individually dispersed in the medium. Accord-ingly, the disperse systems are characterized with reference to the unit particle slze, it being apparent to those skilled in the art that the unit particle size represents the aver-age size of solid, metal-containing particles present in the system which can exist independently The average particle size of the metal-containing solid particles in the system can be made to approach the unit particle size value by the application of a shearing action to the existent system or during the formation of the disperse system as the particles are being formed in situ. It is not necessary that maximum particle dispersion exist to have useful disperse systems.
The agitation associated with homogenization of the over-based material and conversion agent as hereinafter describedproduces sufficient particle dispersion.
sasically, tne solid, metal-containing particles, the first component of the colloidal disperse systems, are ~ D~
_9_ in tne forrn of metal salts of inorganic acids and low mole-cular weight organic acids, hydrates thereoE, or mixtures of these~ These salts are usually the alkali and alkaline earth metal forma-tes, acetates, carbonates, hydrogen car-S bonates, hydrogen sulfides, sulfites, hydrogen sulfites, andhalides, particularly chlorides. In other words, the metal-containing particles are ordinarily particles of metal salts, the uni-t particle is the individual salt particle and the unit particle size is the average particle size of the salt particles which is readily ascertained, as for example, by conventional X-ray diffraction techniques. Colloidal disperse systems possessing particles of this type are sometimes referred to as macromolecular colloidal systems.
Because of the composition of the colloidal dis-perse systems, the metal-containing particles also exist as components in micellar colloidal particles. In addition to the solid metal-containing particles and the disperse me-dium, the colloidal disperse systems useful in this inven-tion are characterized by a third essential component, one which is soluble in the medium and contains in the molecules thereof a hydrophobic portion and at least one polar sub-stituent. This third component can orient itself along the external surfaces of the above metal salts, the polar groups lying along the surface of these salts with the hydrophobic portions extending from the salts into the disperse medium forming micellar colloidal particles. These micellar col-loids are formed through weak intermolecular forces, e.g., Van der Waals forces, etc. Miscellar colloids represent a type of agglomerate particle as discussed thereinabove.
Because of the molecular orientation in these micellar colloidal particles, such particles are characterized by a metal containing layer (i.e., the solid metal-containing particles and any metal present in the polar substituent of the third component, such as the metal in a sulfonic or carboxylic acid salt group), a hydrophobic layer formed by the hydrophobic portions of the molecules of the third component and a polar layer bridging said metal-containing ~ t~j~
layer and sal~ hydrophobic layer, said polar brldying layer comprising the polar substituents of the thlrd component of the system, e.g., the o _ ~-o--group if the third component is an alkaline earth metal petrosulfonate.
The second component of the colloidal disperse system is the dispersing medium. The identity of the medium is not a particularly critical aspect of the invention as the medium primarily serves as the liquid vehlcle in which solid particles are dispersed. The disperse medium will normally consist of inert organic liquids, that is, liquids which are chemically substantially inactive. Representative liquids include the alkanes and haloalkanes of five to eighteen carbons, polyhalo and perhaloalkanes of up to about slx carbons; the cycloalkanes of five or more carbons; the corresponding alkyl and/or halo-substituted cycloalkanes;
the aryl hydrocarbons; the alkylaryl hydrocarbons; -the haloaryl hydrocarbons; ethers such as dialkyl ethers; alkyl aryl ethers; cycloalkyl ethers; cycloalkylalkyl ethers;
alkanols, alkylene glycols, polyalkylene gylcols and esters of said glycols; alkyl ethers of alkylene glycols and poly-alkylene glycols; alkanol amines, amines and liquid poly-amines; dibasic alkanoic acid diesters; silicate esters;
glycerides;epoxidized glycerides; aliphatic, aromatic es-ters; petroleum waxes; slack waxes (non-refined paraffinic-based petroleum fractions); synthetic hydrocarbon waxes and chlorinated waxes. Specific examples include petroleum ether, Stoddard Solvent, pentane, hexane, octane, isooctane, undecane, tetradecane, cyclopentane, cyclohexane, isopro-pylcyclohexane, l,4-dimethylcyclohexane, cyclooctane, ben-zene, toluene, xylene, ethyl benzene, tert-butyl-benzene, nalobenzenes especially mono~ and polychlorobenzenes such as chlorobenzene per se and 3,4-dichlorotoluene, mineral oils, 35 n-propy'e-tner, isopropylether, isobutylether, n-amylether, t~ 3 methyl-n-amyletner, cyclohexylether, ethoxycyclo~exane, methoxybenzene, isopropoxybenzene, p-methoxytoluene, me-tha-nol, ethanol, propanolf lsopropanol, hexanol, n-octyl alco-hol, n-decyl alcohol, alkylene glycols such as ethylene glycol and propylene glycol, diethyl ketone, dipropryl ketone, methyl-butyl ketone, acetophenone, l,2-difluoro-tetrachloroethane, dichlorofluoromethane, 1,2-dibromote-tra-fluoroethane, trichlorofluoromethane, l-chloropentane, 1,3-dichlorohexane, formamlde, dimethylformamide, acetamide, ~imethylacetamide diethylacetamide, propionamide, diisooctyl a7elate, ethylene glycol, polypropylene glycols, hexa-2-ethylbutoxy disiloxane, etc.
Also useful as dispersing medium are low molecular weight liquid polymers, generally classlfied as oligomers, which include the dimers, tetramers, pentamers, etc. Illus-trative of this large class of materials are such liquids as the propylene tetramers, isobutylene dimers, and the like.
From the standpoint of availability, cost, and performance, tne alkyl, cycloalkyl, and aryl hydrocarbons represent a preferred class of disperse mediums. Liquld petroleum fractions represent another preferred class of disperse mediums. Included within these preferred classes are benzenes an~ alkylated benzenes, cycloalkanes and alkylated cycloalkanes, cycloalkenes and alkylated cyclo-alkenes such as found in naphthene-based petroleum frac-tions, and the alkanes such as found in the paraffinic-based petroleum fractions. Petroleum ether, naphthas, mineral oils, Stoddard Solvent, toluene, xylene, etc , and mixtures thereof are examples of economical sources of suitable inert organic liquids which can function as the disperse medium in the colloidal disperse systems of the present invention.
The most preferred disperse systems are those con-taining at least some mineral oil as a component of the dis-perse medium. However, in this preferred class of systems, it is desirable that mineral oil comprise at least about 1~
by weight of the total medium, and preferably at least about 5O by weight. Those mediums comprising at least 10~ by weigh-t mineral oil are especially useful. As will be seen nerelnaf-ter, mineral oil can serve as the exclusive disperse medium.
As mentioned hereinabove in addition to the solid, metal-containing particles and the dlsperse medium, the dis-perse systems employed in -the aqueous disperse compositions of this invention require yet a third component. This third component is an organic compound which is soluble in the disperse medium, and the molecules of which are character-ized by a hydrophobic portion and at least one polar subs-ti-tuent.
The hydrophobic portion of the organic compound is a hydrocarbon radical or a substantially hydrocarbon radical containing at least about twelve aliphatic carbon atoms.
1~ Usually the hydrocarbon portion is an aliphatic or cycloal-iphatic hydrocarbon radical although aliphatic or cycloall-phatic substituted aromatic hydrocarbon radicals are also suitable. In other words, the hydrophobic portion of the organic compound is the residue of the organic material ~0 which is overbased minus its polar substituents. For exam~
ple, if the material to be overbased is a carboxylic acid, sulfonic acid, or phosphorus acid, the hydrophobic portion is the residue of these acids which would result from the removal of the acid functions. Similarly, if the material to be overbased is a phenol, a nitro-substituted polyolefin, or an amine, the hydrophobic portion of the organic compound is the radical resul-ting from the removal of the hydroxyl, nitro, or amino group respectively. It is the hydrophobic portion of the molecule which renders the organic compound soluble in the solvent used in the overbasing process and later in the disperse medium.
In the examples set forth below~ the third compo-nent of the disperse system (i.e., the organic compound which is soluble in the disperse medium and which is charac-
(4) alkoxy alkanols exempllfied by 2-methoxy-ethanol, 2-15 ethoxy-ethanol and 3-ethoxy-propanol; and (5) cycloalkanols such as cyclohexanol and cyclopropanol and the corresponding amides and polyamides of these acids including acrylamides and methacrylamides, alkylene bis-amides and N-substituted amides such as N-tert-butylacrylamide. Further representa-20 tive examples of suitable acrylic polymers usefu] as compo-nent (A) of the invention are those derived from mixtures of at least one of the above described acrylic or methacrylic acid esters and amldes wlth at least one monomer containing vinyl double bond unsaturation such as for example, vinyl 25 esters as represented by vinyl acetate, vinyl proprlonate, vinyl butyrates, vinyl benzoate and the like; styrene, ring-substituted alkyl and alkoxy styrene such as, for example, the ortho-, meta- and para-methyl and ethyl styrenes, the meta- and para-isopropyl styrenes, para-butyl styrene, para-30 heptyl styrene, para-cyclohexyl styrene, the ortho-, meta-and para-methoxy and ethoxy styrenes, 2,6-dimethoxy styrene and 2-methoxy-isopropyl styrene and the like, alpha methyl styrene and ring-substituted alpha methyl styrene such as, for example, 4-methyl alpha methyl styrene, 4-isopropyl alpha methyl styrene, 2,3-dimethyl alpha methyl styrene and the like. Preferred acrylic polymers for use as component Jl.~ r~3 (A) of the coating compositions of this inventlon are those derived from mixtures of two or more esters of acryLic and methacrylic acids wherein the alcohol moiety is derived from Cl to C4 alkanols and amides of acrylic and methacryllc 5 acids and one or more of such esters and amides with one or more monomers containing vinyl double bond unsaturation such as the above described substituted and unsubstituted sty-renes and alpha methyl styrenes. Most preferred acrylic polymers are those dexived Erom two or more of the lower C
10 to C4 alkyl esters of acrylic acid and methacrylic acid or one or more of such esters with styrenes. A most preferred class of polymers for use in this invention has been found to be those derived from the lower Cl to C4 esters of acrylic acid or methacrylic acid and styrene.
The film forming organic polymers suitable for use in the present invention can be either water soluble or water insoluble~ When the organic polymers are water in-soluble, they will generally be present in the water phase in the form of disperse particles ranging in size from 0.1 20 to about 10.0 microns. ~ more preferred range is from about 0 5 to about 5.0 microns.
In general, the amount of the film forming organic polymer useful in the coating compositions of this invention will range from about 10.0 to about 65.0 weight percent 25 based on the total weight of the particular coating composi-tion. A more preferred range for the polymer is from about 15.0 to about 35.0 weight percent and a most preferred range is from about 22.0 to about 28.0 weight percent.
The second major essential ingredient of the coating compositions of the present invention is the non-Newtonian colloid disperse system, component (B) comprised of overbased salts of organic acids, said non-Newtonian colloidal disperse systems having a base neutralization number, as determined against phenolphthalein, ranging from 0 to about 7Ø
The colloidal disperse systems useful in the pre-paration of the aqueous coating compositions of this inven tion exhibit nor-Newtonian flow characteristics, i.e. thixo---7--tropic characteristics. The apparent viscosity of a thixo-tropic material depends on both the rate of shear and length of time in which said shearing action is applied. The rheological characteristics of such materials are more fully ciscussed in such standard texts as s. Jirgensons and M.E.
Straumonis, A Short Textbook on Colloidal Chemistry (2nd Ed.), The l~acMillan Co., N.Y. 1962, particularly pages 178 through 183.
The terminology "disperse system" as used in the specification and claims is a term of art generic to col-loids or colloidal solutions, e.g., "any homogeneous medium containing dispersed entities of any size and state," Jirgen-sons and Straumanis, supra. However, the particular dis-perse systems of the present invention form a subgenus within this broad class of disperse system, this subgenus being characterized by several important features.
This subgenus comprises those disperse systems wherein at least a portion of the particles dispersed therein are solid, metal-containing particles formed in situ. At least about 10% to about 50% are particles of this type and preferably, substantially all of said solid par-ticles are formed in situ.
So long as the solid particles remain dispersed in the dispersing medium as colloidal particles the particle size is not critical. Ordinarily, the particles will not exceed 5000 A. However, it is preferred that the maximum unit particle size be less than about 1000 A. In a par-ticularly preferred aspect of the invention, the unit par-ticle size is less than about 400 A. Systems having a unit particle size in the range of 30 A. to 200 A. give excellent results. The minimum unit particle size is at least 20 A.
and preferably at least about 30 A.
The language "unit particle size" is intended to designate the average particle size of the solid, metal-con-taining particles assuming maximum dispersion of the indi~vidual particles throughout the disperse medium. That is, the unit particle is that particle which corresponds in size -to the average slze of -the me-tal-containing particles and is capable of independent existence within the disperse system as a discrete colloidal particle. These metal-containing particles are found in two forms in the disperse systems.
Individual unit particles can be dispersed as such through out the medium or unit particles can form an agglomerate, in combination with other materials (e.g , another metal-con-taining particle, the disperse medium, etc.) whlch are present in the disperse systems. These agglomerates are dispersed through the system as "metal-containing particles."
Obviously, the "particle size" of the agglomerate is sub-stantially greater than the unit particle size. Further-more, it is equally apparent that this agglomerate size is subject to wide variations, even within the same disperse system. The agglomerate size varies, for example, with the ~egree of shearing action employed in dispersing the unit particles. That is, mechanical agitation of the disperse system tends to break down the agglomerates into the indi-vidual components thereof and disperse these individual components throughout the disperse medium. The ultimate in dispersion is achieved when each solid, metal-containing particle is individually dispersed in the medium. Accord-ingly, the disperse systems are characterized with reference to the unit particle slze, it being apparent to those skilled in the art that the unit particle size represents the aver-age size of solid, metal-containing particles present in the system which can exist independently The average particle size of the metal-containing solid particles in the system can be made to approach the unit particle size value by the application of a shearing action to the existent system or during the formation of the disperse system as the particles are being formed in situ. It is not necessary that maximum particle dispersion exist to have useful disperse systems.
The agitation associated with homogenization of the over-based material and conversion agent as hereinafter describedproduces sufficient particle dispersion.
sasically, tne solid, metal-containing particles, the first component of the colloidal disperse systems, are ~ D~
_9_ in tne forrn of metal salts of inorganic acids and low mole-cular weight organic acids, hydrates thereoE, or mixtures of these~ These salts are usually the alkali and alkaline earth metal forma-tes, acetates, carbonates, hydrogen car-S bonates, hydrogen sulfides, sulfites, hydrogen sulfites, andhalides, particularly chlorides. In other words, the metal-containing particles are ordinarily particles of metal salts, the uni-t particle is the individual salt particle and the unit particle size is the average particle size of the salt particles which is readily ascertained, as for example, by conventional X-ray diffraction techniques. Colloidal disperse systems possessing particles of this type are sometimes referred to as macromolecular colloidal systems.
Because of the composition of the colloidal dis-perse systems, the metal-containing particles also exist as components in micellar colloidal particles. In addition to the solid metal-containing particles and the disperse me-dium, the colloidal disperse systems useful in this inven-tion are characterized by a third essential component, one which is soluble in the medium and contains in the molecules thereof a hydrophobic portion and at least one polar sub-stituent. This third component can orient itself along the external surfaces of the above metal salts, the polar groups lying along the surface of these salts with the hydrophobic portions extending from the salts into the disperse medium forming micellar colloidal particles. These micellar col-loids are formed through weak intermolecular forces, e.g., Van der Waals forces, etc. Miscellar colloids represent a type of agglomerate particle as discussed thereinabove.
Because of the molecular orientation in these micellar colloidal particles, such particles are characterized by a metal containing layer (i.e., the solid metal-containing particles and any metal present in the polar substituent of the third component, such as the metal in a sulfonic or carboxylic acid salt group), a hydrophobic layer formed by the hydrophobic portions of the molecules of the third component and a polar layer bridging said metal-containing ~ t~j~
layer and sal~ hydrophobic layer, said polar brldying layer comprising the polar substituents of the thlrd component of the system, e.g., the o _ ~-o--group if the third component is an alkaline earth metal petrosulfonate.
The second component of the colloidal disperse system is the dispersing medium. The identity of the medium is not a particularly critical aspect of the invention as the medium primarily serves as the liquid vehlcle in which solid particles are dispersed. The disperse medium will normally consist of inert organic liquids, that is, liquids which are chemically substantially inactive. Representative liquids include the alkanes and haloalkanes of five to eighteen carbons, polyhalo and perhaloalkanes of up to about slx carbons; the cycloalkanes of five or more carbons; the corresponding alkyl and/or halo-substituted cycloalkanes;
the aryl hydrocarbons; the alkylaryl hydrocarbons; -the haloaryl hydrocarbons; ethers such as dialkyl ethers; alkyl aryl ethers; cycloalkyl ethers; cycloalkylalkyl ethers;
alkanols, alkylene glycols, polyalkylene gylcols and esters of said glycols; alkyl ethers of alkylene glycols and poly-alkylene glycols; alkanol amines, amines and liquid poly-amines; dibasic alkanoic acid diesters; silicate esters;
glycerides;epoxidized glycerides; aliphatic, aromatic es-ters; petroleum waxes; slack waxes (non-refined paraffinic-based petroleum fractions); synthetic hydrocarbon waxes and chlorinated waxes. Specific examples include petroleum ether, Stoddard Solvent, pentane, hexane, octane, isooctane, undecane, tetradecane, cyclopentane, cyclohexane, isopro-pylcyclohexane, l,4-dimethylcyclohexane, cyclooctane, ben-zene, toluene, xylene, ethyl benzene, tert-butyl-benzene, nalobenzenes especially mono~ and polychlorobenzenes such as chlorobenzene per se and 3,4-dichlorotoluene, mineral oils, 35 n-propy'e-tner, isopropylether, isobutylether, n-amylether, t~ 3 methyl-n-amyletner, cyclohexylether, ethoxycyclo~exane, methoxybenzene, isopropoxybenzene, p-methoxytoluene, me-tha-nol, ethanol, propanolf lsopropanol, hexanol, n-octyl alco-hol, n-decyl alcohol, alkylene glycols such as ethylene glycol and propylene glycol, diethyl ketone, dipropryl ketone, methyl-butyl ketone, acetophenone, l,2-difluoro-tetrachloroethane, dichlorofluoromethane, 1,2-dibromote-tra-fluoroethane, trichlorofluoromethane, l-chloropentane, 1,3-dichlorohexane, formamlde, dimethylformamide, acetamide, ~imethylacetamide diethylacetamide, propionamide, diisooctyl a7elate, ethylene glycol, polypropylene glycols, hexa-2-ethylbutoxy disiloxane, etc.
