Nothing Special   »   [go: up one dir, main page]

AU653548B2 - Flame retardant brominated styrene-based latices - Google Patents

Flame retardant brominated styrene-based latices Download PDF

Info

Publication number
AU653548B2
AU653548B2 AU84498/91A AU8449891A AU653548B2 AU 653548 B2 AU653548 B2 AU 653548B2 AU 84498/91 A AU84498/91 A AU 84498/91A AU 8449891 A AU8449891 A AU 8449891A AU 653548 B2 AU653548 B2 AU 653548B2
Authority
AU
Australia
Prior art keywords
monomer units
ring
composition
brominated aromatic
brominated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU84498/91A
Other versions
AU8449891A (en
Inventor
Nicolai A. Favstritsky
Richard S. Rose
Jin-Liang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Lakes Chemical Corp
Original Assignee
Great Lakes Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Lakes Chemical Corp filed Critical Great Lakes Chemical Corp
Publication of AU8449891A publication Critical patent/AU8449891A/en
Application granted granted Critical
Publication of AU653548B2 publication Critical patent/AU653548B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/21Bromine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Description

OPI DATE 30/03/92 AOJP DATE 14/05/92 APPLN- ID 84498 91 PCT NUMBER PCT/US91/05985 INTERNATIONAL nArrLtLILUIN rU Lia1niu UINVUK It mirAINl LUUVriKAIUN IiEATY(PCT) (51) International Patent Classification 5 (11) International Publication Number: WO 92/04387 C08F 220/12, 212/14 Al (43) International Publication Date: 19 March 1992 (19.03.92) (21) International Application Number: PCT/US91/05985 (74) Agents: HENRY, Thomas, Q. et al.; Woodard, Emhardt, Naughton, Moriarty McNett, Bank One Center/Tow- (22) International Filing Date: 21 August 1991 (21.08.91) er, Suite 3700, 111 Monument Circle, Indianapolis, IN 46204 (US).
Priority data: 579,063 6 September 1990 (06.09.90) US (81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (71)Applicant: GREAT LAKES CHEMICAL CORPORA- (European patent), GB (European patent), GR (Euro- TION [US/US]; Post Office Box 2200, Highway 52 pean patent), IT (European patent), JP, KR, LU (Euro- West Lafayette, IN 47906 pean patent), NL (European patent), SE (European patent).
(72) Inventors: WANG, Jin-liang 2406 River Oaks Drive, Lafayette, IN 47905 FAVSTRITSKY, Nicolai, A. 444 Southern Drive, Lafayette, IN 47905 ROSE, Ri- Published chard, S. 5841 Lookout Drive, West Lafayette, IN With international search report.
47906 Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
653548 (54) Title: FLAME RETARDANT BROMINATED STYRENE-BASED LATICES (57) Abstract Improved flame retardant polymer latices are disclosed which comprise copolymers of ring-halogenated aromatic monomer units and alkyl acrylate/methacrylate monomer units, and which may additionally include at least one other monomer, In a first embodiment, the latices include ring-brominated aromatic monomer units and alkyl acrylate and/or alkyl m'ethacrylate monomer units. In a second embodiment, the latices include these first two types of monomer units and further include third monoer units from unsaturated esters of saturated carboxylic acids, halogen-free aromatic monomers or unsaturated carboxylic acid monomers. In a third embodiment, the latices include four monomer units, namely ring-brominated aromatic monomer units, alkyl acrylate/methacrylate monomer units, halogen-free aromatic monomer units and unsaturated carboxylic acid monomer units.
In one aspect, the halogenated aromatic monomers are present in an amount to provide from 7 to 20 weight percent bromine in the final latex composition. In another aspect, the halogenated aromatic monomers include polybrominated monomers, particularly to provide monomers having an average of at least about 1.5 bromines per monomer unit.
WO 92/04387 PCT/US91/05985 FLAME RETARDANT BROMINATED STYRENE-BASED LATICES BACKGROUND OF THE INVENTION Field of the Invention: This invention relates to the composition and preparation of polymer latices, particularly to such latices including ring-halogenated, ethylenically unsaturated aromatic monomers and at least one other monomer.
Description of the Prior Art: Acrylic, styrene-acrylic and vinyl-acrylic latices are commercially used in a variety of surface coatings. In many coatings applications, the latices used are desired to have flame-retarding properties. This applies in particular where latices are used in textiles, carpeting, paints, clear coatings, adhesives, sealants, caulking, non-woven binders and so on.
The usual method by which flame-retardant properties are imparted to latices is the blending-in of flame retardant additives. Many of these flame retardant additives contain bromine, such as brominated diphenyl or diphenyloxide compounds together with antimony trioxide. However, such flame retardant additives have a major disadvantage in that their use gives rise to problems, such as the generation of strong white pigmenting and settling out effect, and toxicity resulting from the presence of antimony trioxide.
A common approach has been the addition of solid organic and inorganic compounds to latices to confer flame retardancy. U.S. Patent No. 3,877,974 describes the admixture of an aqueous dispersion of a halogenated organic compound and metallic oxide with a polymeric adhesive binder. Although this approach has been shown to provide the desired flame retardancy, many undesirable features are again introduced. Solids ultimately separate from the latex emulsion despite any dispersion techniques employed. The WO 92/04387 PCT/US91/05985, -2dispersions tend to be high in viscosity and impede application of the latex. Latex films become stiffer due to the presence of solids, interfering with the flexibility or "hand" of the latex. In addition, solids tend to have a pigmenting effect which masks or changes the color of the substrate.