Also useful as dispersing medium are low molecular weight liquid polymers, generally classlfied as oligomers, which include the dimers, tetramers, pentamers, etc. Illus-trative of this large class of materials are such liquids as the propylene tetramers, isobutylene dimers, and the like.
From the standpoint of availability, cost, and performance, tne alkyl, cycloalkyl, and aryl hydrocarbons represent a preferred class of disperse mediums. Liquld petroleum fractions represent another preferred class of disperse mediums. Included within these preferred classes are benzenes an~ alkylated benzenes, cycloalkanes and alkylated cycloalkanes, cycloalkenes and alkylated cyclo-alkenes such as found in naphthene-based petroleum frac-tions, and the alkanes such as found in the paraffinic-based petroleum fractions. Petroleum ether, naphthas, mineral oils, Stoddard Solvent, toluene, xylene, etc , and mixtures thereof are examples of economical sources of suitable inert organic liquids which can function as the disperse medium in the colloidal disperse systems of the present invention.
The most preferred disperse systems are those con-taining at least some mineral oil as a component of the dis-perse medium. However, in this preferred class of systems, it is desirable that mineral oil comprise at least about 1~
by weight of the total medium, and preferably at least about 5O by weight. Those mediums comprising at least 10~ by weigh-t mineral oil are especially useful. As will be seen nerelnaf-ter, mineral oil can serve as the exclusive disperse medium.
As mentioned hereinabove in addition to the solid, metal-containing particles and the dlsperse medium, the dis-perse systems employed in -the aqueous disperse compositions of this invention require yet a third component. This third component is an organic compound which is soluble in the disperse medium, and the molecules of which are character-ized by a hydrophobic portion and at least one polar subs-ti-tuent.
The hydrophobic portion of the organic compound is a hydrocarbon radical or a substantially hydrocarbon radical containing at least about twelve aliphatic carbon atoms.
1~ Usually the hydrocarbon portion is an aliphatic or cycloal-iphatic hydrocarbon radical although aliphatic or cycloall-phatic substituted aromatic hydrocarbon radicals are also suitable. In other words, the hydrophobic portion of the organic compound is the residue of the organic material ~0 which is overbased minus its polar substituents. For exam~
ple, if the material to be overbased is a carboxylic acid, sulfonic acid, or phosphorus acid, the hydrophobic portion is the residue of these acids which would result from the removal of the acid functions. Similarly, if the material to be overbased is a phenol, a nitro-substituted polyolefin, or an amine, the hydrophobic portion of the organic compound is the radical resul-ting from the removal of the hydroxyl, nitro, or amino group respectively. It is the hydrophobic portion of the molecule which renders the organic compound soluble in the solvent used in the overbasing process and later in the disperse medium.
In the examples set forth below~ the third compo-nent of the disperse system (i.e., the organic compound which is soluble in the disperse medium and which is charac-
3~ terized by molecules having a hydrophobic portion and apolar substituent) is calcium petrosulfonate, O O
I, 11 Rl-S-O-Ca-O-S-R
O O
~ D~ "~
wherein R~ is the residue of the petrosulfonlc acld In thls case, the hydrophoblc por-tlon of the molecule is the hydrocarbon molety of pe-trosulfonlc, l.e.,--Rl. The polar substituent is the metal salt moiety, O O
-~-O-Ca-O-~-O O
Obviously, the polar portion of these organic com-pounds are the polar substituents such as the acid salt moiety discussed above. When the material to be ovexbased contains polar substituents which will react with the basic metal compound used in overbasing, for example, acid groups such as carboxy, sulfino, hydroxysulfonyl, and phosphorus acid groups or hydroxyl groups, the polar and phosphorus acia groups or hydroxyl groups, the polar substituent of the thlrd component is the polar group formed from the reaction.
Thus, the polar substi-tuent is the corresponding acid metal salt group or hydroxyl group metal derivative, e.g., an alkali or alkaline earth metal sulfonate, carboxylate, sulfinate, alcoholate, or phenate.
On the othex hand, some of the materlals to be overbased con-tained polar substituents which ordinarily do not react with metal bases. These substituents include nitro, amino, ketocarboxyl, carboalkoxy, etc. In the dis-perse systems derived from overbased materials of this type the polar substituents ln the third component are unchanged from their identity ln the material which was originally overbased.
The identity of the third component of the dis-perse system depends upon the identity of the starting materials (i.e., tne material to be overbased and the metal base compound) used in preparing the overbased materials.
Once tne identity of tnese starting materials is known, the identity of the third component in the colloidal disperse system is automatically established Thus, from the iden-tity of the original material, the identity of the hydro-phobic portion of the third component in -the disperse system --L'~-is readily establisnecl as being the resi.due of that rnaterials minus the polar substituen-ts attached thereto. The identlty of the polar subs-tituents on the third component is estab-lished as a mat-ter of chemistry. If the polar groups on the ma-terial tc be overbased unclergo reaction with the metal base, for example, if they are acid functions, hydroxy groups, etc., the polar subs-ti-tuent in the final product will corresponà to the reaction product of the original substituent and the metal base. On the other hand, if the polar substituent in the material to be overbased is one which does not reac-t with metal bases, then the polar sub-stituent of tne third component is the same as the original substituent As previously mentioned, this third component can orient itself around -the metal-containing particles~to form micellar colloidal particles. Accordingly, it can exist in the disperse system as an individual liquid component dis-solved in the disperse medium or i-t can be associa-ted with the metal-containing particles as a component of micellar coll.oidal particles.
Broadly speaking, the non-Newtonian colloidal dis-perse systems useful in preparing the compositions of the present invention are prepared by a two step process wherein a first step single phase homogeneous, Newtonian disperse system of an "overbased," "superbased," or "hyperbased,"
organic compound is homogenized with a "conversion agent", usually an active nydrogen containing compound, to convert tnis disperse system to one exhibiting non-New-tonian flow characteristics ana tnen, in a second step, treating these conver-ted systems with additional metal--containing reactant, and aciaic material to increase the metal ratio and reduce tne base neutralization numbers of the final disperse system. This treatment converts the single phase systems into the non-Newtonian colloidal disperse systems utilized 3~ in conjunction with the film forming compositions of this invention.
Tne terms "overbased," "superbased," and "hyper-based," are terms of art which are generic to well known classes of metal-containing materials which have generall~
been employed as detergents and/or dispersants in lubri-cating oil compositions. These overbased materials have also been referred to as "complexes," "metal complexes,"
5 "high-me-tal containing salts," and the like. Overbased materials are characterized by a metal content in excess of that which would be present according to the stoichiometry of the metal and the particular organic compound reacted with the metal, e.g., a carboxylic or sulfonic acid. Thus, if a monosulfonic acid, o R - ~ - OH
is neutralized with a basic metal compound, e.gO, calcium hydroxide, the "normal" metal salt produced will contain one equivalent of calcium for each equivalent of acid, i.e~, O O
R - S-- O- Ca - O- S - R
O O
However, as is well known in the art, various processes are available which result in an inert organic liquid solution of a product containing more than the stoichiometric amount of me-tal. The solutions of these products are referred to herein as overbased materials. Following these procedures, the sulfonic acid or an alkali or alkaline earth metal salt thereof can be reacted with a metal base and the product will contain an amoun-t of metal in excess of that necessary to neutrali~e the acid, for example, 4.5 times as much metal as present in the normal salt or a metal excess of 3.5 equivalents. The actual stoichiometrlc excess of metal can vary considerably, for example, from about 0.1 equivalent to about 30 or more equivalents depending on the reactions, the process conditions, and the like. These overbased materials, employed as intermediates for preparing the non-Newtonian, aisperse systems usea in the present invention, will contain from about 3.5 to about 30 or more equivalents of metal for each equivalent of material which is overbased.
In the present specification the term "overbased"
s~ ) is used to designa~e materials containiny a stoichiornetric excess of metal and is, therefore, inclusive of those ma-terials which have been referred to in the art as overbased, superbased, hyperbased, etc., as discussed supra.
The terminology "metal ratio" is used in the prior art and herein to desiynate tne ratio of the -to-tal chemical equivalents of the metal in the overbased materlal (e.g., a metal sulfonate or carboxylate) to the chemical equivalents of the metal in the produc-t which would be expected to result in the reaction between the oryanic material to be overbased (e~g., sulfonic or carboxylic acid) and the metal-containing reac-tan-t (e.g., calcium hydroxide, barium oxide, etc.~ according to the known chemical reactivity and stoichio-metry of the two reactants. Thus, in the normal calcium sulfonate discussed above, the metal ratio is one, and in the overbased sulfonate, the metal ratio is 4.5~ Obviously, if there is present in the material to be overbased more than one compound capable of reacting with the me~al, the "metal ratio" of the pxoduct will depend upon whether the number of equivalents of metal in the overbased product is compared to the nu~ber of equivalents expected to be present for a given single component or a combination of all such components.
Generally, these intermediate overbased materials are prepared by treating a reaction mixture comprising (1) the organic material to be overbased, (2) a reaction medium consisting essentially of at least one inert, organic sol-vent for said organic material, (3) a stoichiometric excess of a metal base, and (4) a promoter with an acidic material.
The methods for preparing tne overbased ma~erials as well as an extremely diverse group of overbased materials are well known in the prior art and are disclosed, for example in the following U.S. patents: 2,616,904; 2,616,905; 2,616,906;
2,616,~11; 2,616,~4; 2,616,925; 2,617,049; 2,695,910;
2,723,234; 2,723,235; 2,723,236; 2,760,970; 2,767,164;
~,767,209; 2,777,~74; 2,798,852; 2,839,470; ~,856,359;
~,859,360; 2,~56,361; 2,861,951; 2,883,340; 2,915,517;
2,959,55]; 2,968,G~2; 2,971,0L~; 2,989,~G3; 3,001,981; 3,027,325;
3,070,581; 3,108,960; 3,1~7,232; 3,133,019; 3,146,201; 3,152,991;
3,155,616; 3,170,880; 3,170,881; 3,172,855; 3,19~,823; 3,223,630;
3,232,883; 3,2~2,079; 3,2~2,080; 3,250,710; 3,256,186; 3,27~,135.
These patents disclose processes, ma-terials which can be overbased, suitable me-tal bases, promoters, and acidic ma-terials, as well as a variety of specific overbased products useEul in producing -the disperse sys-tems of this inven-tion.
An important characteristic of -the organic materials which are overbased is their solubility in -the particular reac-tion medium utilized in the overbasing process. As -the reaction used previously has normally comprised petroleum fractions, particularly mineral oils, these organic materials have generally been oil-soluble. However, if ano-ther reaction medium is employed (e.g. aromatic hydrocarbons, aliphatic hydrocarbons, kerosene, etc.) it is not essen-tial that the organic ma-terial be soluble in mineral oil as long as it is soluble in the given reaction medium.
Obviously, many organic materials which are soluble in mineral oils will be soluble in many of the other indicated suitable reaction mediums. It shoulcl be apparen-t that the reaction medium usually becomes -the disperse medium of the colloidal disperse system or at least a componen-t thereof depending on whe-ther or not additional inert organic liquid is added as part of the reaction medium or the disperse medium.
Organic materials which can be overbased are generally oil-soluble organic acids including phosphorus acids, thiophosphorus acids, sulfur acids, carboxylic acids, thiocarboxylic acids, and the like, as well as the corresponding alkali and alkaline ear-th metal salts thereof. Representative examples of each of -these classes of organic acids as well as o-ther organic acids, e.g., nitrogen acids, arsenic acids, etc. are disclosed along wi-th me-thods of preparing overbased products therefrom in the above cited paten-ts. Patent ....
3 '~ 2 ~
2,777,87~1 identifiecl oryanic acids suitable for preparing overbased materials which can be conver-tecl to disperse systems Eor use in the resinuous compositions of the inven-tion. Similarly, 2,616,90~; 2,695,910; 2,767~16~; 2,7~7,209;
3,1'l7,232; 3,27'1,135; etc. disclose a variety of organlc acids suitable for preparing overbased ma-terials as well as representative examples of overbased products prepared from such acids. Overbased acids wherein the acid is a phosphorus acid, a thiophosphorus acid, phosphorus acid-sulfur acid combination, and sulfur acid prepared from polyolefins are disclosed in 2,883,340; 2,915,517; 3,001,981; 3jlO8,960; and 3,232,883. Overbased phenates are disclosed in 2,959,551 while overbased ketones are found in 2,798,852. A variety of overbased materials derived from oil-soluble metal-free, nontautomeric neutral and basic organic polar compounds such as esters, amines, amides, alcohols, ethers, sulfides, sulfoxides, and the like are disclosed in 2,968,6~2; 2,971,014;
and 2,989,463. Another class of materials which can be overbased are the oil-soluble, nitro-substi-tuted aliphatic hydrocarbons, particularly nitro-substituted polyolefins such as polyethylene, polypropylene, polyisobutylene, etc.
~Iaterials of this type are illus-trated in 2,959,551 Like-wise, the oil-soluble reaction product of alkylene poly-amines such as propylene diamine or N-alkylated propylene diamine witn formaldehyde or formaldehyde producing compound (e g., paraformaldehyde) can be overbased. Other compounds suitable for overbasing are disclosed in the above-cited patents or are toherwise well-known in the art.
The organic li~uids used as the disperse medium in the colloidal disperse system can be used as solvents for the overbasing process.
The metal compounds used in preparing the over-based materials are normally -the basic salts of metal in Group l-A and Group ll-A of the Periodic Table although other metals such as lead, zinc, manganese, etc. can be used in the preparation of overbased materials. The anionic portion of the salt can be hydroxyl, oxide, carbonate, hydrogen carbonate, nitrate, sulite, hydroyen sulfite, halide, arnide, sulfate etc. as disclosed in the above-cited patents. For purposes of this invention the preferred overbased materials are prepared from the alkaline earth 5 metal oxides, nydroxides, and alcoholates such as the alka-line earth metal lower alkoxidesO The mos-t preferred non-Newtonian colloidal disperse systems useful in preparing the coating composltions of -this invention are -those derived from overbased materials containing calcium and/or barium as the metal The promo-ters, that is, the materials which permit the incorporation of -the excess metal into the overbased material, are also quite diverse and well known in the art as evidenced by the cited pa-tents. A particularly compre-hensive discussion of suitable promoters is found in2,777,874; 2,695,910; and 2,616,904. These include -the alcoholic and phenolic promoters which are preferred. The alcoholic promoters include the alkanols of one to about twelve carbon atoms such as methanol, ethanol, amyl alcohol, octanol, isopropanol, and mixtures of -these and the like.
Phenolic promoters include a variety of hydroxy-substituted benzenes and naph-thalenes. A particularly useful class of phenols are the alkylated phenols of the type listed in 2,777,874, e.g , heptylphenols, octylphenols, and nonyl-phenols. Mixtures of various promoters are sometimes used.
Suitable acidic materials are also disclosed inthe above cited patents, for example, 2,616,90~. Included within the known group of useful acidic materials are liquid acids such as formic acid, acetic acid, nitric acid, sul-furic acid, hydrochloric acid, hydrobromic acid, carbamicacid, substi-tuted carbamic acids, etc. Acetic acid is a very useful acidic material although inorganic acidic materials such as HCl, SO2, SO3, CO2, H2S, N203, etc. are ordinarily employed as the acidic materials The most preferred acidic materials are carbon dioxide and acetic acid.
In preparing -the intermediate overbased materials, the material to be overbased, an inert, non-polar, organic ~ 3 -2~-solvent tnerefor, the me-tal base, the promoter, and -the acidic ma-terials are brought together and a chemical reac-tion ensues. The exact nature of the resulting overbased product is not known. However, it can be adequately de-scribed for purposes of the present specification as asingle phase homogeneous mixture of the solvent and (1) ei-ther a metal complex formed from the metal base, the acidic material, and the material being overbased and/or (2) an amorphous metal salt formed from the reaction of the acidic materials with the metal base and the ma-terial which is said to be overbased. Thus, if mineral oil is used as the reaction medium, petrosulfonic acid as the material which is overbased, Ca(OH) 2 as the metal base, and carbon dioxide as the acidic material, the resulting overbased material can be described for purposes of this invention as an oil solution of either a metal containing complex of the acidic material, the metal base, and the petrosulfonic acid or as an oil solution of amorphous calcium carbonate and calcium petrosulfonate. Since the overbased materials are well-known and as they are used merely as intermediates in -the preparation of the disperse systems employed herein, the exact nature of the materials is not critical to the present invention.
The temperature at which the acidic material is contacted with the remainder of the reaction mass depends to a large measure upon the promoting agent used. With a phenolic promoter, the temperature usually ranges from about 80C. to 300C., and preferably from about 100C. to about 200C. When an alcohol or mercaptan is used as the pro-moting agent, the temperature usually will not exceed -the reflux temperature of the reaction mixture and preferably will not exceed about 100C.
In view of the foregoing, it should be apparent that the overbased materials may retain all or a portion of the promoter. That is, if the promoter is not volatile (e.g., an alkyl phenol) or otherwise readily removable from the overbased material, at least some promoter remains in the overbasecl product. Accordingly, the disperse sys-tems made from such products may also contain the promoter. The presence or absence of -the promoter in the overbased ma-terials used to prepare the disperse system and likewise, the presence or absence of the promoter iIl -the colloidal ~isperse systems themselves does not represen-t a critical aspect of the invention. Obviously, it is within the sklll of the art to select a volatile promoter such as a lower alkanol, e.g., methanol, ethanol, etc., so that the promoter can be readlly removed prior to forming the disperse system or thereafter.