Liquid compounds have been added to latices as well.
U.S. Patent No. 3,766,189 teaches the use of liquid chlorinated paraffin in a latex to achieve fire retardancy.
Drawbacks to the use of liquids include migration from the polymer with time, separation from the liquid latex emulsion, adverse effect upon adhesion, plasticizing, swelling of the latex, and poor water resistance. Salts and other water soluble solids eliminate the problems of settling of solids, but contribute other problems cited as well as generally having an adverse effect upon the stability of the latex emulsion.
Chemical integration of monomers into latex polymer to impact flame retardancy has had limited success.
Predominantly PVC based latices generally have only a marginal advantage in flammability over non-flame retarded analogs. Addition of more chlorine in the form of vinylidene chloride has been quite limited due to high cost.
Curable resin compositions containing a basic catalyst and a water solution of polymerized halogen-containing vinyl monomer and other vinyl monomers are disclosed in Japanese Patent No. 56120754-A2, issued to Mitsui Toatsu Chemicals on September 22, 1981. The Mitsui patent reports that water based suspensions or emulsions of vinyl polymers have weak resistance to water, cracking and soiling (staining), and that the proposed compositions overcome such shortcomings.
The patent mentions various halogenated vinyl monomers, including brominated monomers, but does not disclose the use of polybrominated monomers.
Moreover, the Mitsui patent is limited to treatment of WO 92/04387 PCT/US9/05985 -3water, cracking and soiling properties. No recognition is contained in the Mitsui patent of the preparation of flame retardant latices utilizing brominated vinyl monomers, and the patent fails to disclose percentages of use for such monomers to achieve flame retardancy. The patent proposes that the halogen-containing monomer comprise at most 15% by weight of the copolymer, which corresponds to a bromine content in the resin of at most about The Mitsui patent further indicates that it is preferred to have a lower percentage of halogen-containing monomer of at most 10% by weight, corresponding to a bromine content of at most 4%.
These percentages are insufficient to provide desirable flame retardancy. In preferring the lower bromine content, the Mitsui patent teaches away from the present invention.
Bromine-containing plastics are described in European Patent Application No. 79200768.4, filed by Stamicarbon B.V.
on December 15, 1979 (published July 9, 1980 as No.
13,052-Al). The Stamicarbon application is directed to the preparation of plastic materials, including polyolefins, polystyrene, and copolymers of styrene and butadiene, styrene and acrylonitrile and ABS. The plastics of the Stamicarbon application require high levels of bromine, and are described as containing 20-44 weight percent of bromine.
There has remained a need for polymer latices which possess desired flame retardant properties. It is also important that such latices be able to be conveniently blended with other latices in the same manner as flame retardants. The polymer latices of the present invention satisfy these needs, and are useful as fire retardant fabric backcoatings, coatings, paints, adhesives, sealants, caulking, non-woven binders and a variety of other applications.
Summary of the Invention In accordance with a first embodiment of the present invention, there is provided a flame retardant polymer latex coating composition comprising ring-brominated aromatic monomer units of the formula Rl
-CH
2
-C-
R
2 6Brx and alkyl (meth)acrylate monomer units of the formula (II):
(II):
RI
-CH
2
-C-
0 !OR3 Sin which X 1 to 4, R 1 is -H or -CH 3
R
2 is -H or an alkyl group having from 1 to 4 carbon atoms, and R 3 is an alkyl group having from 1 to 20 carbon atoms, wherein at to least several of said ring-brominated aromatic monomer units are polybrominated units.
According to a second embodiment of the present invention, there is provided a flame retardant polymer latex coating composition comprising ring-brominated aromatic monomer units of the formula Ri
-CH
2
-C-
.R
2 Brx and alkyl (meth)acrylate monomer units of the formula (II):
(II):
-CH
2
-C-
0' OR 3 and further comprising third monomer units selected from the group consisting of: acid ester monomer units of the formula (III):
-CH
2
-CH-
O-C-R
4 non-brominated aromatic monomer units of the formula (IV): (N:\LIBR100366:LMM 4A
R
1
-CH
2 -6- R2 and carboxylic acid monomer units of the formula R1 -CH2-C-
C
0 OH in which X 1 to 4, R 1 is -H or -CH 3
R
2 is -H or an alkyl group having from 1 to 4 carbon atoms, R 3 is an alkyl group having from 1 to 20 carbon atoms, and R 4 is an alkyl group having from 1 to 3 carbon atoms, wherein at least several of said ring-brominated S aromatic monomer units are polybrominated units.
According to a third embodiment of the present invention, there is provided the composition of the second embodiment in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
According to a fourth embodiment of the present invention, there is provided a flame retardant polymer latex coating composition comprising ring-brominated aromatic Smonomer units of the formula
R
2 Brx 15R1 -CH2-C- R2TBrx alkyl (meth)acrylate monomer units of the formula (II):
(II):
RI
-CH2-C- 0 'OR 3 non-brominated aromatic monomer units of the formula (IV):
R
-CH
2
-C-
2R2 and carboxylic acid monomer units of tile formula N:\LIBR00366:LMM 4B
RI
-CH
2
-C-
CI
in which X 1 to 4, R 1 is -H or -CH 3
R
2 is -H or an alkyl group having from 1 to 4 carbon atoms, and R 3 is an alkyl group having from 1 to 20 carbon atoms, wherein at least several of said ring-brominated aromatic monomer units are polybrominated units.
Preferably, the halogenated aromatic monomers are present in an amount to provide from 7 to 20 weight percent bromine in the final latex composition. Preferably, the halogenated aromatic monomers include polybrominated monomers, particularly to provide monomers having an average of at least about 1.5 bromines per monomer unit.
The compositions of the present invention are exemplified by three categories of latex compositions. In a first embodiment, the latices include ring-brominated aromatic S monomer units and second monomer units from alkyl acrylate monomer units, alkyl methacrylate monomer units, or combinations thereof. In a second embodiment, the latices include these first two types of monomer units and further include third monomer units selected from unsatured esters of saturated carboxylic acids, halogen-free aromatic monomers or unsaturated carboxylic acid monomers. In a third embodiment, the latices include four monomer units, namely ring-brominated aromatic monomer units, alkyl acrylate and/or alkyl methacrylate monomer units, unsaturated carboxylic acid monomer units, and halogen-free aromatic monomers.
It is an object of the present invention to provide flame retardant polymer latex 20 compositions which retain desirable physical properties.
A further object of the present invention is to provide flame retardant polymer latices which are useful for a wide variety of applications, including fabric backcoatings, coatings, paints, adhesives, sealants, caulking, non-woven binders and the like.
i 7 [N\LIBR100 366:LMM WO 92/04387 PCT/US9I/05985 Further objects and advantages of the present invention will be apparent from the description which follows.
WO 92/04387 PCT/US91/05985 -6- DESCRIPTION OF THE PREFERRED EMBODIMENT For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments described hereafter. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations, further modifications and applications of the principles of the invention as described 'erein being contemplated as would normally occur to one skills, in the art to which the invention relates.
The present invention provides polymer latex compositions having advantageous physical properties making them useful for a wide variety of applications, and which latices have improved flame retardancy over prior art compositions. Past efforts have failed to provide compositions of the described type, while it has now been discovered that the inclusion of ring-brominated aromatic monomer units in polymer latices provides improved flame retardancy without deleterious affects on other physical attributes of the compositions.
The brominated aromatic monomers may generally be included in a variety of latex compositions, including but not limited to those in which non-brominated aromatic monomers have been known to be useful. The brominated monomers may be used in partial or total replacement of such non-brominated monomers. It is an aspect of the present invention that the described ring-brominated aromatic' monomers may be used in the wide-ranging prior art compositions in which non-brominated aromatic monomers have been employed, with the consequent advantage being the achievement of improved flame retardancy without detrimental impact on the physical properties of the latex.
e, two or more monomers may be reacted with, for examl brominated styrene to produce the copolymer latices of the .zesent invention. Careful selection of monomers used in conjunction with the brominated aromatic monomer enables WO 92/04387 PCT/US91/05985 -7production of flame retardant latices useful in a wide range of applications. These include textile backcoatings for woven upholstery and draperies, carpet backing, non-woven filter media binders, paints, adhesives, caulks, sealants and the like.
The copolymer latices of the present invention contain a ring-brominated aromatic monomer and at least one other monomer. The compositions of the present invention are exemplified by three categories of latex compositions. In a first embodiment, the latices include ring-brominated aromatic monomer units and units selected from alkyl acrylate monomer units, alkyl methacrylate monomer units or combinations thereof. In a second embodiment, the latices include these first two types of monomer units and further include third monomer units selected from unsaturated esters of saturated carboxylic acids, halogen-free aromatic monomers or unsaturated carboxylic acid monomers. In a third embodiment, the latices include four monomer units, namely ring-brominated aromatic monomer units, alkyl acrylate and/or alkyl methacrylate monomer units, unsaturated carboxylic acid monomer units, and halogen-free aromatic monomers.
The present invention employs ring-brominated aromatic monomer units of the formula R1
CH
2 C R2 Brx in which X 1 to 4, R 1 is -H or -CH 3 and R 2 is -H or an alkyl group having from 1 to 4 carbon atoms.
Representative ring-halogenated aromatic monomers are styrene, methylstyrr.e, a-methylstyrene, c-methyl WO 92/04387 PCT/US91/05985 -8methylstyrene, ethylstyrene or a-methyl ethylstyrene with bromine substitution (mono, di, tri and tetra) in the phenyl nucleus. Mixtures or mixed isomers of the above monomers may also be used. As discussed more fully hereafter, the preferred ring-brominated aromatic monomer is polybrominated styrene, with dibromostyrene being most preferred. A preferred dibromostyrene material is one available from Great Lake Chemical Corporation of West Lafayette, Indiana, which material normally contains about 15 percent monobromostyrene and 3 percent tribromostyrene by weight.
In one aspect of the present invention, the ring-brominated aromatic monomer is included in the overall latex composition in an amount to provide sufficient bromine to yield the desired flame retardancy. In this respect, the ring-brominated monomer is included in an amount to provide from 7 to 20 percent bromine by weight of the overall composition. More preferably, the ring-brominated monomer is included in an amount to give from 9 to 18 percent bromine by weight.