A preferred class of overbased materials used as starting materials in the preparation of the disperse sys-tems of the present invention are the alkaline earth metal overbased oil-soluble organic acids, preferably those con-taining at least twelve aliphatic carbons although the acids may contain as few as eight aliphatic carbon atoms if the acid molecule includes an aromatic ring such as phenyl, naphthyl, etc. Representative organic acids suitable for preparing these overbased materials are discussed and iden-tified in detail in the above-cited patents. Particularly 2,616,904 and 2,777,874 disclose a variety of very suitable organic acids. For reasons of economy and performance, ~verbased oil-soluble carboxylic and sulfonic acids are particularly suitable. Illustrative of the carboxylic acids are palmitic adid, stearic acid, myristic acid, oleic acid, linoleic acid, behenic acid, hexatriacontanoic acid, tetra-propylene-substituted glutaric acid, polyisobutene (M.W.--5000)-substituted succinic acid, polypropylene, (M.W.--10,000)-substituted succinic acid, octadecyl-substituted adipic acid, chlorostearic acid, 9-methylstearic acid, dichlorostearic acid, stearylbenzoic acid, eicosane-sub-stituted naphthoic acid, dilauryl-decahydro naphthalene carboxylic acid, didodecyl-tetralin carboxylic acid, di-octylcyclohexane carboxylic acid, mixtures of these acids,their alkali and alkaline earth metal salts, and/or their anhydrides. Of the oil-soluble sulfonic acids, the mono-, di-, and tri-al.iphatic hydrocarbon substituted aryl sulfon.ic acids and the pe-troleum sulfonic acids (petrosulfonic acids) are particularly preferred. Illustrative examples of suitable sulfonic acids include mahogany sulfonic acids, petrolatum sulfonic acids, monoeicosa.ne-substituted naph-thalene sulfonic acids, dodecylbenzene sulfonic acids, di-dodecylbenzene sulfonic acids, dinonylbenzene sulfonic acids, cetylchlorobenzene sulfonic acids, dilauryl beta-naphthalene sulfoni.c acids, the sulfonic acld derived by the treatment of polyisobutene having a molecular weight of 1500 with chlorosulfonic acid, ni-tronaphthalenesulfonic acid, paraffin wax, sulfonic acid, cetylcyclopentane sulfonic acid, lauryl-cyclohexanesulfonic acids, polyethylene (~.W.--750) sulfonic acids, etc. Obviously, it is necessary that the size and number of aliphatic groups on the aryl sulfonic aclds be sufficient to render the acids soluble. ~ormally the aliphatic groups will be alkyl and/or alkenyl groups such that the total number of aliphatic carbons is at least twelve.
Within this preferred group of overbased car-boxylic and sulfonic acids, the barium and calcium overbased mono-, di-, and tri-alkylated benzene and naphthalene (in-cluding hydrogenated forms thereof), petrosulfonic acids, and higher fatty acids are especially preferred. Illustra-tive of the synthetically produced alkylated benzene and naphthalene sulfonic acids are those containing alkyl sub-sti-tuents having from 8 to about 30 carbon atoms therein.
Such acids include di-isododecyl-benzene sul.fonic acid, wax-substituted phenol sulfonic acids, polybutene-substituted sulfonic acid, cetyl-chlorobenzene sulfonic acid, di-cetyl naphthalene sulfonic acid, stearylnaphtlsalene sulfonic acid, ~i-lauryldiphenylether sulfonic acid, di-cetylnaphthanlene sulfonic acid, di-lauryldiphenylehter sulfonic acid, di-isononylbenzene sulfonic acid, di-isooctadecylbenzenesul-fonic acid, stearylnaphthalene sulfonic acid, and the like.The petroleum sulfonic acids are a well known art recognized class of materials which have been used as starting ma-terials ils preparing overbased products since -the inception of overbasing techniques as illustrated by -the above paten-ts.
Petroleum sul:Eonic acids are obtained by -t~eating refined or semi-refi.ned petroleurn o.ils with concentrated or fuming sulfuric acid. These acids remain in the oil aE-ter the settling out of sludges. These petroleum sulfonic acids, depending on the nature of the petroleum oils from which they are prepaxed, are oil-soluble alkane sulfonic aclds, alkyl-substituted cycl.oaliphatic sulfonic acids includlng cycloalkyl sulfonic acids and cycloalkene sulfonic acids, and alkyl, alkaryl, or aralkyl substituted hydrocar~on aromatic sulfonic acids including single and condensed aromatic nuclei as well as partially hydrogenated forms thereof. Examples of such petrosulfonic acids include mahogany sulfonic acld, whit oil sulfonic acid, petrolatum sulfonic acid, petroleum naphthene sulfonic acid, etc. This especially preferred group of aliphatic fatty acids includes the saturated and unsaturated higher fatty acids con-taining from 12 to about 30 carbon atoms. Illustrative of these acids are lauric acid, palmitic acid, aleic acid, linoletic acid, li.nolenic acid, oleo-stearic acid, stearic acid, myristic acid, and undecalinic acid, alpha-chlorostearic acid, and alpha-nitrolauric acid.
As shown by the representative examples of -the preferxed classes of sulfonic and carboxylic acids, the acids may contain non-hydrocarbon substituents such as halo, nitro, alkoxy, hydroxyl, and the like.
It is desirable that the intermediate overbased materials used to prepare the non-Newtonian colloidal dis-perse systems used in this invention have a metal ratio of at least about 3.5 and preferably about at least 5.5~ An especially suitable group of the preferred sulfonic acid overbased materials has a metal ratio of at least about 7Ø
Normally the maximum metal ratio of the intermediate over-based materials will not exceed about 30 and, i.n mos-t cases, not more than about 20.
The overbased materials used in preparing the non-Newtonian colloidal disperse systems utilized in the coating -2~-CompOSltiOnS of the invention contain frorn about 10~ to ahout 70"~ by weignt of ~netal-containiny components. The exac-t nature of these metal-containing components ls not known. It is theorized that the metal base, the acidic 5 material, and -the organic material being overbased form a metal complex, this complex being the metal-containing component of the overbased material. On the o-ther hand, it has also been postulated that the metal base and the acidic material form amorphous metal compounds which are dissolved 10 in the inert organic reaction medium and the material which is said to be overbased. The material which is overbased may itself be a metal-containing compound, e.g., a car-boxylic or sulfonic acid metal salt. In such a case, the metal-containing components of the overbased material would 15 be both the amorphous compounds and -the acid salt. The exact nature of these overbased materials is obviously not critical in the present invention since these materials are used only as intermediates. The remainder of the overbased materials consist essentially of the inert organic reaction 20 medium and any promoter which is not removed from the overbased product. For purposes of this application, the organic materials which are subjected to overbasing are con-sidered a part of the metal-containing components. Nor-mally, the liquid reaction medium constitutes at least about 25 30% by weight of the reaction mixture utilized to prepare the overbased materials.
As mentioned above, the non-Newtonian colloidal disperse systems used in the coating compositions of the present invention are prepared by a two step process where in the first step a "conversion agent" and the above de-scribed overbased starting material are homogenized to convert -the overbased starting material to one having non-Newtonian flow characteristics. Homogenization is achieved by vigorous agitation of the two components, preferably at tne reflux temperature or a temperature slightly below the reflux temperature. Tne reflux temperature normally will ~epend upon the boiling point of the conversion agen~.
However, homogeni~ation may be achieved within the range of about 25C. to about 200C. or slightly higher. Usually, there is no real advantage ln exceeding 150C.
The concentra-tion of the conversion agent neces-sary to achieve conversion of the overbased material is usually within the range of from about 1~ to about 80~o based upon the weight of the overbased material excluding the weight of the inert, organic solvent and any promoter present therein Preferably a-t least about 10% and usuall~ less than about 60~ by weight of the conversion agent is eMployed.
Concentrations beyond 60% appear to afford no addi-tional advantages.
The terminology "conversion agent" as used in the specification and claims is intended to describe a class of very diverse materials which possess the property of being able to convert the Newtonian homogeneous, single-phase, overbased materials into non-Newtonian colloidal disperse systems. Tne mechanism by which conversion is accomplished is not completely understood~ However, with the exception of carbon dioxide, these conversion agents all possess active hydrogens. The conversion agents include lower aliphatic carboxylic acids, water, aliphatic alcohols, cycloaliphatic alcohols, arylaliphatic alcohols, phenols, ketones, aldehydes, amines, boron acids, phosphorus acids, and carbon dioxide. Mixtures of two or more of these con-version agents are also useful. Particularly useful con-version agents are also useful. Particularly useful con-version agents are discussed below.
The lower aliphatic carboxylic acids are those containing less than about eight carbon atoms in the mole-cule. Examples of this class of acids are formic acid,acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, isobutyric acid, caprylic acid, heptanoic acid, cnloroacetic acid, dichloracetic acid, trichloroacetic acid, etc. Formic acid, acetic acid, and proprionic acid, are preferred with acetic acid being especially suitable.
It is to be understood that the anhydrides of these acids are also useful and, for the purposes of the specificatlon and claims of this inventlon, the term acid is intended to include both the acid per se and the anhydride oE the acid.
Useful alcohols include aliphatic, cycloaliphatic, and arylaliphatic mono- or polyhydroxy alcohols. Alcohols having less than abou-t twelve carbons are especlally useful while the lower alkanols, i.e., alkanols having less than about eight carbon atoms are preferred for reasons of eco-norny and effectiveness in the process. Illustratlve are the alkanols such as methanol, ethanol, isopropanol, n-propanol, isobutanol, ter-tiary butanol, isooctanol, dodecanol, n-pentanol, etc; cycloalkyl alcohols exemplified by cyclo-pentathol, cyclohexanol, 4-methylcyclohexanol, 2-cyclo-hexylethanol, cyclopentylmethanol, etc; phenyl aliphatic alkanols such as benzyl alcohol, 2-phenylethanol, and cinnamyl alcohol; alkylene glycols of up to about six carbon atoms and mono-lower alkyl ethers thereof such as mono-methylether of ethylene glycol, die~hylene glycol, ethylene glycol, trimethylene glycol, hexamethylene glycol, tri-ethylene glycol, l,~l-butanediol, 1,4-cyclohexanediol, gly-cerol, and pen-taerythritolO
The use of a mixture of water and one or more of the alcohols is especially effective for converting the overbased material to colloidal disperse systems. Such combinations often reduce the length of time required for the process. Any water-alcohol combination is effective but a very effective combination is a mixture of one or more alcohols and water in a weight ratio of alcohol to water of from about 0.05:1 to about 24:1. Preferably, at least one lower alkanol is present in the alcohol component of these water-alkanol mixtures. Water-alkanol mixtures wherein the alcoholic portion is one or more lower alkanols are es-pecially suitable. Alchol:water conversions are illustrated in U.S. Patent No. 3,372,115, filed ~larch 21, 1966.
Phenols suitable for use as conversions agents in-clude phenol, naphthol, ortho-cresol, para-cresol, catechol, mixtures of cresol~ para-tert-butylphenol, and other lower alkyl substitu-te~ phenols, meta-polylsobutene (l`~ W.---350)-substituted phenol, and the like.
Other useful conversion agents include lower ali-phatic aldehydes and ke-tones, particularly lower alkyl alde-hydes and lower alkyl ke-tones such as acetaldehydes, propion-aldehydes, butyraldehydes, acetone, methylethyl ketone, diethyl ketone. Various aliphatic, cycloaliphatic, aro-matic, and heterocyclid amines are also useful providing they contain at least one amino group having at least one active hydrogen attached thereto. Illustrative of these amines are the mono- and di-alkylamines, particularly mono-and di-lower alkylamines, such as methylamine, ethylamine, propylamine, dodecylamine, methyl etnylamine, diethylamine;
the cycLoalkylamines such as cyclohexylamine, cyclopentyl-amine, and the lower alkyl substituted cycloalkylamines suchas 3-methylcyclohexylamine; l,4-cyclohexylenediamine; aryl-amines such as aniline, mono-, di-, and tri~, lower alkyl-substituted phenyl amines, naphthylamines, l,4-phenylene diamines; lower alkanol amines such as ethanolamine and diethanolmaine; alkylenediamines such as ethylene diamine, triethylene tetramine, propylene diamines, octamethylene diamines; and heterocyclic amines such as piperazine, 4-aminoethylpiperazine, 2-octadecyl-imidazoline, and oxazol-idine. Boron acids are also useful conversion agents and include boronic acids (e.g, alkyl-B ~OH) 2 or aryl-B(OE~2, boric acid (i.e., H3BO3), tetraboric acid, metaboric acid, and esters of such boron acids.
The phosphrous acids are useful conversion agents and include the various alkyl and aryl phophinic acids, phosphinus acids, phosphonic acids, and phosphonous acids.
Phosphorus acids obtained by the reaction of lower alkanols or unsaturated hydrocarbons such as polyisobutenes with phosphorus oxides and phophorus sulfides are particularly useful, e.g., P30s and P2Ss.
3~ Carbon dioxide can be used as the conversion agent. However, it is preferable to use this conversion agen-t in combination with one or more of the foregoing conversion agents. For example, the combination of water and carbon dioxide is particularly effective as a conversion agent for transforming the overbased materials into a col-loidal dlsperse system.
As previously mentioned, the overbased starting materials are single phase homogeneous systems. ~owever, aepending on the reaction conditions and the cholce of reac~
tants in preparing the overbased materials, there sometimes are presen-t in the product insoluble contaminants. These contaminants are normally unreacted basic materials such as calcium oxide, barium oxide, calcium hydroxide, barium hydroxide, or other metal base materials used as reactant in preparing the overbased starting material. It has been found that a more uniform colloidal disperse system results if such contaminants are removed prior to homogenizing the overbased materials with the conversion agents. Accord-ingly, i-t is preferred that any insol~lble contaminants in the lntermediate overbased materials be removed prior to converting the material into the non-Newtonian colloidal aisperse system. Tne removal of such contaminants is easily accomplished by conventional techniques such as filtration, centrifugation or by treatment with additional acidic material. It should be understood however, that while the removal of these contaminants from the intermediary over-based materials are desirable, their removal from the final non-Newtonian colloidal disperse systems used in the coating composition of the invention is an absolute essential aspect of the invention if useful coating compositions constituting this invention are to be obtained.
The conversion agents or a proportion thereof may be retained in the colloidal disperse system. The con-version agents are however, not essential components of these disperse systems and it is usually desirable that as little of the conversion agents as possible be retained in the disperse systems. Since these conversion agents do not react with the overbased materials in such a manner as to be 9,~ 3 permanently bound thereto through some type of chemical bonding, i-t is normally a simple ma-tter -to remove a major proportlon of the conversion agents and yenerally, sub-stantially all of tne conversion agents. Some of the con-version agents have physical properties which make themreadily removable from the disperse systems. Thus, most of the free carbon dioxide gradually escapes from the disperse system during the homogenization process or upon standing thereafter. Since the liquid conversion agents are generally 10 more volatile than the remaining components of the disperse system, they are readily removable by conventional devola--tilization techniques, e.g., heating, heating at reduced pressures, and the like. For this reason, it may be de-sirable to select conversion agents which will have boiling 1~ points whlch are lower than the remaining components of the ~isperse system. This is another reason why the lower alkanols, mixtures thereof, and lower alkanol-water mixtures are preferred conversion agents.
It is not essential that all of the conversion 20 agent be removed from the disperse systems. However, -from the standpoint of achieving uniform results, it is generally desirable to remove the conversion gents, particularly where they are volatile.
The second step in preparing the non-Newtonian 25 colloidal disperse systems used in the coating compositions of this invention is to treat the homogenized, non-Newtonian colloidal disperse system prepared in the first step, described herein above, with further metal-containing reac tant and acidic material. The metal-containing reactant and 3Q acidic material employed in this second step are the same reactants and materials described above for preparing the overbased starting materials. Treatment of the homogenized colloidal disperse system from the first step in the prepa-ration of tne disperse systems useful in this invention generally will be carried out at temperatures ranging from 35 about 50C. to about 90C. and preferably from about 60C.
to about 80C.
"9'~ 3 - 3 o -The amount of addltional metal-containing reactant will be that amount sufficient to increase the metal ratio of the homogenized colloidal disperse sys-tems from ~he first step in the process for preparing the disperse s~lstems 5 useful in the invention from at least 7.0 to above about 10.0 and preferably above about 20Ø Given the metal ratlo of the homogenized precursor disperse system, one of skill in the art can readily determine the amount of metal-con-taining reactant necessary to increase the metal ratio of 10 ~he homogenized precursor to that in the final disperse system.
The amount of acidlc material employed in the second step in the preparation of the non-Newtonian col-loldal disperse system useful in this invention will be that 15 amount sufficient to reduce the neutralization base number of the disperse systems to a level wherein the coating composition of the invention will exhibit a good shelf life stability. Generally that amount will be that sufficient to reduce the neutralization base number of the final disperse 20 system to about 7.0 or less. A more preferred disperse system will be that having a neutralization base number of about 5.0 or less and most preferred is a disperse system having a neutralization base number of 2.0 or less.
In the water dispersed coating compositions of 25 this invention, the amount of the non-Newtonian colloidal dlsperse system, component (B), described immediately above will range from about 1.0 to about 20.0 percent by weight based on the total weight of the coating composition. A
more preferred range for the disperse system is from about 10.0 to about 20.0 percent by weight based on the total weight of the coating composi~ion.
In addition to the two major components comprising tne water dispersed coating compositions of this inventlon, it is preferable in most instances to also include a plas-ticizing material, component (C), for the organic polymersemployed in these composi-tions. The use of a plasticizer ~ r~
assures that the coatlng composltions wlll exhlbi-t the reslllence, flexlbill-ty and :impact strength required of them over a broad range of servlce temperatures. Plastlclzers wnicn can be utilized as component (C) in the coating compo-sitions of the present invention include adipates, azelates,sebacates, phthalates, phosphates and the llke. Speclflc examples of such plasticizers are the dlalkyl adipates such as dimethyl adipate, dlbutyl adipate, dloctyl adipate, ~iisooc-tyl adipate, di-(2-ethylhexyl) adlpate, octyl decyl adlpate and -the llke; dialkyl azelates such as dicyclohexyl azelate, di-n-hexyl azelate, di (2--ethylhexyl) azelate, di-(2-ethylbutyl) azela-~e, dilsoctylazelate and the like;
dlalkyl sebaca-tes such as dibutyl sebacate, dioctyl sebacate, diisoctyl sebacate, dibenzyl sebacate and the like; dialkyl phthalates such as diethyl phthalate, dibutyl phthalate, dioctylphthalate, butyl octyl phthalate, di(2-ethylhexyl-)phthalate, dicyclohexylphthalate, butyl benzyl phthalate;
triaryl phosphates such as tricresyl phosphate, triphenyl~
phosphate, cresyldiphenol phosphate and the like; trialkyl phosphates such as trioctyl phosphate, tri~utylphosphates and the like; alkyl aryl phosphates such as octyl diphenyl phospnate and tne like. Other plasticizers include citrates such as acetyl tri-n butyl citrate, acetyl triethyl citrate, monoisopropyl citratej triethyl citrate, mono-, di- and tri-stearyl citrate; trioctin; p-tert-butyl phe~y] salicylate;
butyl stearate; benzoic acid esters derived from diethylene glycol, dipropylene glycol, triethylene glycol, and poly-ethylene glycols; proprietary polymeric polyesters such as those sold by Rohm ~ Haas Company under the trademark Para-plex, sulfonamides such as toluene sulfonamide and etc. Acomplete listing of illustrative suitable plasticizers can be found in l~lodern Plastics Encyclopedia, Vol. 56, No. 10A
(1979-1980), ~cGraw-H111 Publications, pages 685-694.