In another aspect of the invention, it has been determined that it is preferable to utilize polybrominated forms of the ring-brominated aromatic monomer. This minimizes the number of ring-brominated monomer units required to achieve a given bromine weight percent of the overall composition. The use of a lower percentage of ring-brominated monomer units minimizes any adverse impact which such units would otherwise have on the physical properties of the latex. It is therefore an aspect of the present invention that the ring-brominated aromatic monomer units include polybrominated units, and that the ring-brominated monomer units include an average of at least about 1.5 bromines per unit. For latices containing monobrominated forms of the ring-brominated aromatic monomer units, it is preferred that at most about 20% of the ring-brominated aromatic monomer units be monobrominated.
WO 92/04387 PCT/US91/05985 -9- At the same time, it is desirable that the latex compositions be readily prepared. Highly brominated, ethylenically-unsaturated, aromatic monomers, such as pure tetrabromostyrene, are not liquid at room temperature, and this interferes with the ready preparation of the latices.
It is therefore preferred that the ratio of monobrominated and polybrominated monomer units in the latex be such that the corresponding mixture of the unsaturated ring-brominated aromatic monomers is liquid at room temperature. For example, a preferred material for use in the preparation of the latices of the present invention is the previously identified dibromostyrene composition as produced by Great Lakes Chemical Corporation, which composition is liquid at room temperature and comprises a mixture of 15 percent monobromostyrene, 82 percent dibromostyrene and 3 percent tribromostyrene. Other mono- and polybrominated aromatic monomer mixtures which are liquid at room temperature are similarly preferred for preparation of the present latex compositions. The mixtures preferably include as high an overall percentage of bromine as possible while still being a liquid at room temperature.
In a first embodiment of the present invention, the polymer latices contain the ring-brominated aromatic monomer units and also include alkyl (meth)acrylate monom 'inits of the formula (II):
RI
CH
2 C
C
OR
3 WO 92/04387 PCT/US91/05985' in which R 1 is -H or -CH 3 and R 3 is i alkyl group of 1 to 20 carbon atoms. Representative alkyl acrylates useful in accordance with the present invention are methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isohexyl acrylate, 2-ethylhexyl acrylate, n-heptyl acrylate, isoheptyl acrylate, 1-methyl-heptyl acrylate, n-octyl acrylate, isoctyl acrylates such as 6-methyl-heptyl acrylate, n-nonyl acrylate, isononyl ac'.lates such as 3,5,5-trimethylhexyl acrylate, 'n-decyl acrylate, lauryl acrylate and corresponding alkyl methacrylates and other primary, secondary and tertiary higher alkyl acrylates and methacrylates, where the alkyl radical can vary from 1 to carbon atoms with the preferred species being those having 2 to 10 carbon atoms. The preferred monomers are ethyl acrylate, n-propyl acrylate, n-butyl acrylate and 2-ethylhexyl acrylate, and methyl methacrylate. In addition, the hydroxy alkyl esters of acrylic acid or methacrylic acid are useful in this invention.
In one aspect of the first embodiment of the present invention, the latex compositions comprise the ring-brominated aromatic monomer units and the alkyl acrylate and/or alkyl methacrylate monomer units. As discussed, the ring-brominated aromatic monomer units are preferably present in an amount to provide from 7 to 20 percent, and more preferably from 9 to 18 percent, bromine by weight of the overall composition. Also, the ring-brominated aromatic monomer units preferably include an average of at least about bromines per unit. In another aspect of this first embodiment of the inventive latices, the composition consists essentially of the ring-brominated aromatic monomer units and the alkyl acrylate/methacrylate monomer units.
In a second embodiment of the present invention, the polymer latices include the ring-brominated aromatic monomer WO 92/04387 PCT/US91/05985 -11units and the alkyl acrylate/methacrylate monomer units and further include third monomer units of either unsaturated esters of saturated carboxylic acid monomer units (III), non-brominated aromatic monomer units (IV) or carboxylic acid monomer units The acid ester monomer units have the formula (III): (III):
CH
2 CH O C R4
II
in which R 4 is an alkyl group of 1 to 3 carbon atoms.
Representative acid ester monomer units include vinyl acetate, vinyl propionate and vinyl butyrate, with vinyl acetate being preferred.
The non-brominated aromatic monomer units have the formula (IV):
R
1
CH
2 C R2 in which R 1 and R 2 are as previously defined. Typical halogen-free aromatic monomers are styrene, o-methylstyrene, methylstyrene, a-methyl methylstyrene, ethylstyrene and a-methyl ethylstyrene, with styrene or a-methylstyrene being preferred.
WO 92/04387 PCT/ US9)1/05985 -12- The carboxylic acid monomer units have the formula
R
1
CH
2 C
OH
in which R 1 is -H or -CH 3 Representative ethylenically unsaturated carboxylic acid monomers are acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid. The preferred acids are acrylic and methacrylic acids.
Selection of the ring-brominated aromatic monomer units and the alkyl acrylate/methacrylate monomer units are as previously described. In a related aspect of the present invention, the latices consist essentially of the ring-brominated aromatic monomer units the alkyl acrylate/methacrylate monomer units and the third units selected from the group consisting of the acid ester monomer units (III), the non-brominated aromatic monomer units (IV) and the carboxylic acid monomer units In a third embodiment of the present invention, there are provided polymer latices including the ring-brominated aromatic monomer units the alkyl acrylate/methacrylate monomer units non-brominated aromatic monomer units (IV) and carboxylic acid monomer units In a related aspect, the latices consist essentially of the ring-brominated aromatic monomer units the alkyl acrylate/methacrylate monomer units the non-brominated aromatic monomer units (IV) and the carboxylic acid monomer units Advantageously, the latices of the present invention may be prepared in accordance with conventional methods. For WO 92/G 3187 PCr/US91/O5985 -13example, the latices are prepared by polymerizing in the emulsion system (water, emulsifier, initiator, and chain transfer agent) 100 parts by weight total monomers in the ratio desired in the polymer. Techniques for preparation of the latices include emulsion polymerization and dispersion of polymers prepared by solution, bulk or suspension polymerization. Suitable initiators include the initiators used for free radical polymerization such as organic peroxides, hydroperoxides, azo or diazo compounds, persulfates, redox systems, etc. Suitable emulsifiers include anionic, cationic, nonionic or amphoteric emulsifiers. Useful chain transfer agents include aliphatic, aryl mercaptans and disulfides, CC1 4 CBr 4
CHI
3 and CHC1 3 etc. Among these, mercaptans are preferred.
Polymerization may be carried out in the presence of air. Faster reactions are observed in the absence of oxygen at temperatures ranging from -300 to 110 0 C, with preferred temperatures ranging froni about 0°C to about The polymer latices of the present invention are useful as fire retardant fabric backcoatings, coatings, paints, adhesives, sealants, caulking, non-woven binders, etc.
Monomer selection is based upon the final application of the latex. Criteria include the glass transition temperature physical properties and chemical resistance desired.
The flame retardant latices of the present invention may be admixed with other latex compositions, including non-flame retardant latices, to provide resulting latices and coatings having enhanced properties. In particular, the combination of the flame retardant latices used herein with other latices will yield coatings having improved flame retardancy. The latices of the present invention may then be provided with sufficient levels of bromine to yield the desired levels, such as previously indicated, for the resulting combined latices and coatings. Improvement in properties may also be achieved for such mixtures with respect to such aspects as WO 92/04387 PCT/US91/05985' -14adhesion, film forming, chemical resistance and flexibility.
The invention will be further described with reference to the following specific Examples. However, it will be understood that these Examples are illustrative and not restrictive in nature. Percents indicated are percents by weight unless indicated otherwise.
Examples Preparation of DBS/2-EHA Copolymer Latices A series of emulsion polymerizations of dibromostyrene (DBS)/2-ethylhexyl acrylate (2-EHA) were carried out in 8 oz.
bottles. All the ingredients (122.50 or 180 parts by weight deionized water, 3 parts sodium dodecyl sulfate, 0.3 parts potassium persulfate, 0.2 parts t-dodecyl mercaptan and 100 parts total monomers in the ratio desired in the polymer) were charged into 8 oz. bottles and flushed well with nitrogen, and then reacted at 50°C to about 45.8 or 36.5% solids in 15 hr. The whole bottle was cooled to room temperature and 3 parts deionized water and 0.18 parts H202 added, followed by agitation for 20 minutes. The results of these preparations are set forth in Table I. The latices perform well in a variety of coating applications, and display improved flame retardancy.
TABLE I Preparation of DBS/2-EHA Copolymer Latices Monomer Charge Reaction Solids Conversion Example DBS/2-EHA Time, hr 1 34:66 15 45.8 100 2 30:70 15 45.8 100 3 20:80 15 45.8 100 4 15:85 15 36.5 100 12:88 15 36.5 100 WO 92/G4387 PCT/US91/05985 Excellent latex compositions are similarly obtained by repetition of the foregoing methods with, for example, ethyl acrylate, n-propyl acrylate and n-butyl acrylate.
Examples 6-11 Preparation of DBS/2-EHA/VAc Terpolymer Latices The general procedure of Examples 1-5 was repeated to prepare terpolymer latices which contained 0-30 percent by weight of dibromostyrene (DBS), 15-80 percent by weight of 2-ethylhexyl acrylate (2-EHA) and 10-85 percent by weight of vinyl acetate (VAc). The reaction reached 95-100% conversion at 34.7-36.5% solids in 15-16.25 hr at 50 0 C, as shown in Table II. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the 2-ethylhexyl acrylate with ethyl acrylate, n-propyl acrylate, n-butyl acrylate and methyl methacrylate, and with replacement of the vinyl acetate with vinyl propionate and vinyl butyrate. The latices perform well in a variety of coating applications, and display improved flame retardancy.
TABLE II Preparation of DBS/2-EHA/VAc Terpolymer Latices Monomer Charge Reaction Solids Conversion Example DBS/2-EHA/VAc Time, hr 6 30:32:38 15 35.7 98 7 20:60:20 15 34.7 8 20:40:40 15 35.7 98 9 20:20:60 15 35.7 98 10:80:10 16.25 36.5 100 11 0:15:85 16.25 35.9 98 WO 92/04387 PCT/US91/05985' -16- Examples 12-17 Preparation of DBS/2-EHA/S Terpolymer Latices The general procedure of Examples 1-5 was repeated to prepare terpolymer latices which contained 0-20 percent by weight of dibromostyrene (DBS), 10-60 percent by weight of 2-ethylhexyl acrylate (2-EHA) and 20-90 percent by weight of styrene The monomers were polymerized to 91-100 percent conversion at 33.2-36.5 percent solids in 15-18.25 hr at 0 C, as indicated in Table III. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the 2-ethylhexyl acrylate with ethyl acrylate, n-propyl acrylate, n-butyl acrylate and methyl methacrylate, and with replacement of the styrene with methylstyrene, a-methylstyrene, a-methyl methylstyrene, ethylstyrene and a-methyl ethylstyrene. The latices perform well in a variety of coating applications, and display improved flame retardancy.