The amount of plasticizer employed, if one is em-ployed, will depend on the nature of the polymeric resin and the plasticizer. Generally, however, the amount of plasti--3~-cizer employed will range from 0 to about 15.0 percent by weigh-t and preferably from about 2.0 to about 7.0 percent by weight based on the to-tal weight of the coating composition~
In addition to the two major components of the aqueous emulsion coating compositions of this invention and tne optional plasticizer component (C) i-t is also preferable to include in the compositions an effective amount of a coalescing agent, component (D). As is well known, coa-lesclng agents are generally high boiling solvents incor-porated in coating compositions to aid in film formation andto improve leveling, adhesion and enamel holdout of the coating composition. Typically, the amount of said coa-lescing agent will range from 0 to about 20.0 percent by weight based on the total weight of the coating composition.
1~ Preferably the amoun-t will range from about 3.0 to about 10.0 percent by weight. Representative examples of coa-lescing agents which can be employed in the compositions of this invention include Carbitol (diethylene glycol), Carbitol acetate, butyl Cellosolve acetate, butyl Carbi-tolTM acetate, butoxy ethanol, alkylene glycols, ethyleneglycol, propylene glycol, butylene glycol, hexylene glycol, polyethylene glycol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol mono-ethyl ether, etnylene glycol monobutyl ether, dialkylane glycol monoalkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and the like. Esters of these alkylene glycols, alkylene glycol monoalkyl ethers, and dialkylene glycol mono-alkyl ethers also can be employed as coalescing agent (D) and include such representa~ive materials as ethylene glycol diacetate, ethylene glycol monoace~ate, propylene glycol monosteara-te, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate and the like. Other known coalescing agents useful in the 3~ compositions of this invention include diacetone alcohol, aliphatic benzenes such as xylene and TexanolTM (2,2,~-trimethyl-1,3-pentanediol monoisobutyrate).
rhe compositlons of -the present lnventlon can also include one or more supplemental additlves or adjuvants.
These supplemental addltlves or adjuvants can include flash rust lnhibi-tors, pH modifiers, fillers and ex-tending agen-ts and the like.
Flash rust lnhlbltors are agents which preven-t rustlng of metal surfaces lmmediately UpOII coating wlth the water dlspersed coatlng composltions. While the films formed by water removal from the water dispersed composi-tions of the present lnvention serve to prevent corrosion ofsuch surfaces once they are formed, flash rust inhlbltors are used to prevent rust and corrosion before the films have had a chance to form. Typlcal flash rust inhibitors include ammonium benzoate and phosphoric acid esters neutralized with tetraethylene pentamine. Flash rust inhibitors which are preferred for use in the water dispersed coating com-positions of this invention include N-(hydroxyl-substituted hydrocarbyl) amines such as primary, secondary and tertiary alkanolamines corresponding, respectively, to the following formulae:
H2~l-RI-OH (I) N-RI-OH (II) R
and R
N_Rl_OH (III) wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or a hydroxyl-substi-tuted hydro-carbyl group of two to about eight carbon atoms and Rl is a aivalent hydrocarbyl group of about 2 to about eighteen carbon atoms. The group -Rl-OH in such formulae represents a hydroxyl-substituted hydrocarbyl group. The divalent hydrocarbyl group, Rl, can be an acyclic, alicyclic or aromatic group. Typically it is an acyclic straight or 3 t .~ 3 -3~-branched cnain alkylene group such as ethylene; 1,2-propy-lene; 1,2-butylene; 1,2-octadecylene and etc. Where two R
groups are presen-t in the same molecule, they can be joined by a dlrect carbon~to-carbon bond or through a he-teroatom such as oxygen, nitrogen or sulfur to form a five, six, seven or eight membered ring structure. Examples of such heterocycllc amines include N-(hydroxyl substituted lower alkyl)-morpholines, -thiomorpholines, -piperdines, -o~azol-idines, -thia7olidines and the like. Generally, however, each R group is a lower alkyl group of up to seven carbon atOMS. Particularly useful N-thydroxyl-substituted hydrocar-byl) amines for providing flash rust inhibitors include mono-, di- and triethanol amine, dimethylethanol amine, diethylethanol amine, N,N-dl-(3-hydroxyl propyl) amine, N-(3-hydroxyl butyl) amine, N-(4-hydroxyl butyl) amine, N,N-di-(2-hydroxyl propyl) amine, N-(2-hydroxyl ethyl) morpho-line and its thio analog, N-(2-hydroxyl ethyl) cyclohexyl amine and the like. These N-(hydroxyl substituted hydro-carbyl) amines can be used either alone or in mixture.
Preferred amines are diethyl ethanol amine, ethanol amine and dimethyl e-thanol amine.
The above described amines are also useful as pH
modifiers for the water dispersed coating compositions of this invention and therefore serve a dual purpose in said compositions. The desired p~ range of the water dispersed compositions of this invention is from about 7 to about 10 and the addition of from about 1.0 to about 3.0 percent by weight, based on the total weight of the coa-ting compositions, will suffice to maintain the pH of the coating compositions.
It has also been found that this amount will also provide -the desired level of flash rust inhibitive protection for -the metal being coated while the water in the coating is being removed.
Various fillers or extender pigments can also be added to the water dispersed coating compositions described and claimed herein. These include clays, talc, wallasto-nite, barytes, calcium carbonate, silica, mica, carbon b:Lack, lamp black and similar fillers and pigmen-ts. These fillers and pigments can comprise from 0 to about ~0.0 percen-t by weight and preferably between 1.0 and about 15.0 percent by weight based on the total weight of the compo-sition.
The inventive water dispersed coating compositions are, in general, prepared by the intimate blending of the various components under high shear conditions such as a Cowles disperser. Typically, the film Eorming organic polymer in aqueous solution or late~ form, water and plasti-cizer, flash rust inhibitor and pH modifier, if any, are first blended together under low shear conditions. Once complete blending has been accomplished, the non-Newtonian colloidal disperse system, and filler or pigment are added under high speed, high shear conditions and the blending continued until an intimate and water dispersed is achieved.
Additional water can be added at this point if necessary to adjust the viscosity of the composition to that required by the particular method of application to be used in applying the coating composition to the metal surface to be coated.
The water dispersed coating compositions of the invention are useful in forming rust inhibiting coatings or films for metal surfaces such as surfaces of ferrous metals, galvanized metal, aluminum, magnesium, etc. They are especially useful for internally rustproofing and under-coating automotive bodies and the like. They may be em-ployed in these applications either alone or in combination with other known rust-inhibiting materials.
When used for rust inhibiting purposes, the water dispersed coating compositions of the present invention may be applied to the metal surface by any of a number of known methods such as brushing, spraying, dip coating, Elow coating, roller coating and the like. The viscosity of the water dispersed coating composition may be adjusted for the particular method of application employed by adjusting the amount of water present in the water dispersed coating composition if a reduced viscosity is required or by the 3~3 addition of fillers such as talc, silicon, calcium carbona-te and the like if an increased viscosity is required. Final]y, mechanical shearing -techniques can also be used to vary the viscosity of the water dispersed coating compositions since they are thixotropic in nature. This shearing can be accom-plished by using agitators or by forcin~ the compositions through pumps (e.g. gear pumps) or other devices such as nozzlesO
The film thickness produced on the metal substrate is not critical although coatings or films of from 0.5 to about 6.0 mils and preferably from 1.0 to about 4.0 mils are generally sufficient to provide adequate rust and corrosion protection. Thicker films can be used if desired, par-ticularly if the metal article is to be subjected to severe corrosion enhancing conditions, or to be stored for prolonged periods of time.
The water dispersed coating compositons of the present invention are generally applied to the surface to be protected by any of the means described above and then air dried. Generally, -this drying of the applied coating will take place at temperatures ranging from ambient temperature to temperatures of about 150C. or higher. The preclse temperature employed and time required to complete drying will va~y depending on the thickness of the coating and the Tg of the polymeric resin employed in the coating composi-tion. Those skilled in the art can readily determine the time and temperature required to dry the coating completely.
The following non-limiting examples illustrate the practice of this invention and include the presently known best mode of practicing the invention. All -temperatures are in degrees Celcius and all percentages and parts are by weight unless it is specifically noted to be to the contrary.
xam~le_~
~ calcium mahogany sulfonate is prepared by double decomposi-tion of a 60s oil solution of 750 parts of sodium mahogany sulfonate with -the solution of 67 parts of calcium chloride and 63 par-ts of water. The reaction mass is heated for four hours at 90 to 100C. to affect the conversion of the sodium mahogany sulfonate to calcium mahogany sulfona-te.
~'nen 54 parts of 91% calcium hydroxide solution is added and the material is heated to 150C. over a period of five hours. When the material has cooled to 40C., 98 parts of methanol is added and 152 parts of carbon dioxide is in-troduced over a period of 20 hours at 42-43C. Water and alcohol are then xemoved by heating the mass to 150C. The residue in the reaction vessel is diluted with 100 parts of mineral oil. The filtered oil solution and the desired carbonated calcium sulfonate overbased material shows the following analysis: sulfate ash content, 16.46; a neu-trali~ation number, as measured against phenophthalein of 0.6 (acidic); and a met~l ratio of 2.50.
Exam~le 2 A mixture comprising 1,595 parts of the overbased material of Example 1 (1.54 equivalents based on sulfonic acid anion), 167 parts of the calcium phenate prepared as indicated below (0.19 equivalent), 616 parts of mineral oil, 25 157 parts of 91s calcium hydroxide (3.86 equivalents), 288 parts of methanol, 88 parts of isobutanol and 56 parts of mixed isomeric primary amyl alcohols (containing about 65%
nor~.al amyl, 3s isoamyl and 32s 2-methyl-1-butyl alcohols) is stirred vigorously at 40C. and 25 parts of carbon di-oxide is introduced over a period of two hours at 40-50C.
Thereafter, three additional portions of calcium hydroxide, each amoun-ting to 157 parts each are added and each such addition is followed by the introduction of carbon dioxide as previously illustrated. After the fourth calcium hy-droxide addition and the carbonation step is completed, thereaction mass is carbonated for an additional hour at 43-47C. to reduce the neutralization number of the mass to 4.0 (basic). The substantially neutral, carbonated reaction mixture is then heated -to 150C. under a nitrogen atmosphere to remove alcohol and any by-produc-t wa-ter. The residue in the reactlon vessel is then filtered. The filtrate, an oil solution of the desired substantially neutral, carbona-ted calcium sulfonate overbase material of high metal ratio shows the following analysis: sulfate ash content 41.11%;
neutralization number 0.9 (basic); and a metal ratio of 12.55.
The calcium phenate used above is prepared by adding 2,550 parts of mineral oil, 960 parts (5 mols) of heptylphenol, and 50 parts of water into a reaction vessel and stirring at 25C. The mixture is heated to 40C. and 7 parts of calcium hydroxide and 231 parts (7 mols) of 91%
commercial paraformaldehyde is added over a period of one hour. The contents are heated to 80C. and 200 additional parts of calcium hydroxide (making a total of 207 parts or 5 mols) is added over a period of one hour at 80-90C. The contents are heated to 150C. and maintained at that tem-perature for twelve hours while nitrogen is blown through the mixture to assist in the removal of water. If foaming is encountered, a few drops of polymerized dimethylsilicone foam inhibitor may be added to control the foaming. The reaction mass is then filtered. The Eiltrate, a 33 6% oil solution of the desired calcium phenate of heptaphenol-formaldehyde condensation product is found to contain 7.56%sulfate ash.
Example 3 A mixture of 1,000 parts of the product of Example 2, 303 parts of mineral oil, 80 parts of methanol, 40 parts ~ of mixed primary amyl alcohols (containing about 65% by weight of normal amyl alcohol, 3% by weight of isoamyl alcohol, and 32% by weight of 2-methyl l-butyl alcohol) and 80 parts of water are introduced into a reaction vessel and heated to 70C. and maintained at that temperature for 4.2 hours. The overbased material is converted to a gelatinous mass. Stirring and heating of this gelatinous mass at 150C. is continued for a period of about two hours to remove substantially all the alcchols and water. The residue i5 a dark green gel.
-xample 4 ~ solution of 1,303 par-ts of t:he gell like col-loidal disperse sys-tem of Example 3 and 563 parts oE mineral oil are dissolved in 1,303 parts of toluene by continuous agitation of these two components for about three hours.
Added to this mixture is ~0 parts of water and 40 parts of methanol fol:Lowed by the slow addition of 471 parts of 91%
calcium hydroxide with continuous stirring. An exothermic reaction ta~es place raising the temperature to 32C. The entire reaction mass is then heated to about 60C. over a 0.25 hour period. Two hundred-eighty parts of carbon di-oxide i5 then charged over a five hour period while main-taining the temperature at 60-70C. At the conclusion of the carbonation, the mass is heated to about 150C. over a 0.75 hour period to remove water, methanol, and toluene.
The resulting product, a clear, light brown colloidal dis-perse system in the form of a gel has the following analy-sis: sulfate ash content, 46.8~; a neutralization number, as measured against phenolphthalein of less than 1.0 (basic);
and a me-tal ratio of 36.0 In the above-described pro-cedure, additional me-tal containing particles are incor-porated into the colloidal disperse system of Example 3 and its base neutralization number decreased to give a non-Newtonian colloidal disperse system useful in the invention of this application.
Example 5 To a one gallon glass jar equipped with high speed agitation is charged 1920 parts of Neocryl A-620, a styrene/
isobutyl acryate copolymer (50/50 mole ratio) latex wherein said copolymer, on a weight basis, constitutes 40 weight percent of the total weight of the latex system. This material is commercially available from Polyvinyl Chemical Industries. Four hundred-twenty parts of the c~lloidal material from Example 4 is then added and the contents are stirred under high speed, high shear agitation conditions for a period of five minutes. The stirring rate is then reduced and to this material is then charged 160 parts of propylene glycol, 300 parts of water, 160 parts of Paraplex ~ 40-WP-l, a polymeric polyes-ter plasticizer avallable from ~ohm and Haas, 120 parts of water, 20 parts of 2-amino-2-methyl-l-propanol, and 45 parts of AquablackTM 115A, a black pig-ment dispersion available from Bordon Chemical. This mix-ture is then s-tirred for an addi-tional five minutes to give the final water-dispersed coating composi-tion.
Example 6 To a one gallon glass jar equipped with a dlsper-sator fitted with a 1-3/4 inch Cowles blade are charged in the following order: one thousand eight hundred-eighty parts of Neocryl A-620, 408 parts of -the colloidal ma-terial from Example 4, 156 parts propylene glycol, 156 parts di-octyladipate (DOA), 156 parts water, 56 parts dimethyl ethanolamine (DMEA). The contents are stirred under high speed agitation to give a water~dispersed coating composi-tion of this invention.
Example 7 A water-dispersed coating composition is prepared employlng the same procedure, materials and quantities as employed in Example 6 except that 43 parts of Aquasperse 877-~99-7, a black pigment dispersion available from Tenneco, is added after the DMEA and stirring continued un-til the pigment was completely incorporated into the coating composi-tion.
Example 8 To a one gallon glass jar equipped with a disper-sator fitted with a 1 3/4 inch Cowles blade is charged 2037 parts of Neocryl A-620. With continuous agitation 448 parts water and 167 parts Paraplex M WP-l are charged to the glass jar. The agitation rate is then lncreased to high speed, and 64 parts of DMEA and 5 parts A~uasperseTM are charged to the contents of the jar. The resulting mixture was stirred for ten minutes during which time the tempera-ture of the mixture was increased to 50C. At the end of this time, 434 parts of the material from Example 4 are charged to the glass jar and high speed agitation continued for an additional five minutes. An additional 82 parts of water are added to the contents of the jar to adjust the final coating composition to the desired viscosity.
Example 9 'Io a six liter stainless steel po-t equipped with a dispersator fitted with a 1-3/4 inch Cowles blade are charged in the order lis-ted: two thousand five hundred-twenty parts of Neocryl il A-~0, 700 parts of water, 210 parts of Para-plex WP-l, 110 parts of propylene glycol, 480 parts of red iron oxide, 300 parts of 325 mesh mica, and 1500 parts of talc. The contents are mixed together at maximum speed for 15 minutes at which time there is charged to -the pot 120 parts of DMEA, 600 parts of the material from Example 4, and 25 parts of water. Stirring of the contents in the pot is continued at maximum speed for ten minutes and the contents then filtered through a 100 mesh screen to give the final water-dispersed coating compositlon.
1~ _ample 10 To a five gallon pail equipped with a three inch Cowles blade attached to a shaft connected to a variable speed motor are charged 6240 parts NeocrylTM A-620, 120 parts of Nopco NDW, a latex defoamer available from Diamond Snamrock, and 1560 parts of the material from Example 4. The contents are ground at high speed for five minutes. At this time the rate of agitation is reduced and 260 parts of Paraplex ~ WP-l, 260 parts of Texanol ester alcohol, 2,2,4--trimethylpentanediol-1,3-monoisobutyrate available from Eastman Chemical Products, Inc., 600 parts of CarbitolTM, diethylene glycol monoethylether available from Dow Chemical Company, 600 parts of propylene glycol, 60 parts TroykydTM 999, a non-silicone defoamer available from Troy Chemical Company, 180 parts of 2-amino-2-methyl-1-propanol, and 600 parts of water, and charged to the previouslyground materials. Agitation is continued at medium speeds to achieve complete dispersion of the various ingredients forming tne final water dispersed coating composi-tion.
The anticorrosion characteristics of the water-dispersed coating compositions prepared above in Examples 5through 10 are determined by the use of the Salt-Fog Corrosion Test (AST~l test B117-73-(1979)). In this test, steel panels measuring 4 inches wide by 8 inches long are coated with the ~ 3 ahove prepared water dispersed coating compos~tions to give dry film thicknesses of 2 mils. The coated, dr~ panels are then suspended in a Salt-Fog cabinet and a 5% sodium chlo-ride solution continuously sprayed onto the panels at 37.8C. for 24 hours. By this test an uncoated panel is corroded over the entire surface at the end of 24 hours whereas a panel coated with a water-dispersed coating com-position prepared by the procedure of Example 6 shows less than 1% rust at the end of 336 hours and less than 2% rust 10 at the end of 500 hours along a scribed line made through the coating to the underlying metal. The results of this testing is set forth in Table 1 below.