TABLE III Preparation of DBS/2-EHA/S Terpolymer Latices Monomer Charge Reaction Solids Conversion Example DBS/2-EHA/S Time, hr 12 20:60:20 15.58 33.2 91 13 20:40:40 15.58 36.5 100 14 20:20:60 15 35.5 97 15:40:45 18.25 36.1 99 16 10:40:50 18.25 36.1 99 17 0:10:90 18.25 36.1 99 WO 92/04387 PCT/US91/05985 -17- Examples 18-24 Preparation of DBS/EA or BA/MAA Terpolymer Latices Emulsion polymerizations of dibromostyrene (DBS)/ethyl acrylate (EA) or butyl acrylate (BA)/methacrylic acid (MAA) were carried out in 8 oz. bottles. The ingredients comprising 103.67 parts by weight deionized water, 3 parts sodium dodecyl sulfate, 0.3 parts potassium persulfate, 0.3 parts sodium bisulfite, with 0.2 parts or without t-dodecyl mercaptan, and 20-30 parts DBS, 0-80 parts EA or BA and 0-8 parts MAA were charged into 8 oz. bottles and flushed well with nitrogen, and then reacted at 50 OC to about 50% solids in 7 hr. The whole bottle was cooled to room temperature and neutralized with 1% NaOH to a pH of 7. The results of these preparations are set forth in Table IV. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the ethyl acrylate or butyl acrylate with n-propyl acrylate and 2-ethylhexyl acrylate, and with replacement of the methacrylic acid with acrylic acid. The latices perform well in a variety of coating applications, and display improved flame retardancy.
TABLE IV Preparation of DBS/EA or BA/MAA Terpolymer Latices Monomer Charge Reaction Solids Conversion Example DBS/EA/BA/MAA Time, hr 18 20:78:0:2 7 50 100 19 20:80:0:0 7 50 100 30:0:67:3 7 50 100 21 20:0:77:3 7 50 100 22 20:0:76:4 7 50 100 23 20:0:74:6 7 50 100 24 20:0:72:8 7 50 100 WO 92/04387 PCT/US91/05985- -18- Examples 25-28 Preparation of DBS/2-EHA or EA/MMA Terpolymer Latices The general procedure of Examples 18-24 was repeated to prepare terpolymer latices which contained 20-25 percent by weight of dibromostyrene (DBS), 0-65 percent by weight of 2-ethylhexyl acrylate (2-EHA) or ethyl acrylate and 15-23 percent by weight of methyl methacrylate (MMA). The reactions reached 100 percent conversion at 50% solids at OC in 9 hr, as shown in Table V. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the 2-EHA or EA with n-propyl acrylate and butyl acrylate, and with replacement of the MMA with ethyl methacrylate, isopropyl methacrylate and t-butyl methacrylate. The latices perform well in a variety of coating applications, and display improved flame retardancy.
TABLE V Preparation of DBS/2-EHA or EA/MMA Terpolymer Latices Monomer Charge Reaction Solids Conversion Example DBS/2-EHA/EA/MMA Time, hr 20:65:0:15 9 50 100 26 20:57:0:23 9 50 100 27 25:0:57:18 9 50 100 28 20:0:57:23 9 50 100 WO 92/04387 PCT/US91/05985 -19- Examples 29-30 Preparation of DBS/EA/MMA/MAA Tetrapolymer Latices Preparation of 0-20 percent dibromostyrene (DBS), percent ethyl acrylate 13-33 percent-methyl methacrylate (MMA) and 2 percent methacrylic acid (MAA) tetrapolymer latices was carried out in 8 oz. bottle by the same technique as described in Examples 1-5 except that 7.56 parts alkyl aryl polyether alcohol (Triton X-207 from Rohm Haas, Philadelphia, PA) was dissolved in 100 parts total monomers and charged into the bottle containing 0.12 parts (NH4)2S208, 0.16 parts NaHSO 3 and 113.51 parts deionized water. The reactions reached 93-95 percent conversion at 45.3-46.3 percent solids at 65 0 C in 2.5-4.5 hr, as shown in Table VI. The product was cooled to 30 0
C,
strained, and the pH adjusted to 9.5 with 2-amino-2-methyl-l-propanol. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the ethyl acrylate with 2-ethylhexyl acrylate, n-propyl acrylate and n-butyl acrylate, with replacement of the methyl methacrylate with ethyl methacrylate, isopropyl methacrylate and t-butyl methacrylate, and with replacement of the methacrylic acid with acrylic acid. The latices perform well in a variety of coating applications, and display improved flame retardancy, indicated by an oxygen index of TABLE VI Preparation of DBS/EA/MMA/MAA Terpolymer Latices Monomer Charge Reaction Solids Conversion Oxygen Example DBS/EA/MMA/MAA Time, hr Index 29 20:65:13:2 4.5 45.3 93 0:65:33:2 2.5 46.3 95 23 WO 92/04387 PCT/US91/05985 Examples 31-34 Preparation of DBS/BA/S/MAA Tetrapolymer Latices The general procedure of Examples 29-30 was repeated to prepare tetrapolymer latices which contained 0-30 percent by weight of dibromostyrene (DBS), 55-78 percent by weight of butyl acrylate 0-43 percent by weight of styrene (S) and 2-3 percent by weight of methacrylic acid (MAA). The reaction reached 94-97 percent conversion at 43.9-46.2 percent solids at 65 0 C in 3.67-.19.75 hr, as shown in Table VII. The product was cooled to 30 0 C, strained, and the pH adjusted to 9.5 with 2-amino-2-methyl-l-propanol. Similarly good latex compositions are obtained by repetition of the foregoing preparation with replacement of the butyl acrylate with ethyl acrylate, n-propyl acrylate and 2-ethylhexyl acrylate, with replacement of the styrene with methylstyrene, a-methylstyrene, a-methyl methylstyrene, ethylstyrene and a-methyl ethylstyrene, and with replacement of the methacrylic acid with acrylic acid. The latices perform well in a variety of coating applications, and display improved flame retardancy, indicated by an oxygen index of 24.