~able 1 Example Hours Creep( ) Millimeters (mm~ %Rust 5(b) 500 3-8 40 6(b) 336 3-6 ~1 7(bb) 336 43-8 <22 ~ 7 ) 500 4-10 5 8 336 0-1 <1 8 500 1-3 <1 8 1000 4-6 ~5 9 336 0 ~2 336 1-2 <1 500 2-3 <2 (a) extent of corrosion measured from a scribed line made through the coating to expose the underlying metal 30 (b) 4" X 12" panels employed
I, 11 Rl-S-O-Ca-O-S-R
O O
~ D~ "~
wherein R~ is the residue of the petrosulfonlc acld In thls case, the hydrophoblc por-tlon of the molecule is the hydrocarbon molety of pe-trosulfonlc, l.e.,--Rl. The polar substituent is the metal salt moiety, O O
-~-O-Ca-O-~-O O
Obviously, the polar portion of these organic com-pounds are the polar substituents such as the acid salt moiety discussed above. When the material to be ovexbased contains polar substituents which will react with the basic metal compound used in overbasing, for example, acid groups such as carboxy, sulfino, hydroxysulfonyl, and phosphorus acid groups or hydroxyl groups, the polar and phosphorus acia groups or hydroxyl groups, the polar substituent of the thlrd component is the polar group formed from the reaction.
Thus, the polar substi-tuent is the corresponding acid metal salt group or hydroxyl group metal derivative, e.g., an alkali or alkaline earth metal sulfonate, carboxylate, sulfinate, alcoholate, or phenate.
On the othex hand, some of the materlals to be overbased con-tained polar substituents which ordinarily do not react with metal bases. These substituents include nitro, amino, ketocarboxyl, carboalkoxy, etc. In the dis-perse systems derived from overbased materials of this type the polar substituents ln the third component are unchanged from their identity ln the material which was originally overbased.
The identity of the third component of the dis-perse system depends upon the identity of the starting materials (i.e., tne material to be overbased and the metal base compound) used in preparing the overbased materials.
Once tne identity of tnese starting materials is known, the identity of the third component in the colloidal disperse system is automatically established Thus, from the iden-tity of the original material, the identity of the hydro-phobic portion of the third component in -the disperse system --L'~-is readily establisnecl as being the resi.due of that rnaterials minus the polar substituen-ts attached thereto. The identlty of the polar subs-tituents on the third component is estab-lished as a mat-ter of chemistry. If the polar groups on the ma-terial tc be overbased unclergo reaction with the metal base, for example, if they are acid functions, hydroxy groups, etc., the polar subs-ti-tuent in the final product will corresponà to the reaction product of the original substituent and the metal base. On the other hand, if the polar substituent in the material to be overbased is one which does not reac-t with metal bases, then the polar sub-stituent of tne third component is the same as the original substituent As previously mentioned, this third component can orient itself around -the metal-containing particles~to form micellar colloidal particles. Accordingly, it can exist in the disperse system as an individual liquid component dis-solved in the disperse medium or i-t can be associa-ted with the metal-containing particles as a component of micellar coll.oidal particles.
Broadly speaking, the non-Newtonian colloidal dis-perse systems useful in preparing the compositions of the present invention are prepared by a two step process wherein a first step single phase homogeneous, Newtonian disperse system of an "overbased," "superbased," or "hyperbased,"
organic compound is homogenized with a "conversion agent", usually an active nydrogen containing compound, to convert tnis disperse system to one exhibiting non-New-tonian flow characteristics ana tnen, in a second step, treating these conver-ted systems with additional metal--containing reactant, and aciaic material to increase the metal ratio and reduce tne base neutralization numbers of the final disperse system. This treatment converts the single phase systems into the non-Newtonian colloidal disperse systems utilized 3~ in conjunction with the film forming compositions of this invention.
Tne terms "overbased," "superbased," and "hyper-based," are terms of art which are generic to well known classes of metal-containing materials which have generall~
been employed as detergents and/or dispersants in lubri-cating oil compositions. These overbased materials have also been referred to as "complexes," "metal complexes,"
5 "high-me-tal containing salts," and the like. Overbased materials are characterized by a metal content in excess of that which would be present according to the stoichiometry of the metal and the particular organic compound reacted with the metal, e.g., a carboxylic or sulfonic acid. Thus, if a monosulfonic acid, o R - ~ - OH
is neutralized with a basic metal compound, e.gO, calcium hydroxide, the "normal" metal salt produced will contain one equivalent of calcium for each equivalent of acid, i.e~, O O
R - S-- O- Ca - O- S - R
O O
However, as is well known in the art, various processes are available which result in an inert organic liquid solution of a product containing more than the stoichiometric amount of me-tal. The solutions of these products are referred to herein as overbased materials. Following these procedures, the sulfonic acid or an alkali or alkaline earth metal salt thereof can be reacted with a metal base and the product will contain an amoun-t of metal in excess of that necessary to neutrali~e the acid, for example, 4.5 times as much metal as present in the normal salt or a metal excess of 3.5 equivalents. The actual stoichiometrlc excess of metal can vary considerably, for example, from about 0.1 equivalent to about 30 or more equivalents depending on the reactions, the process conditions, and the like. These overbased materials, employed as intermediates for preparing the non-Newtonian, aisperse systems usea in the present invention, will contain from about 3.5 to about 30 or more equivalents of metal for each equivalent of material which is overbased.
In the present specification the term "overbased"
s~ ) is used to designa~e materials containiny a stoichiornetric excess of metal and is, therefore, inclusive of those ma-terials which have been referred to in the art as overbased, superbased, hyperbased, etc., as discussed supra.
The terminology "metal ratio" is used in the prior art and herein to desiynate tne ratio of the -to-tal chemical equivalents of the metal in the overbased materlal (e.g., a metal sulfonate or carboxylate) to the chemical equivalents of the metal in the produc-t which would be expected to result in the reaction between the oryanic material to be overbased (e~g., sulfonic or carboxylic acid) and the metal-containing reac-tan-t (e.g., calcium hydroxide, barium oxide, etc.~ according to the known chemical reactivity and stoichio-metry of the two reactants. Thus, in the normal calcium sulfonate discussed above, the metal ratio is one, and in the overbased sulfonate, the metal ratio is 4.5~ Obviously, if there is present in the material to be overbased more than one compound capable of reacting with the me~al, the "metal ratio" of the pxoduct will depend upon whether the number of equivalents of metal in the overbased product is compared to the nu~ber of equivalents expected to be present for a given single component or a combination of all such components.
Generally, these intermediate overbased materials are prepared by treating a reaction mixture comprising (1) the organic material to be overbased, (2) a reaction medium consisting essentially of at least one inert, organic sol-vent for said organic material, (3) a stoichiometric excess of a metal base, and (4) a promoter with an acidic material.
The methods for preparing tne overbased ma~erials as well as an extremely diverse group of overbased materials are well known in the prior art and are disclosed, for example in the following U.S. patents: 2,616,904; 2,616,905; 2,616,906;
2,616,~11; 2,616,~4; 2,616,925; 2,617,049; 2,695,910;
2,723,234; 2,723,235; 2,723,236; 2,760,970; 2,767,164;
~,767,209; 2,777,~74; 2,798,852; 2,839,470; ~,856,359;
~,859,360; 2,~56,361; 2,861,951; 2,883,340; 2,915,517;
2,959,55]; 2,968,G~2; 2,971,0L~; 2,989,~G3; 3,001,981; 3,027,325;
3,070,581; 3,108,960; 3,1~7,232; 3,133,019; 3,146,201; 3,152,991;
3,155,616; 3,170,880; 3,170,881; 3,172,855; 3,19~,823; 3,223,630;
3,232,883; 3,2~2,079; 3,2~2,080; 3,250,710; 3,256,186; 3,27~,135.
These patents disclose processes, ma-terials which can be overbased, suitable me-tal bases, promoters, and acidic ma-terials, as well as a variety of specific overbased products useEul in producing -the disperse sys-tems of this inven-tion.
An important characteristic of -the organic materials which are overbased is their solubility in -the particular reac-tion medium utilized in the overbasing process. As -the reaction used previously has normally comprised petroleum fractions, particularly mineral oils, these organic materials have generally been oil-soluble. However, if ano-ther reaction medium is employed (e.g. aromatic hydrocarbons, aliphatic hydrocarbons, kerosene, etc.) it is not essen-tial that the organic ma-terial be soluble in mineral oil as long as it is soluble in the given reaction medium.
Obviously, many organic materials which are soluble in mineral oils will be soluble in many of the other indicated suitable reaction mediums. It shoulcl be apparen-t that the reaction medium usually becomes -the disperse medium of the colloidal disperse system or at least a componen-t thereof depending on whe-ther or not additional inert organic liquid is added as part of the reaction medium or the disperse medium.
Organic materials which can be overbased are generally oil-soluble organic acids including phosphorus acids, thiophosphorus acids, sulfur acids, carboxylic acids, thiocarboxylic acids, and the like, as well as the corresponding alkali and alkaline ear-th metal salts thereof. Representative examples of each of -these classes of organic acids as well as o-ther organic acids, e.g., nitrogen acids, arsenic acids, etc. are disclosed along wi-th me-thods of preparing overbased products therefrom in the above cited paten-ts. Patent ....
3 '~ 2 ~
2,777,87~1 identifiecl oryanic acids suitable for preparing overbased materials which can be conver-tecl to disperse systems Eor use in the resinuous compositions of the inven-tion. Similarly, 2,616,90~; 2,695,910; 2,767~16~; 2,7~7,209;
3,1'l7,232; 3,27'1,135; etc. disclose a variety of organlc acids suitable for preparing overbased ma-terials as well as representative examples of overbased products prepared from such acids. Overbased acids wherein the acid is a phosphorus acid, a thiophosphorus acid, phosphorus acid-sulfur acid combination, and sulfur acid prepared from polyolefins are disclosed in 2,883,340; 2,915,517; 3,001,981; 3jlO8,960; and 3,232,883. Overbased phenates are disclosed in 2,959,551 while overbased ketones are found in 2,798,852. A variety of overbased materials derived from oil-soluble metal-free, nontautomeric neutral and basic organic polar compounds such as esters, amines, amides, alcohols, ethers, sulfides, sulfoxides, and the like are disclosed in 2,968,6~2; 2,971,014;
and 2,989,463. Another class of materials which can be overbased are the oil-soluble, nitro-substi-tuted aliphatic hydrocarbons, particularly nitro-substituted polyolefins such as polyethylene, polypropylene, polyisobutylene, etc.
~Iaterials of this type are illus-trated in 2,959,551 Like-wise, the oil-soluble reaction product of alkylene poly-amines such as propylene diamine or N-alkylated propylene diamine witn formaldehyde or formaldehyde producing compound (e g., paraformaldehyde) can be overbased. Other compounds suitable for overbasing are disclosed in the above-cited patents or are toherwise well-known in the art.
The organic li~uids used as the disperse medium in the colloidal disperse system can be used as solvents for the overbasing process.
The metal compounds used in preparing the over-based materials are normally -the basic salts of metal in Group l-A and Group ll-A of the Periodic Table although other metals such as lead, zinc, manganese, etc. can be used in the preparation of overbased materials. The anionic portion of the salt can be hydroxyl, oxide, carbonate, hydrogen carbonate, nitrate, sulite, hydroyen sulfite, halide, arnide, sulfate etc. as disclosed in the above-cited patents. For purposes of this invention the preferred overbased materials are prepared from the alkaline earth 5 metal oxides, nydroxides, and alcoholates such as the alka-line earth metal lower alkoxidesO The mos-t preferred non-Newtonian colloidal disperse systems useful in preparing the coating composltions of -this invention are -those derived from overbased materials containing calcium and/or barium as the metal The promo-ters, that is, the materials which permit the incorporation of -the excess metal into the overbased material, are also quite diverse and well known in the art as evidenced by the cited pa-tents. A particularly compre-hensive discussion of suitable promoters is found in2,777,874; 2,695,910; and 2,616,904. These include -the alcoholic and phenolic promoters which are preferred. The alcoholic promoters include the alkanols of one to about twelve carbon atoms such as methanol, ethanol, amyl alcohol, octanol, isopropanol, and mixtures of -these and the like.
Phenolic promoters include a variety of hydroxy-substituted benzenes and naph-thalenes. A particularly useful class of phenols are the alkylated phenols of the type listed in 2,777,874, e.g , heptylphenols, octylphenols, and nonyl-phenols. Mixtures of various promoters are sometimes used.
Suitable acidic materials are also disclosed inthe above cited patents, for example, 2,616,90~. Included within the known group of useful acidic materials are liquid acids such as formic acid, acetic acid, nitric acid, sul-furic acid, hydrochloric acid, hydrobromic acid, carbamicacid, substi-tuted carbamic acids, etc. Acetic acid is a very useful acidic material although inorganic acidic materials such as HCl, SO2, SO3, CO2, H2S, N203, etc. are ordinarily employed as the acidic materials The most preferred acidic materials are carbon dioxide and acetic acid.
In preparing -the intermediate overbased materials, the material to be overbased, an inert, non-polar, organic ~ 3 -2~-solvent tnerefor, the me-tal base, the promoter, and -the acidic ma-terials are brought together and a chemical reac-tion ensues. The exact nature of the resulting overbased product is not known. However, it can be adequately de-scribed for purposes of the present specification as asingle phase homogeneous mixture of the solvent and (1) ei-ther a metal complex formed from the metal base, the acidic material, and the material being overbased and/or (2) an amorphous metal salt formed from the reaction of the acidic materials with the metal base and the ma-terial which is said to be overbased. Thus, if mineral oil is used as the reaction medium, petrosulfonic acid as the material which is overbased, Ca(OH) 2 as the metal base, and carbon dioxide as the acidic material, the resulting overbased material can be described for purposes of this invention as an oil solution of either a metal containing complex of the acidic material, the metal base, and the petrosulfonic acid or as an oil solution of amorphous calcium carbonate and calcium petrosulfonate. Since the overbased materials are well-known and as they are used merely as intermediates in -the preparation of the disperse systems employed herein, the exact nature of the materials is not critical to the present invention.
The temperature at which the acidic material is contacted with the remainder of the reaction mass depends to a large measure upon the promoting agent used. With a phenolic promoter, the temperature usually ranges from about 80C. to 300C., and preferably from about 100C. to about 200C. When an alcohol or mercaptan is used as the pro-moting agent, the temperature usually will not exceed -the reflux temperature of the reaction mixture and preferably will not exceed about 100C.
In view of the foregoing, it should be apparent that the overbased materials may retain all or a portion of the promoter. That is, if the promoter is not volatile (e.g., an alkyl phenol) or otherwise readily removable from the overbased material, at least some promoter remains in the overbasecl product. Accordingly, the disperse sys-tems made from such products may also contain the promoter. The presence or absence of -the promoter in the overbased ma-terials used to prepare the disperse system and likewise, the presence or absence of the promoter iIl -the colloidal ~isperse systems themselves does not represen-t a critical aspect of the invention. Obviously, it is within the sklll of the art to select a volatile promoter such as a lower alkanol, e.g., methanol, ethanol, etc., so that the promoter can be readlly removed prior to forming the disperse system or thereafter.
A preferred class of overbased materials used as starting materials in the preparation of the disperse sys-tems of the present invention are the alkaline earth metal overbased oil-soluble organic acids, preferably those con-taining at least twelve aliphatic carbons although the acids may contain as few as eight aliphatic carbon atoms if the acid molecule includes an aromatic ring such as phenyl, naphthyl, etc. Representative organic acids suitable for preparing these overbased materials are discussed and iden-tified in detail in the above-cited patents. Particularly 2,616,904 and 2,777,874 disclose a variety of very suitable organic acids. For reasons of economy and performance, ~verbased oil-soluble carboxylic and sulfonic acids are particularly suitable. Illustrative of the carboxylic acids are palmitic adid, stearic acid, myristic acid, oleic acid, linoleic acid, behenic acid, hexatriacontanoic acid, tetra-propylene-substituted glutaric acid, polyisobutene (M.W.--5000)-substituted succinic acid, polypropylene, (M.W.--10,000)-substituted succinic acid, octadecyl-substituted adipic acid, chlorostearic acid, 9-methylstearic acid, dichlorostearic acid, stearylbenzoic acid, eicosane-sub-stituted naphthoic acid, dilauryl-decahydro naphthalene carboxylic acid, didodecyl-tetralin carboxylic acid, di-octylcyclohexane carboxylic acid, mixtures of these acids,their alkali and alkaline earth metal salts, and/or their anhydrides. Of the oil-soluble sulfonic acids, the mono-, di-, and tri-al.iphatic hydrocarbon substituted aryl sulfon.ic acids and the pe-troleum sulfonic acids (petrosulfonic acids) are particularly preferred. Illustrative examples of suitable sulfonic acids include mahogany sulfonic acids, petrolatum sulfonic acids, monoeicosa.ne-substituted naph-thalene sulfonic acids, dodecylbenzene sulfonic acids, di-dodecylbenzene sulfonic acids, dinonylbenzene sulfonic acids, cetylchlorobenzene sulfonic acids, dilauryl beta-naphthalene sulfoni.c acids, the sulfonic acld derived by the treatment of polyisobutene having a molecular weight of 1500 with chlorosulfonic acid, ni-tronaphthalenesulfonic acid, paraffin wax, sulfonic acid, cetylcyclopentane sulfonic acid, lauryl-cyclohexanesulfonic acids, polyethylene (~.W.--750) sulfonic acids, etc. Obviously, it is necessary that the size and number of aliphatic groups on the aryl sulfonic aclds be sufficient to render the acids soluble. ~ormally the aliphatic groups will be alkyl and/or alkenyl groups such that the total number of aliphatic carbons is at least twelve.
Within this preferred group of overbased car-boxylic and sulfonic acids, the barium and calcium overbased mono-, di-, and tri-alkylated benzene and naphthalene (in-cluding hydrogenated forms thereof), petrosulfonic acids, and higher fatty acids are especially preferred. Illustra-tive of the synthetically produced alkylated benzene and naphthalene sulfonic acids are those containing alkyl sub-sti-tuents having from 8 to about 30 carbon atoms therein.
Such acids include di-isododecyl-benzene sul.fonic acid, wax-substituted phenol sulfonic acids, polybutene-substituted sulfonic acid, cetyl-chlorobenzene sulfonic acid, di-cetyl naphthalene sulfonic acid, stearylnaphtlsalene sulfonic acid, ~i-lauryldiphenylether sulfonic acid, di-cetylnaphthanlene sulfonic acid, di-lauryldiphenylehter sulfonic acid, di-isononylbenzene sulfonic acid, di-isooctadecylbenzenesul-fonic acid, stearylnaphthalene sulfonic acid, and the like.The petroleum sulfonic acids are a well known art recognized class of materials which have been used as starting ma-terials ils preparing overbased products since -the inception of overbasing techniques as illustrated by -the above paten-ts.
Petroleum sul:Eonic acids are obtained by -t~eating refined or semi-refi.ned petroleurn o.ils with concentrated or fuming sulfuric acid. These acids remain in the oil aE-ter the settling out of sludges. These petroleum sulfonic acids, depending on the nature of the petroleum oils from which they are prepaxed, are oil-soluble alkane sulfonic aclds, alkyl-substituted cycl.oaliphatic sulfonic acids includlng cycloalkyl sulfonic acids and cycloalkene sulfonic acids, and alkyl, alkaryl, or aralkyl substituted hydrocar~on aromatic sulfonic acids including single and condensed aromatic nuclei as well as partially hydrogenated forms thereof. Examples of such petrosulfonic acids include mahogany sulfonic acld, whit oil sulfonic acid, petrolatum sulfonic acid, petroleum naphthene sulfonic acid, etc. This especially preferred group of aliphatic fatty acids includes the saturated and unsaturated higher fatty acids con-taining from 12 to about 30 carbon atoms. Illustrative of these acids are lauric acid, palmitic acid, aleic acid, linoletic acid, li.nolenic acid, oleo-stearic acid, stearic acid, myristic acid, and undecalinic acid, alpha-chlorostearic acid, and alpha-nitrolauric acid.
As shown by the representative examples of -the preferxed classes of sulfonic and carboxylic acids, the acids may contain non-hydrocarbon substituents such as halo, nitro, alkoxy, hydroxyl, and the like.
It is desirable that the intermediate overbased materials used to prepare the non-Newtonian colloidal dis-perse systems used in this invention have a metal ratio of at least about 3.5 and preferably about at least 5.5~ An especially suitable group of the preferred sulfonic acid overbased materials has a metal ratio of at least about 7Ø
Normally the maximum metal ratio of the intermediate over-based materials will not exceed about 30 and, i.n mos-t cases, not more than about 20.
The overbased materials used in preparing the non-Newtonian colloidal disperse systems utilized in the coating -2~-CompOSltiOnS of the invention contain frorn about 10~ to ahout 70"~ by weignt of ~netal-containiny components. The exac-t nature of these metal-containing components ls not known. It is theorized that the metal base, the acidic 5 material, and -the organic material being overbased form a metal complex, this complex being the metal-containing component of the overbased material. On the o-ther hand, it has also been postulated that the metal base and the acidic material form amorphous metal compounds which are dissolved 10 in the inert organic reaction medium and the material which is said to be overbased. The material which is overbased may itself be a metal-containing compound, e.g., a car-boxylic or sulfonic acid metal salt. In such a case, the metal-containing components of the overbased material would 15 be both the amorphous compounds and -the acid salt. The exact nature of these overbased materials is obviously not critical in the present invention since these materials are used only as intermediates. The remainder of the overbased materials consist essentially of the inert organic reaction 20 medium and any promoter which is not removed from the overbased product. For purposes of this application, the organic materials which are subjected to overbasing are con-sidered a part of the metal-containing components. Nor-mally, the liquid reaction medium constitutes at least about 25 30% by weight of the reaction mixture utilized to prepare the overbased materials.
As mentioned above, the non-Newtonian colloidal disperse systems used in the coating compositions of the present invention are prepared by a two step process where in the first step a "conversion agent" and the above de-scribed overbased starting material are homogenized to convert -the overbased starting material to one having non-Newtonian flow characteristics. Homogenization is achieved by vigorous agitation of the two components, preferably at tne reflux temperature or a temperature slightly below the reflux temperature. Tne reflux temperature normally will ~epend upon the boiling point of the conversion agen~.
However, homogeni~ation may be achieved within the range of about 25C. to about 200C. or slightly higher. Usually, there is no real advantage ln exceeding 150C.
The concentra-tion of the conversion agent neces-sary to achieve conversion of the overbased material is usually within the range of from about 1~ to about 80~o based upon the weight of the overbased material excluding the weight of the inert, organic solvent and any promoter present therein Preferably a-t least about 10% and usuall~ less than about 60~ by weight of the conversion agent is eMployed.
Concentrations beyond 60% appear to afford no addi-tional advantages.
The terminology "conversion agent" as used in the specification and claims is intended to describe a class of very diverse materials which possess the property of being able to convert the Newtonian homogeneous, single-phase, overbased materials into non-Newtonian colloidal disperse systems. Tne mechanism by which conversion is accomplished is not completely understood~ However, with the exception of carbon dioxide, these conversion agents all possess active hydrogens. The conversion agents include lower aliphatic carboxylic acids, water, aliphatic alcohols, cycloaliphatic alcohols, arylaliphatic alcohols, phenols, ketones, aldehydes, amines, boron acids, phosphorus acids, and carbon dioxide. Mixtures of two or more of these con-version agents are also useful. Particularly useful con-version agents are also useful. Particularly useful con-version agents are discussed below.
The lower aliphatic carboxylic acids are those containing less than about eight carbon atoms in the mole-cule. Examples of this class of acids are formic acid,acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, isobutyric acid, caprylic acid, heptanoic acid, cnloroacetic acid, dichloracetic acid, trichloroacetic acid, etc. Formic acid, acetic acid, and proprionic acid, are preferred with acetic acid being especially suitable.
It is to be understood that the anhydrides of these acids are also useful and, for the purposes of the specificatlon and claims of this inventlon, the term acid is intended to include both the acid per se and the anhydride oE the acid.
Useful alcohols include aliphatic, cycloaliphatic, and arylaliphatic mono- or polyhydroxy alcohols. Alcohols having less than abou-t twelve carbons are especlally useful while the lower alkanols, i.e., alkanols having less than about eight carbon atoms are preferred for reasons of eco-norny and effectiveness in the process. Illustratlve are the alkanols such as methanol, ethanol, isopropanol, n-propanol, isobutanol, ter-tiary butanol, isooctanol, dodecanol, n-pentanol, etc; cycloalkyl alcohols exemplified by cyclo-pentathol, cyclohexanol, 4-methylcyclohexanol, 2-cyclo-hexylethanol, cyclopentylmethanol, etc; phenyl aliphatic alkanols such as benzyl alcohol, 2-phenylethanol, and cinnamyl alcohol; alkylene glycols of up to about six carbon atoms and mono-lower alkyl ethers thereof such as mono-methylether of ethylene glycol, die~hylene glycol, ethylene glycol, trimethylene glycol, hexamethylene glycol, tri-ethylene glycol, l,~l-butanediol, 1,4-cyclohexanediol, gly-cerol, and pen-taerythritolO
The use of a mixture of water and one or more of the alcohols is especially effective for converting the overbased material to colloidal disperse systems. Such combinations often reduce the length of time required for the process. Any water-alcohol combination is effective but a very effective combination is a mixture of one or more alcohols and water in a weight ratio of alcohol to water of from about 0.05:1 to about 24:1. Preferably, at least one lower alkanol is present in the alcohol component of these water-alkanol mixtures. Water-alkanol mixtures wherein the alcoholic portion is one or more lower alkanols are es-pecially suitable. Alchol:water conversions are illustrated in U.S. Patent No. 3,372,115, filed ~larch 21, 1966.
Phenols suitable for use as conversions agents in-clude phenol, naphthol, ortho-cresol, para-cresol, catechol, mixtures of cresol~ para-tert-butylphenol, and other lower alkyl substitu-te~ phenols, meta-polylsobutene (l`~ W.---350)-substituted phenol, and the like.
Other useful conversion agents include lower ali-phatic aldehydes and ke-tones, particularly lower alkyl alde-hydes and lower alkyl ke-tones such as acetaldehydes, propion-aldehydes, butyraldehydes, acetone, methylethyl ketone, diethyl ketone. Various aliphatic, cycloaliphatic, aro-matic, and heterocyclid amines are also useful providing they contain at least one amino group having at least one active hydrogen attached thereto. Illustrative of these amines are the mono- and di-alkylamines, particularly mono-and di-lower alkylamines, such as methylamine, ethylamine, propylamine, dodecylamine, methyl etnylamine, diethylamine;
the cycLoalkylamines such as cyclohexylamine, cyclopentyl-amine, and the lower alkyl substituted cycloalkylamines suchas 3-methylcyclohexylamine; l,4-cyclohexylenediamine; aryl-amines such as aniline, mono-, di-, and tri~, lower alkyl-substituted phenyl amines, naphthylamines, l,4-phenylene diamines; lower alkanol amines such as ethanolamine and diethanolmaine; alkylenediamines such as ethylene diamine, triethylene tetramine, propylene diamines, octamethylene diamines; and heterocyclic amines such as piperazine, 4-aminoethylpiperazine, 2-octadecyl-imidazoline, and oxazol-idine. Boron acids are also useful conversion agents and include boronic acids (e.g, alkyl-B ~OH) 2 or aryl-B(OE~2, boric acid (i.e., H3BO3), tetraboric acid, metaboric acid, and esters of such boron acids.
The phosphrous acids are useful conversion agents and include the various alkyl and aryl phophinic acids, phosphinus acids, phosphonic acids, and phosphonous acids.
Phosphorus acids obtained by the reaction of lower alkanols or unsaturated hydrocarbons such as polyisobutenes with phosphorus oxides and phophorus sulfides are particularly useful, e.g., P30s and P2Ss.
3~ Carbon dioxide can be used as the conversion agent. However, it is preferable to use this conversion agen-t in combination with one or more of the foregoing conversion agents. For example, the combination of water and carbon dioxide is particularly effective as a conversion agent for transforming the overbased materials into a col-loidal dlsperse system.
As previously mentioned, the overbased starting materials are single phase homogeneous systems. ~owever, aepending on the reaction conditions and the cholce of reac~
tants in preparing the overbased materials, there sometimes are presen-t in the product insoluble contaminants. These contaminants are normally unreacted basic materials such as calcium oxide, barium oxide, calcium hydroxide, barium hydroxide, or other metal base materials used as reactant in preparing the overbased starting material. It has been found that a more uniform colloidal disperse system results if such contaminants are removed prior to homogenizing the overbased materials with the conversion agents. Accord-ingly, i-t is preferred that any insol~lble contaminants in the lntermediate overbased materials be removed prior to converting the material into the non-Newtonian colloidal aisperse system. Tne removal of such contaminants is easily accomplished by conventional techniques such as filtration, centrifugation or by treatment with additional acidic material. It should be understood however, that while the removal of these contaminants from the intermediary over-based materials are desirable, their removal from the final non-Newtonian colloidal disperse systems used in the coating composition of the invention is an absolute essential aspect of the invention if useful coating compositions constituting this invention are to be obtained.
The conversion agents or a proportion thereof may be retained in the colloidal disperse system. The con-version agents are however, not essential components of these disperse systems and it is usually desirable that as little of the conversion agents as possible be retained in the disperse systems. Since these conversion agents do not react with the overbased materials in such a manner as to be 9,~ 3 permanently bound thereto through some type of chemical bonding, i-t is normally a simple ma-tter -to remove a major proportlon of the conversion agents and yenerally, sub-stantially all of tne conversion agents. Some of the con-version agents have physical properties which make themreadily removable from the disperse systems. Thus, most of the free carbon dioxide gradually escapes from the disperse system during the homogenization process or upon standing thereafter. Since the liquid conversion agents are generally 10 more volatile than the remaining components of the disperse system, they are readily removable by conventional devola--tilization techniques, e.g., heating, heating at reduced pressures, and the like. For this reason, it may be de-sirable to select conversion agents which will have boiling 1~ points whlch are lower than the remaining components of the ~isperse system. This is another reason why the lower alkanols, mixtures thereof, and lower alkanol-water mixtures are preferred conversion agents.
It is not essential that all of the conversion 20 agent be removed from the disperse systems. However, -from the standpoint of achieving uniform results, it is generally desirable to remove the conversion gents, particularly where they are volatile.
The second step in preparing the non-Newtonian 25 colloidal disperse systems used in the coating compositions of this invention is to treat the homogenized, non-Newtonian colloidal disperse system prepared in the first step, described herein above, with further metal-containing reac tant and acidic material. The metal-containing reactant and 3Q acidic material employed in this second step are the same reactants and materials described above for preparing the overbased starting materials. Treatment of the homogenized colloidal disperse system from the first step in the prepa-ration of tne disperse systems useful in this invention generally will be carried out at temperatures ranging from 35 about 50C. to about 90C. and preferably from about 60C.
to about 80C.
"9'~ 3 - 3 o -The amount of addltional metal-containing reactant will be that amount sufficient to increase the metal ratio of the homogenized colloidal disperse sys-tems from ~he first step in the process for preparing the disperse s~lstems 5 useful in the invention from at least 7.0 to above about 10.0 and preferably above about 20Ø Given the metal ratlo of the homogenized precursor disperse system, one of skill in the art can readily determine the amount of metal-con-taining reactant necessary to increase the metal ratio of 10 ~he homogenized precursor to that in the final disperse system.
The amount of acidlc material employed in the second step in the preparation of the non-Newtonian col-loldal disperse system useful in this invention will be that 15 amount sufficient to reduce the neutralization base number of the disperse systems to a level wherein the coating composition of the invention will exhibit a good shelf life stability. Generally that amount will be that sufficient to reduce the neutralization base number of the final disperse 20 system to about 7.0 or less. A more preferred disperse system will be that having a neutralization base number of about 5.0 or less and most preferred is a disperse system having a neutralization base number of 2.0 or less.
In the water dispersed coating compositions of 25 this invention, the amount of the non-Newtonian colloidal dlsperse system, component (B), described immediately above will range from about 1.0 to about 20.0 percent by weight based on the total weight of the coating composition. A
more preferred range for the disperse system is from about 10.0 to about 20.0 percent by weight based on the total weight of the coating composi~ion.
In addition to the two major components comprising tne water dispersed coating compositions of this inventlon, it is preferable in most instances to also include a plas-ticizing material, component (C), for the organic polymersemployed in these composi-tions. The use of a plasticizer ~ r~
assures that the coatlng composltions wlll exhlbi-t the reslllence, flexlbill-ty and :impact strength required of them over a broad range of servlce temperatures. Plastlclzers wnicn can be utilized as component (C) in the coating compo-sitions of the present invention include adipates, azelates,sebacates, phthalates, phosphates and the llke. Speclflc examples of such plasticizers are the dlalkyl adipates such as dimethyl adipate, dlbutyl adipate, dloctyl adipate, ~iisooc-tyl adipate, di-(2-ethylhexyl) adlpate, octyl decyl adlpate and -the llke; dialkyl azelates such as dicyclohexyl azelate, di-n-hexyl azelate, di (2--ethylhexyl) azelate, di-(2-ethylbutyl) azela-~e, dilsoctylazelate and the like;
dlalkyl sebaca-tes such as dibutyl sebacate, dioctyl sebacate, diisoctyl sebacate, dibenzyl sebacate and the like; dialkyl phthalates such as diethyl phthalate, dibutyl phthalate, dioctylphthalate, butyl octyl phthalate, di(2-ethylhexyl-)phthalate, dicyclohexylphthalate, butyl benzyl phthalate;
triaryl phosphates such as tricresyl phosphate, triphenyl~
phosphate, cresyldiphenol phosphate and the like; trialkyl phosphates such as trioctyl phosphate, tri~utylphosphates and the like; alkyl aryl phosphates such as octyl diphenyl phospnate and tne like. Other plasticizers include citrates such as acetyl tri-n butyl citrate, acetyl triethyl citrate, monoisopropyl citratej triethyl citrate, mono-, di- and tri-stearyl citrate; trioctin; p-tert-butyl phe~y] salicylate;
butyl stearate; benzoic acid esters derived from diethylene glycol, dipropylene glycol, triethylene glycol, and poly-ethylene glycols; proprietary polymeric polyesters such as those sold by Rohm ~ Haas Company under the trademark Para-plex, sulfonamides such as toluene sulfonamide and etc. Acomplete listing of illustrative suitable plasticizers can be found in l~lodern Plastics Encyclopedia, Vol. 56, No. 10A
(1979-1980), ~cGraw-H111 Publications, pages 685-694.
The amount of plasticizer employed, if one is em-ployed, will depend on the nature of the polymeric resin and the plasticizer. Generally, however, the amount of plasti--3~-cizer employed will range from 0 to about 15.0 percent by weigh-t and preferably from about 2.0 to about 7.0 percent by weight based on the to-tal weight of the coating composition~
In addition to the two major components of the aqueous emulsion coating compositions of this invention and tne optional plasticizer component (C) i-t is also preferable to include in the compositions an effective amount of a coalescing agent, component (D). As is well known, coa-lesclng agents are generally high boiling solvents incor-porated in coating compositions to aid in film formation andto improve leveling, adhesion and enamel holdout of the coating composition. Typically, the amount of said coa-lescing agent will range from 0 to about 20.0 percent by weight based on the total weight of the coating composition.
1~ Preferably the amoun-t will range from about 3.0 to about 10.0 percent by weight. Representative examples of coa-lescing agents which can be employed in the compositions of this invention include Carbitol (diethylene glycol), Carbitol acetate, butyl Cellosolve acetate, butyl Carbi-tolTM acetate, butoxy ethanol, alkylene glycols, ethyleneglycol, propylene glycol, butylene glycol, hexylene glycol, polyethylene glycol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol mono-ethyl ether, etnylene glycol monobutyl ether, dialkylane glycol monoalkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether and the like. Esters of these alkylene glycols, alkylene glycol monoalkyl ethers, and dialkylene glycol mono-alkyl ethers also can be employed as coalescing agent (D) and include such representa~ive materials as ethylene glycol diacetate, ethylene glycol monoace~ate, propylene glycol monosteara-te, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate and the like. Other known coalescing agents useful in the 3~ compositions of this invention include diacetone alcohol, aliphatic benzenes such as xylene and TexanolTM (2,2,~-trimethyl-1,3-pentanediol monoisobutyrate).
rhe compositlons of -the present lnventlon can also include one or more supplemental additlves or adjuvants.