TABLE VII Preparation of DBS/BA/S/MAA Tetrapolymer Latices Monomer Charge Reaction Solids Conversion Oxygen Example DBS/BA/S/MAA Time, hr Index 31 30:67:0:31 17 44.0 97 24 32 20:78:0:22 3.67 43.9 97 33 20:55:23:2 19.75 46.2 95 24 34 0:55:43:2 14 45.8 94 22 WO 92/04387 PCT/US91/05985 -21- 1. Using 5 parts block copolymer of propylene oxide and ethylene oxide (F108, BASF Wyandotte Corp., Parsippany, 2. Using 7.59 parts octylphenoxy polyethoxy ethanol (Triton X-165, Rohm Haas).
Example Preparation of Related Copolymer Latices The preparation of related latex compositions as described previously yields equally advantageous products.
For example, in place of dibromostyrene there is used a variety of ethylenically-unsaturated, ring-brominated aromatic monomers such as methylstyrene, a-methylstyrene, a-methyl methylstyrene, ethylstyrene and a-methyl ethylstyrene (with mono, di, tri and tetra bromine substitution in the benzene ring). In particular, brominated aromatic monomers including polybrominated units, and especially mixtures which are liquid at room temperature and have an average of at least 1.5 bromines per unit, permit ready preparatic: of the inventive latices, and yield compositions which have improved flame retardancy and good physical properties. Similarly, superior flame retardant latex compositions are obtained by preparations according to the earlier Examples with the use of alternate monomers as described previously in the text. The choice of monomers is primarily dependent on the physical properties desired for the resulting latices, and the presence of the ring-brominated aromatic monomer units provides increased flame retardancy for the products.
While the invention has been described in detail in the foregoing description and its specific Examples, the same is to be considered illustrative and not restrictive in character. It is to be understood that only the preferred embodiments have been described, and that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (28)

1. A flame retardant polymer latex coating composition comprising ring-brominated aromatic monomer units of the formula R 1 CH 2 C R2 Brx and alkyl (meth)acrylate monomer units of the formula (II): R1 CH 2 C C OR 3 in which X 1 to 4, R 1 is -H or -CH3, R 2 is -H or an alkyl group having from 1 to 4 carbon atoms, and R 3 is an alkyl group having from 1 to 20 carbon atoms, wherein at least several of said ring-brominated aromatic monomer units are polybrominated units.
2. The composition of claim 1 in which the ring-brominated monomer units are present in an amount to provide from about 9 weight percent bromine to about 18 weight percent bromine in the flame retardant polymer latex coating composition.
3. The composition of claim 1 in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit. SUSTITUTS WO 92/04387 PCr/US1/05985 -23-
4. The composition of claim 3 in which the ring-brominated aromatic monomer units include monobrominated units and polybrominated units, and in which no more than about 20% of the ring-brominated aromatic monomer units are monobrominated units.
The composition of claim 3 in which the ratio of monobrominated and polybrominated units is such that the corresponding mixture of the unsaturated ring-brominated aromatic monomers is liquid at room temperature.
6. The composition of claim 3 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
7. The composition of claim 1 and consisting essentially of the ring-brominated aromatic monomer units and the alkyl (meth)acrylate monomer units.
8. The composition of claim 7 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
9. The composition of claim 7 in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
A flame retardant polymer latex composition compris:ng ring-brominated aromatic monomer units of the formula R 1 CH7 C R2 Brx -24- and alkyl (meth)acrylate monomer units of the formula (II): R 1 CH 2 C C OR 3 in which X 1 to 4, R 1 is -H or -CH 3 R 2 is -H or an alkyl group having from 1 to 4 carbon atoms, and R 3 is an alkyl group having from 1 to 20 carbon atoms, and in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
11. The composition of claim 10 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
12. The composition of claim 10 in which the ratio of monobrominated and polybrominated units is such that the corresponding mixture of the unsaturated ring-brominated aromatic monomers is liquid at room temperature.