These supplemental addltlves or adjuvants can include flash rust lnhibi-tors, pH modifiers, fillers and ex-tending agen-ts and the like.
Flash rust lnhlbltors are agents which preven-t rustlng of metal surfaces lmmediately UpOII coating wlth the water dlspersed coatlng composltions. While the films formed by water removal from the water dispersed composi-tions of the present lnvention serve to prevent corrosion ofsuch surfaces once they are formed, flash rust inhlbltors are used to prevent rust and corrosion before the films have had a chance to form. Typlcal flash rust inhibitors include ammonium benzoate and phosphoric acid esters neutralized with tetraethylene pentamine. Flash rust inhibitors which are preferred for use in the water dispersed coating com-positions of this invention include N-(hydroxyl-substituted hydrocarbyl) amines such as primary, secondary and tertiary alkanolamines corresponding, respectively, to the following formulae:
H2~l-RI-OH (I) N-RI-OH (II) R
and R
N_Rl_OH (III) wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or a hydroxyl-substi-tuted hydro-carbyl group of two to about eight carbon atoms and Rl is a aivalent hydrocarbyl group of about 2 to about eighteen carbon atoms. The group -Rl-OH in such formulae represents a hydroxyl-substituted hydrocarbyl group. The divalent hydrocarbyl group, Rl, can be an acyclic, alicyclic or aromatic group. Typically it is an acyclic straight or 3 t .~ 3 -3~-branched cnain alkylene group such as ethylene; 1,2-propy-lene; 1,2-butylene; 1,2-octadecylene and etc. Where two R
groups are presen-t in the same molecule, they can be joined by a dlrect carbon~to-carbon bond or through a he-teroatom such as oxygen, nitrogen or sulfur to form a five, six, seven or eight membered ring structure. Examples of such heterocycllc amines include N-(hydroxyl substituted lower alkyl)-morpholines, -thiomorpholines, -piperdines, -o~azol-idines, -thia7olidines and the like. Generally, however, each R group is a lower alkyl group of up to seven carbon atOMS. Particularly useful N-thydroxyl-substituted hydrocar-byl) amines for providing flash rust inhibitors include mono-, di- and triethanol amine, dimethylethanol amine, diethylethanol amine, N,N-dl-(3-hydroxyl propyl) amine, N-(3-hydroxyl butyl) amine, N-(4-hydroxyl butyl) amine, N,N-di-(2-hydroxyl propyl) amine, N-(2-hydroxyl ethyl) morpho-line and its thio analog, N-(2-hydroxyl ethyl) cyclohexyl amine and the like. These N-(hydroxyl substituted hydro-carbyl) amines can be used either alone or in mixture.
Preferred amines are diethyl ethanol amine, ethanol amine and dimethyl e-thanol amine.
The above described amines are also useful as pH
modifiers for the water dispersed coating compositions of this invention and therefore serve a dual purpose in said compositions. The desired p~ range of the water dispersed compositions of this invention is from about 7 to about 10 and the addition of from about 1.0 to about 3.0 percent by weight, based on the total weight of the coa-ting compositions, will suffice to maintain the pH of the coating compositions.
It has also been found that this amount will also provide -the desired level of flash rust inhibitive protection for -the metal being coated while the water in the coating is being removed.
Various fillers or extender pigments can also be added to the water dispersed coating compositions described and claimed herein. These include clays, talc, wallasto-nite, barytes, calcium carbonate, silica, mica, carbon b:Lack, lamp black and similar fillers and pigmen-ts. These fillers and pigments can comprise from 0 to about ~0.0 percen-t by weight and preferably between 1.0 and about 15.0 percent by weight based on the total weight of the compo-sition.
The inventive water dispersed coating compositions are, in general, prepared by the intimate blending of the various components under high shear conditions such as a Cowles disperser. Typically, the film Eorming organic polymer in aqueous solution or late~ form, water and plasti-cizer, flash rust inhibitor and pH modifier, if any, are first blended together under low shear conditions. Once complete blending has been accomplished, the non-Newtonian colloidal disperse system, and filler or pigment are added under high speed, high shear conditions and the blending continued until an intimate and water dispersed is achieved.
Additional water can be added at this point if necessary to adjust the viscosity of the composition to that required by the particular method of application to be used in applying the coating composition to the metal surface to be coated.
The water dispersed coating compositions of the invention are useful in forming rust inhibiting coatings or films for metal surfaces such as surfaces of ferrous metals, galvanized metal, aluminum, magnesium, etc. They are especially useful for internally rustproofing and under-coating automotive bodies and the like. They may be em-ployed in these applications either alone or in combination with other known rust-inhibiting materials.
When used for rust inhibiting purposes, the water dispersed coating compositions of the present invention may be applied to the metal surface by any of a number of known methods such as brushing, spraying, dip coating, Elow coating, roller coating and the like. The viscosity of the water dispersed coating composition may be adjusted for the particular method of application employed by adjusting the amount of water present in the water dispersed coating composition if a reduced viscosity is required or by the 3~3 addition of fillers such as talc, silicon, calcium carbona-te and the like if an increased viscosity is required. Final]y, mechanical shearing -techniques can also be used to vary the viscosity of the water dispersed coating compositions since they are thixotropic in nature. This shearing can be accom-plished by using agitators or by forcin~ the compositions through pumps (e.g. gear pumps) or other devices such as nozzlesO
The film thickness produced on the metal substrate is not critical although coatings or films of from 0.5 to about 6.0 mils and preferably from 1.0 to about 4.0 mils are generally sufficient to provide adequate rust and corrosion protection. Thicker films can be used if desired, par-ticularly if the metal article is to be subjected to severe corrosion enhancing conditions, or to be stored for prolonged periods of time.
The water dispersed coating compositons of the present invention are generally applied to the surface to be protected by any of the means described above and then air dried. Generally, -this drying of the applied coating will take place at temperatures ranging from ambient temperature to temperatures of about 150C. or higher. The preclse temperature employed and time required to complete drying will va~y depending on the thickness of the coating and the Tg of the polymeric resin employed in the coating composi-tion. Those skilled in the art can readily determine the time and temperature required to dry the coating completely.
The following non-limiting examples illustrate the practice of this invention and include the presently known best mode of practicing the invention. All -temperatures are in degrees Celcius and all percentages and parts are by weight unless it is specifically noted to be to the contrary.
xam~le_~
~ calcium mahogany sulfonate is prepared by double decomposi-tion of a 60s oil solution of 750 parts of sodium mahogany sulfonate with -the solution of 67 parts of calcium chloride and 63 par-ts of water. The reaction mass is heated for four hours at 90 to 100C. to affect the conversion of the sodium mahogany sulfonate to calcium mahogany sulfona-te.
~'nen 54 parts of 91% calcium hydroxide solution is added and the material is heated to 150C. over a period of five hours. When the material has cooled to 40C., 98 parts of methanol is added and 152 parts of carbon dioxide is in-troduced over a period of 20 hours at 42-43C. Water and alcohol are then xemoved by heating the mass to 150C. The residue in the reaction vessel is diluted with 100 parts of mineral oil. The filtered oil solution and the desired carbonated calcium sulfonate overbased material shows the following analysis: sulfate ash content, 16.46; a neu-trali~ation number, as measured against phenophthalein of 0.6 (acidic); and a met~l ratio of 2.50.
Exam~le 2 A mixture comprising 1,595 parts of the overbased material of Example 1 (1.54 equivalents based on sulfonic acid anion), 167 parts of the calcium phenate prepared as indicated below (0.19 equivalent), 616 parts of mineral oil, 25 157 parts of 91s calcium hydroxide (3.86 equivalents), 288 parts of methanol, 88 parts of isobutanol and 56 parts of mixed isomeric primary amyl alcohols (containing about 65%
nor~.al amyl, 3s isoamyl and 32s 2-methyl-1-butyl alcohols) is stirred vigorously at 40C. and 25 parts of carbon di-oxide is introduced over a period of two hours at 40-50C.
Thereafter, three additional portions of calcium hydroxide, each amoun-ting to 157 parts each are added and each such addition is followed by the introduction of carbon dioxide as previously illustrated. After the fourth calcium hy-droxide addition and the carbonation step is completed, thereaction mass is carbonated for an additional hour at 43-47C. to reduce the neutralization number of the mass to 4.0 (basic). The substantially neutral, carbonated reaction mixture is then heated -to 150C. under a nitrogen atmosphere to remove alcohol and any by-produc-t wa-ter. The residue in the reactlon vessel is then filtered. The filtrate, an oil solution of the desired substantially neutral, carbona-ted calcium sulfonate overbase material of high metal ratio shows the following analysis: sulfate ash content 41.11%;
neutralization number 0.9 (basic); and a metal ratio of 12.55.
The calcium phenate used above is prepared by adding 2,550 parts of mineral oil, 960 parts (5 mols) of heptylphenol, and 50 parts of water into a reaction vessel and stirring at 25C. The mixture is heated to 40C. and 7 parts of calcium hydroxide and 231 parts (7 mols) of 91%
commercial paraformaldehyde is added over a period of one hour. The contents are heated to 80C. and 200 additional parts of calcium hydroxide (making a total of 207 parts or 5 mols) is added over a period of one hour at 80-90C. The contents are heated to 150C. and maintained at that tem-perature for twelve hours while nitrogen is blown through the mixture to assist in the removal of water. If foaming is encountered, a few drops of polymerized dimethylsilicone foam inhibitor may be added to control the foaming. The reaction mass is then filtered. The Eiltrate, a 33 6% oil solution of the desired calcium phenate of heptaphenol-formaldehyde condensation product is found to contain 7.56%sulfate ash.
Example 3 A mixture of 1,000 parts of the product of Example 2, 303 parts of mineral oil, 80 parts of methanol, 40 parts ~ of mixed primary amyl alcohols (containing about 65% by weight of normal amyl alcohol, 3% by weight of isoamyl alcohol, and 32% by weight of 2-methyl l-butyl alcohol) and 80 parts of water are introduced into a reaction vessel and heated to 70C. and maintained at that temperature for 4.2 hours. The overbased material is converted to a gelatinous mass. Stirring and heating of this gelatinous mass at 150C. is continued for a period of about two hours to remove substantially all the alcchols and water. The residue i5 a dark green gel.
-xample 4 ~ solution of 1,303 par-ts of t:he gell like col-loidal disperse sys-tem of Example 3 and 563 parts oE mineral oil are dissolved in 1,303 parts of toluene by continuous agitation of these two components for about three hours.
Added to this mixture is ~0 parts of water and 40 parts of methanol fol:Lowed by the slow addition of 471 parts of 91%
calcium hydroxide with continuous stirring. An exothermic reaction ta~es place raising the temperature to 32C. The entire reaction mass is then heated to about 60C. over a 0.25 hour period. Two hundred-eighty parts of carbon di-oxide i5 then charged over a five hour period while main-taining the temperature at 60-70C. At the conclusion of the carbonation, the mass is heated to about 150C. over a 0.75 hour period to remove water, methanol, and toluene.
The resulting product, a clear, light brown colloidal dis-perse system in the form of a gel has the following analy-sis: sulfate ash content, 46.8~; a neutralization number, as measured against phenolphthalein of less than 1.0 (basic);
and a me-tal ratio of 36.0 In the above-described pro-cedure, additional me-tal containing particles are incor-porated into the colloidal disperse system of Example 3 and its base neutralization number decreased to give a non-Newtonian colloidal disperse system useful in the invention of this application.
Example 5 To a one gallon glass jar equipped with high speed agitation is charged 1920 parts of Neocryl A-620, a styrene/
isobutyl acryate copolymer (50/50 mole ratio) latex wherein said copolymer, on a weight basis, constitutes 40 weight percent of the total weight of the latex system. This material is commercially available from Polyvinyl Chemical Industries. Four hundred-twenty parts of the c~lloidal material from Example 4 is then added and the contents are stirred under high speed, high shear agitation conditions for a period of five minutes. The stirring rate is then reduced and to this material is then charged 160 parts of propylene glycol, 300 parts of water, 160 parts of Paraplex ~ 40-WP-l, a polymeric polyes-ter plasticizer avallable from ~ohm and Haas, 120 parts of water, 20 parts of 2-amino-2-methyl-l-propanol, and 45 parts of AquablackTM 115A, a black pig-ment dispersion available from Bordon Chemical. This mix-ture is then s-tirred for an addi-tional five minutes to give the final water-dispersed coating composi-tion.
Example 6 To a one gallon glass jar equipped with a dlsper-sator fitted with a 1-3/4 inch Cowles blade are charged in the following order: one thousand eight hundred-eighty parts of Neocryl A-620, 408 parts of -the colloidal ma-terial from Example 4, 156 parts propylene glycol, 156 parts di-octyladipate (DOA), 156 parts water, 56 parts dimethyl ethanolamine (DMEA). The contents are stirred under high speed agitation to give a water~dispersed coating composi-tion of this invention.
Example 7 A water-dispersed coating composition is prepared employlng the same procedure, materials and quantities as employed in Example 6 except that 43 parts of Aquasperse 877-~99-7, a black pigment dispersion available from Tenneco, is added after the DMEA and stirring continued un-til the pigment was completely incorporated into the coating composi-tion.
Example 8 To a one gallon glass jar equipped with a disper-sator fitted with a 1 3/4 inch Cowles blade is charged 2037 parts of Neocryl A-620. With continuous agitation 448 parts water and 167 parts Paraplex M WP-l are charged to the glass jar. The agitation rate is then lncreased to high speed, and 64 parts of DMEA and 5 parts A~uasperseTM are charged to the contents of the jar. The resulting mixture was stirred for ten minutes during which time the tempera-ture of the mixture was increased to 50C. At the end of this time, 434 parts of the material from Example 4 are charged to the glass jar and high speed agitation continued for an additional five minutes. An additional 82 parts of water are added to the contents of the jar to adjust the final coating composition to the desired viscosity.
Example 9 'Io a six liter stainless steel po-t equipped with a dispersator fitted with a 1-3/4 inch Cowles blade are charged in the order lis-ted: two thousand five hundred-twenty parts of Neocryl il A-~0, 700 parts of water, 210 parts of Para-plex WP-l, 110 parts of propylene glycol, 480 parts of red iron oxide, 300 parts of 325 mesh mica, and 1500 parts of talc. The contents are mixed together at maximum speed for 15 minutes at which time there is charged to -the pot 120 parts of DMEA, 600 parts of the material from Example 4, and 25 parts of water. Stirring of the contents in the pot is continued at maximum speed for ten minutes and the contents then filtered through a 100 mesh screen to give the final water-dispersed coating compositlon.
1~ _ample 10 To a five gallon pail equipped with a three inch Cowles blade attached to a shaft connected to a variable speed motor are charged 6240 parts NeocrylTM A-620, 120 parts of Nopco NDW, a latex defoamer available from Diamond Snamrock, and 1560 parts of the material from Example 4. The contents are ground at high speed for five minutes. At this time the rate of agitation is reduced and 260 parts of Paraplex ~ WP-l, 260 parts of Texanol ester alcohol, 2,2,4--trimethylpentanediol-1,3-monoisobutyrate available from Eastman Chemical Products, Inc., 600 parts of CarbitolTM, diethylene glycol monoethylether available from Dow Chemical Company, 600 parts of propylene glycol, 60 parts TroykydTM 999, a non-silicone defoamer available from Troy Chemical Company, 180 parts of 2-amino-2-methyl-1-propanol, and 600 parts of water, and charged to the previouslyground materials. Agitation is continued at medium speeds to achieve complete dispersion of the various ingredients forming tne final water dispersed coating composi-tion.
The anticorrosion characteristics of the water-dispersed coating compositions prepared above in Examples 5through 10 are determined by the use of the Salt-Fog Corrosion Test (AST~l test B117-73-(1979)). In this test, steel panels measuring 4 inches wide by 8 inches long are coated with the ~ 3 ahove prepared water dispersed coating compos~tions to give dry film thicknesses of 2 mils. The coated, dr~ panels are then suspended in a Salt-Fog cabinet and a 5% sodium chlo-ride solution continuously sprayed onto the panels at 37.8C. for 24 hours. By this test an uncoated panel is corroded over the entire surface at the end of 24 hours whereas a panel coated with a water-dispersed coating com-position prepared by the procedure of Example 6 shows less than 1% rust at the end of 336 hours and less than 2% rust 10 at the end of 500 hours along a scribed line made through the coating to the underlying metal. The results of this testing is set forth in Table 1 below.
~able 1 Example Hours Creep( ) Millimeters (mm~ %Rust 5(b) 500 3-8 40 6(b) 336 3-6 ~1 7(bb) 336 43-8 <22 ~ 7 ) 500 4-10 5 8 336 0-1 <1 8 500 1-3 <1 8 1000 4-6 ~5 9 336 0 ~2 336 1-2 <1 500 2-3 <2 (a) extent of corrosion measured from a scribed line made through the coating to expose the underlying metal 30 (b) 4" X 12" panels employed
Claims (46)
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A coating composition comprising water and dispersed within said water (A) a film forming organic polymer and (B) a non-Newtonian colloidal disperse system comprising (1) solid metal containing colloidal particles, (2) a liquid dispersing agent and (3) an organic compound the molecules of which contain a hydrophobic portion and at least one polar substituent, wherein said non-Newtonian colloidal disperse system is characterized by having a neutralization base number of about 7.0 or less.
2. The composition of Claim 1 wherein said film forming organic polymer (A) ranges from about 10.0 to about 65.0 weight percent and the non-Newtonian colloidal disperse system (B) ranges from 1.0 to about 20.0 weight percent said percentages based on the total weight of the composition.
3. The composition of Claim 2 wherein the film forming organic polymer (A) is an organic polymer selected from the group consisting of polyolefin resins, acrylic resins, polyester resins and polyurethanes and wherein the non-Newtonian colloidal disperse system comprises (1) solid metal containing particles selected from the group consisting of alkali and alkaline earth metal salts, (2) a disperse medium selected from the group consisting of inert organic liquids and low molecular weight liquid polymers and (3) an organic compound selected from the group consisting of alkali and alkaline earth metal salts of oil soluble organic acids.
4. The composition of Claim 1 which further comprises (C) a plasticizer and (D) a coalescing agent where in said composition the plasticizer (C) ranges from 0 to about 15.0 weight percent and the coalescing agent (D) ranges from 0 to about 20.0 weight percent said percentages based on the total weight of the composition.
5. The composition of Claim 1 which further comprises at least one flash rust inhibitor which ranges from 0.1 to about 3.0 weight percent based on the total weight of the composition.
6. A coating composition comprising water and dispersed within said water (A) a film forming water dispersed organic polymer in the form of disperse particles, wherein said polymer is an acrylic copolymer derived from mixtures of two or more ethylenically unsaturated monomers or at least one ethylenically unsaturated monomer and at least one vinyl double bond unsaturated monomer and (B) a non-Newtonian colloidal disperse system comprising (1) solid metal-containing colloidal particles, (2) a liquid dispersing medium and (3) an organic compound, the molecules of which contain a hydrophobic portion of at least one polar substituent wherein said non-Newtonian colloidal system is characterized by having a neutralization base number of about 7.0 or less.
7. The composition of Claim 6 wherein said film forming water dispersed polymer (A), as solids, ranges from about 10.0 to about 65.0 weight percent and the non-Newtonian colloidal disperse system (B) ranges from about 1.0 to about 20.0 weight percent said percentages based on the total weight of the composition.
8. The composition of Claim 6 wherein the water dispersed organic polymer (A) is an acrylic copolymer derived from a mixture of two or more ethylenically unsaturated monomers selected from the group consisting of lower C1 to C4 alkyl esters and amides of acrylic and methacrylic acids or derived from a mixture of at least one ethylenically unsaturated monomer selected from the group consisting of lower Cl to C4 alkyl esters and amides of acrylic and methacrylic acids and at least one vinyl double bond unsaturated monomer selected from the group consisting of styrene, ring substituted alkyl and alkyloxy styrene, alpha methyl styrene and ring substituted alkyl alpha methyl styrene and wherein the non-Newtonian colloidal disperse system (B) comprises (1) solid metal containing particles selected from the group consisting of alkali and alkaline earth metal salts, (2) a disperse medium comprising a liquid petroleum fraction and (3) at least one organic component selected from the group consisting of alkali and alkaline earth metal salts of oil soluble organic acids said disperse system being characterized by having a neutralization base number about 5.0 or less and whereinthe water dispersed polymer (A), as solids, ranges from about 15.0 to about 35.0 weight percent and the disperse system (B) ranges from about 10.0 to about 15.0 weight percent based on the total weight of the composition.
9. The composition of Claim 8 wherein the water dispersed polymer (A) is an acrylic copolymer derived from a mixture of two or more ethylenically unsaturated monomers selected from the group consisting of lower C1 to C4 alkyl esters and amides of acrylic and methacrylic acids.
10. The composition of Claim 9 wherein the ethylenically unsaturated monomers are the lower C1 to C4 alkyl esters of acrylic and methacrylic acid.
11. The composition of Claim 8 wherein the water dispersed polymer (A) is an acrylic copolymer derived from a mixture of at least one ethylenically unsaturated monomer selected from the group consisting of the lower C1 to C4 alkyl esters and amides of acrylic and methacrylic acids and at least one vinyl double bond unsaturated monomer selected from the group consisting of styrene, ring substituted alkyl and alkyloxy styrene, alpha methyl styrene and ring substituted alkyl alpha methyl styrene.
12. The composition of Claim 11 wherein the ethylenically unsaturated monomer is selected from the group consisting of C1 to C4 lower alkyl ester of acrylic and methacrylic acids.
13. The composition of Claim 12 wherein the vinyl double bond unsubstituted monomer is selected from the group consisting of styrene, ring substituted alkyl styrene and alpha methyl styrene.
14. The composition of Claim 8 wherein the solid metal containing particles are alkaline earth metal salts and the organic compound is an alkaline earth metal salt of an oil soluble organic acid.
15. The composition of Claim 14 wherein the solid metal containing alkaline earth metal salts are selected from the group consisting of magnesium, calcium, strontium and barium carbonates.
16. The composition of Claim 14 wherein the solid metal containing alkaline earth metal salts is selected from the group consisting of calcium and barium carbonates.
17. The composition of Claim 15 wherein the alkaline earth metal salt of an oil soluble organic acid is selected from the group consisting of calcium and barium sulfonate and carboxylate.
18. The composition of Claim 8 which further comprises (C) a plasticizer and (D) a coalescing agent where in said composition the plasticizer (C) ranges from 0 to about 15.0 weight percent and the coalescing agent (D) ranges from 0 to about 20 weight percent said percentages based on the total weight of the coating composition.
19. The composition of Claim 18 wherein the plasticizer (C) is selected from the group consisting of dialkyl adipates, dialkyl azelates, dialkyl sebacates, dialkyl phthalates, triaryl phosphates, alkyl aryl phosphates and polymeric polyesters and wherein the coalescing agent (D) is selected from the group consisting of alkylene glycols, alkylene glycol monoalkyl ethers and dialkylene glycol monoalkyl ethers.
20. The composition of Claim 19 wherein the plasticizer (C) ranges from about 2.0 to about 7.0 weight percent and the coalescing agent (D) ranges from about 3.0 to about 10.0 weight percent based on the total weight of the coating composition.
21. The composition of Claim 20 wherein the plasticizer (C) is a dialkyl adipate and the coalescing agent (D) is an alkylene glycol.
22. The composition of Claim 18 which further comprises at least one flash rust inhibitor which ranges from 1.0 to 3.0 weight percent based on the total weight of the composition.
23. The composition of Claim 22 wherein the flash rust inhibitor comprises at least one N-(hydroxy-substituted hydrocarbyl) amine.
24. A coating composition comprising water and dispersed within said water (A) a film forming water dispersed, organic polymer in the form of disperse particles, a major portion of said particles ranging in size from about 0.1 to about 10.0 microns, said water dispersed polymer being an acrylic copolymer derived from a mixture of monomers comprising two or more ethylenically unsaturated monomers selected from the group consisting of lower C1 to C4 alkyl esters of acrylic and methacrylic acids or from a mixture comprising at least one ethylenically unsaturated monomer selected from the group consisting of C1 to C4 lower alkyl esters of acrylic and methacrylic acids and at least one vinyl double bond unsaturated monomer selected from the group consisting of styrene, ring substituted alkyl styrene and alpha methyl styrene and (B) a non-Newtonian colloldal disperse system comprising (1) solid metal containing partilcles of alkaline earth metal salts, (2) a disperse medium comprising a liquid petroleum fraction and (3) at least one organic compound comprising alkaline earth meal salts of oil soluble organic acids said disperse system being characterized by having a neutralization base number of about 2.0 or less and the film forming water dispersed polymer (A), as solids, ranges from about 22.0 to about 28.0 weight percent and the disperse system (B) ranges from about 10.0 to about 15.0 weight percent based on the total weight of the composition.
25. The composition of Claim 24 wherein the water dispersed polymer (A) is derived from a mixture comprising two or more ethylenically unsaturated monomers selected from the group consisting of C1 to C4 lower alkyl esters of acrylic and methacrylic acids.
26. The composition of Claim 24 wherein the water dispersed polymer (A) is derived from a mixture comprising at least one ethylenically unsaturated monomer selected from the group consisting of C1 to C4 lower alkyl esters of acrylic and methacrylic acids and at least one vinyl double bond unsaturated monomer selected from the group consisting of styrene, ring substituted alkyl styrene and alpha methyl styrene.
27. The composition of Claim 24 wherein the colloidal disperse system comprises (1) solid metal containing particles of alkaline earth metal salts selected from the group consisting of calcium and barium carbonates, (2) a disperse medium comprising mineral oil and (3) at least one alkaline earth metal salt of oil soluble organic acids selected from the group consisting of calcium and barium sulfonate and carboxylate.
28. The composition of Claim 25 which further comprises a plasticizer (C) selected from the group consisting of dialkyl adipates, dialkyl azelates, dialkyl sebacates and dialkyl phthalates and a coalescing agent (D) selected from the group consisting of alkylene glycols, alkylene glycol monoalkyl ethers and diethylene glycol monoalkyl ethers wherein the plasticizer (C) ranges from about 2.0 to about 7.0 weight percent and the coalescing agent (D) ranges from about 3.0 to about 10.0 weight percent based on the total weight of the coating composition.
29. The composition of Claim 28 which further comprises at least one flash rust inhibitor comprising N-(hydroxyl-substituted) hydrocarbyl) amines selected from the group consisting of primary, secondary and tertiary alkanol amines of the formulae (I) (II) (III) wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or a hydroxyl-substituted hydrocarbyl group of from about two to about eight carbon atoms and R is a divalent hydrocarbyl group of from about two to about eighteen carbon atoms said inhibitor ranging from 1.0 to about 3.0 weight percent based on the total weight of the composition.
30. A coating composition comprising water and dispersed within said water (A) a film forming water dispersed organic polymer in the form of dispersed particles, a major portion of said particles ranging in size from about 0.5 to about 5.0 microns said water dispersed polymer being an acrylic copolymer derived from a mixture of monomers comprising at least one ethylenically unsaturated monomer selected from the group consisting of C1 to C4 lower alkyl esters of acrylic and methacrylic acids and at least one vinyl double bond unsaturated monomer selected from the group consisting of styrene, ring-substituted alkyl styrene and alpha methyl styrene (B) a non-Newtonian colloidal disperse system comprising (1) solid metal containing particles of alkaline earth metal salts selected from the group consisting of calcium and barium carbonates, (2) a disperse medium comprising mineral oil and (3) at least one alkaline earth metal salt of oil soluble organic acids selected from the group consisting of calcium and barium sulfonate and carboxylates said disperse system being characterized by having a neurtalization base number of 2.0 or less and where in said water dispersed coating composition the film forming water dispersed polymer (A), as solids, ranges from about 22.0 to about 28 weight percent and the disperse system (B) ranges from about 10.0 to about 15.0 weight percent based on the total weight of the water dispersed coating composition.
31. The composition of Claim 30 wherein the vinyl double bond unsaturated monomer is styrene.
32. The composition of Claim 31 wherein the colloidal disperse system comprises (1) calcium carbonate, (2) mineral oil and (3) calcium sulfonate.
33. The composition of Claim 32 further comprising a plasticizer (C) selected from the group consisting of dialkyl adipates and a coalescing agent (D) selected from the group consisting of alkylene glycols wherein the plasticizer (C) ranges from about 2.0 to about 7.0 weight percent and the coalescing agent (D) ranges from about 3.0 to about 10.0 weight percent based on the total weight of the coating composition.
34. The composition of Claim 33 which further comprises a flash rust inhibitor selected from the group consisting of tertiary alkanol amines of the formula R
\ N-Rl-OH
R /
wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or a hydroxyl-substituted hydrocarbyl group of from about two to about eight carbon atoms and R is a divalent hydrocarbyl group of from about two to about eighteen carbon atoms, said inhibitor ranging from 1.0 to about 3.0 weight percent based on the total weight of the composition.
\ N-Rl-OH
R /
wherein each R is independently a hydrocarbyl group of one to about eight carbon atoms or a hydroxyl-substituted hydrocarbyl group of from about two to about eight carbon atoms and R is a divalent hydrocarbyl group of from about two to about eighteen carbon atoms, said inhibitor ranging from 1.0 to about 3.0 weight percent based on the total weight of the composition.
35. An article of manufacture coated with the composition of Claim 1, 4 or 5.
36. An article of manufacture coated with the composition of Claim 6, 18 or 22.
37. An article of manufacture coated with the composition of Claim 24, 28 or 29.
38. An article of manufacture coated with the composition of Claim 30, 33 or 34.
39. A coating composition comprising water and dispersed within said water (A) a film forming organic polymer selected from the group consisting of polyolefin resins, acrylic resins, polyester resins and polyurethanes, said organic polymer ranging from about 10.0 to about 65.0 weight percent based on the total weight of said composition and (B) a non-Newtonian colloidal disperse system comprising (1) solid metal containing particles selected from the group consisting of alkali and alkaline earth metal salts, (2) a disperse medium selected from the group consisting of inert organic liquids and low molecular weight liquid polymers and (3) an organic compound selected from the group consisting of alkali and alkaline earth metal salts of oil soluble organic acids, said non-Newtonian colloidal disperse system ranging from 1.0 to about 20.0 weight percent based on the total weight of said composition, wherein said non-Newtonian colloidal disperse system is characterized by having a neutralization base number of about 7.0 or less.
40. A coating composition comprising water and dispersed within said water (A) a film forming organic polymer selected from the group consisting of styrene-containing polymers, and (B) a non-Newtonian colloidal disperse system comprising (1) solid metal-containing colloidal particles, (2) a liquid dispersing agent, and (3) an organic compound, the molecules of which contain a hydrophobic portion and at least one polar substituent, wherein said non-Newtonian colloidal disperse system is characterized by having a neutralization base number of about 7.0 or less.
41. The composition of Claim 40 wherein component (A) is a styrene-containing copolymer.
42. The composition of Claim 40 wherein component (A) is a styrene-containing terpolymer.
43. A coating composition comprising water and dispersed within said water (A) a film forming latex polymer, and (B) a non-Newtonian colloidal disperse system comprising (l) solid metal-containing colloidal particles, (2) a liquid dispersing agent and (3) an organic compound the molecules of which contain a hydrophobic portion and at least one polar substituent, wherein said non-Newtonian colloidal disperse system is characterized by having a neutralization base number of about 7 or less.
44. The composition of Claim 43 wherein component (A) is a styrene-containing polymer.
45. The composition of Claim 43 wherein component (A) is a styrene-containing copolymer.
46. The composition of Claim 43 wherein component (A) is a styrene-containing terpolymer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32232581A | 1981-11-18 | 1981-11-18 | |
US322,325 | 1981-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1185083A true CA1185083A (en) | 1985-04-09 |
Family
ID=23254385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000415524A Expired CA1185083A (en) | 1981-11-18 | 1982-11-15 | Water dispersed rust inhibitive coating compositions |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS5889665A (en) |
CA (1) | CA1185083A (en) |
DE (1) | DE3242425C2 (en) |
FR (1) | FR2516531B1 (en) |
GB (1) | GB2109393B (en) |
IT (1) | IT1157239B (en) |
NL (1) | NL190613C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1197856B (en) * | 1986-08-07 | 1988-12-21 | Vincenzo Petrillo | PROCEDURE FOR THE PREPARATION OF ANTI-RUST COMPONENTS WITH IMPROVED SLIDING AND PENETRATION |
US4728578A (en) * | 1986-08-13 | 1988-03-01 | The Lubrizol Corporation | Compositions containing basic metal salts and/or non-Newtonian colloidal disperse systems and vinyl aromatic containing polymers |
US5380787A (en) * | 1992-08-24 | 1995-01-10 | Padico Co., Ltd. | Paint resembling stained glass |
JP6514850B2 (en) * | 2014-03-05 | 2019-05-15 | 日本化学塗料株式会社 | Water-based anticorrosion coated metal products |
DE102014216858B4 (en) | 2014-08-25 | 2024-05-29 | Bayerische Motoren Werke Aktiengesellschaft | Emulsion-based preservative for metal components, process for its preparation and process for preserving metal components |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492231A (en) * | 1966-03-17 | 1970-01-27 | Lubrizol Corp | Non-newtonian colloidal disperse system |
FR2407246A1 (en) * | 1977-10-27 | 1979-05-25 | Lubrizol Corp | Aq. coating dispersion for corrosion protection - comprises reaction prod. of overbased salt and carboxylic acid, clay thickener and flocculant |
US4264363A (en) * | 1979-07-05 | 1981-04-28 | The Lubrizol Corporation | Corrosion inhibiting coating composition |
DE2939141C2 (en) * | 1979-09-27 | 1982-07-08 | Basf Farben + Fasern Ag, 2000 Hamburg | Use of coating compounds |
-
1982
- 1982-11-08 NL NL8204309A patent/NL190613C/en not_active IP Right Cessation
- 1982-11-10 FR FR8218877A patent/FR2516531B1/en not_active Expired
- 1982-11-12 GB GB08232447A patent/GB2109393B/en not_active Expired
- 1982-11-15 CA CA000415524A patent/CA1185083A/en not_active Expired
- 1982-11-16 DE DE3242425A patent/DE3242425C2/en not_active Expired - Fee Related
- 1982-11-16 IT IT49504/82A patent/IT1157239B/en active
- 1982-11-17 JP JP57200491A patent/JPS5889665A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
NL190613B (en) | 1993-12-16 |
NL190613C (en) | 1994-05-16 |
IT1157239B (en) | 1987-02-11 |
NL8204309A (en) | 1983-06-16 |
GB2109393B (en) | 1985-06-19 |
IT8249504A0 (en) | 1982-11-16 |
JPH0225388B2 (en) | 1990-06-01 |
FR2516531A1 (en) | 1983-05-20 |
JPS5889665A (en) | 1983-05-28 |
FR2516531B1 (en) | 1988-01-29 |
DE3242425A1 (en) | 1983-05-26 |
GB2109393A (en) | 1983-06-02 |
DE3242425C2 (en) | 1997-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629753A (en) | Water dispersed rust inhibitive coating compositions | |
AU662999B2 (en) | Corrosion inhibition composition | |
US3453124A (en) | Corrosion inhibiting composition | |
EP0317575B1 (en) | Compositions containing basic metal salts and/or non-newtonian colloidal disperse systems and vinyl aromatic containing polymers | |
US4243417A (en) | Corrosion-inhibiting latex paints | |
US6638628B2 (en) | Silicate coating compositions | |
US3384586A (en) | Resinous compositions | |
EP0407074B1 (en) | Coating compositions | |
US4505748A (en) | Anti-corrosive paint | |
US5158605A (en) | Sol/gel polymer surface coatings and corrosion protection enhancement | |
CA1185083A (en) | Water dispersed rust inhibitive coating compositions | |
US4243416A (en) | Corrosion-inhibiting method using latex paints and article | |
CA1159589A (en) | Water-based coating compositions | |
EP0096526A2 (en) | Anti-corrosive paint | |
US3313635A (en) | Protective coating compositions for use in airless spray equipment for coating metallic underbodies of automotive vehicles | |
DE2337606C3 (en) | Corrosion inhibiting aqueous paint | |
JPS58219273A (en) | Antirust paint | |
US5633305A (en) | Coating composition with heat-curing film formation and its use | |
KR900008509B1 (en) | Rust-inhibiting primer composition | |
US3969293A (en) | Basic zinc phosphites | |
EP0412686A1 (en) | Corrosion inhibiting pigment | |
DE3821926C2 (en) | ||
RU2141984C1 (en) | Anticorrosive composition | |
RU2436820C1 (en) | Anticorrosion primer | |
IE54842B1 (en) | Anti-corrosive paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEC | Expiry (correction) | ||
MKEX | Expiry |