13. The composition of claim 10 and consisting essentially of the ring-brominated aromatic monomer units and the alkyl (meth)acrylate monomer units.
14. A flame retardant polymer latex coating composition comprising ring-brominated aromatic monomer units of the Z U!310T IT S1 EZ s~T formula CH 2 R Brx and alkyl (meth)acrylate monomer units of the formula (II): (II)I -CH 2 C 0 OR 3 and further comprising third monomer units selected from the group consisting of: acid. ester monomer units of the formula (III): (III) CH 2 CH o-C R non-brcom-inated. aromatic monomer units of the formula (IV) -CH 2 r.. V'. -26- and carboxylic acid monomer units of the formula R1 CH 2 C C OH in which X 1 to 4, R 1 is -H or -CH 3 R 2 is -H or an alkyl group having from 1 to 4 carbon atoms, R 3 is an alky! group having from 1 to 20 carbon atoms, and R 4 is an alkyl group having from 1 to 3 carbon atoms, wherein at least several of said ring-brominated aromatic monomer units are polybrominated units.
The composition of claim 14 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
16. The composition of claim 14 in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
17. The composition of claim 16 in which the ring-brominated aromatic monomer units include monobrominated units and polybrominated units, and in which no more than about 20% of the ring-brominated aromatic monomer units are monobrominated units.
18. The composition of claim 16 in which the ratio of monobrominated and polybrominated units is such that the corresponding mixture of the unsaturated ring-brominated aromatic monomers is liquid at room temperature. CE* WO 92/04387 PCT/US91/05985 -27-
19. The composition of claim 16 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
The comp.osition of claim 14 and consisting essentially of the ring-brominated aromatic monomer units, the alkyl (meth)acrylate monomer units and the third monomer units selected from the group consisting of: acid ester monomer units, non-brominated aromatic monomer uni and carboxylic acid monomer units.
21. The composition of claim 20 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
22. The composition of claim 20 in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
23. A flame retardant polymer latex composition comprising ring-brominated aromatic monomer units of the formula RI -CH 2 C R2 Brx WO 92/04387 PCr/US9 1/05985 -28- and alkyl (meth)acrylate monomer units of the formula (II): CH 0 OR 3 and further comprising third monomer units selected from the group consisting of: acid ester monomer units of the formula (III): (111): -Cl1I 2 CH 0 C R 4 non-brominated aromatic monomer units of the formula (IV): R CH 2 C- R and carboxylic acid monomer units of the formula R CR 2 -C- -29- in which X 1 to 4, R 1 is -H or -CH 3 R 2 is -H or an alkyl group having from 1 to 4 carbon atoms, R 3 is an alkyl group having from 1 to 20 carbon atoms, and R 4 is an alkyl group having from 1 to 3 carbon atoms, and in which the ring-brominated aromatic monomer units include an average of at least about 1.5 bromines per unit.
24. The composition of claim 23 in which the ring-brominated monomer units are present in an amount to provide from 9 to 18 weight percent bromine.
25. The composition of claim 23 in which the ratio of monobrominated and polybrominated units is such that the corresponding mixture of the unsaturated ring-brominated aromatic monomers is liquid at room temperature.
26. The composition of claim 23 and consisting essentially of the ring-brominated aromatic monomer units, the alkyl (meth)acrylate monomer units and the third monomer units selected from the group consisting of: acid ester monomer units, non-brominated aromatic monomer units and carboxylic acid monomer units.
27. A flame retardant polymer latex coating composition comprising ring-brominated aromatic monomer units of the formula R 1 CH 2 C R2 Brx I n% alkyl (meth)acrylate monomer units of the formula (II): (II): RI -CH2-C- ,C. o' OR 3 non-brominated aromatic monomer units of the formula (IV): R 1 -CH 2 -C- R2 and carboxylic acid monomer units of the formula RI -CH 2 -C- I I C d' OH 6"oH in which X 1 to 4, RI is -H or -CH 3 R 2 is -H or an alkyl group having from 1 to 4 carbon atoms, and R 3 is an alkyl group having from 1 to 20 carbon atoms, wherein at least several of said ring-brominated aromatic monomer units are polybrominated units. o
28. A flame retardant polymer latex substantially as hereinbefore described with reference to any one of the Examples. Dated 7 July, 1994 Great Lakes Chemical Corporation S 15 Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON [N:\LIBR00366:LMM i. iLLASSII~itA it ii u. Sunik. i ivtA 1LI 012 several ctassitication symbols apply, indicate all)' According to International P'atent Classification (IPC) or to both National Classification and iPC Int.Cl. 5 C08F220/12; 't.28F212/14 H. FIELDS SEARCHED Minimum Documentation Searched7 Classification System Classification Symbols Int..Cl. 5 C08F Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included In the Fields Searchedl I. DOCUMENTS CONSIDERED TO BIE RELEVANT 9 Category 0f Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.U3 A EP,A,O 013 052 (STAMICARBON) 9 July 1980 1-39 cited in the application see claims 1-4 A US,A,3 072 588 (J.F.VITKUSKE) 8 January. 1963 1-39 see claims 1-7 0 Special categories of cited documents t 'T later document published after the International filing date A doumet dfinng he eneal tat ofthe~ bh ~notor priority date and not in conflict with the application but W dcndefi n to e b ealsae of partirtlarirelesance cited to understtand the principle or theory underlying the consdere tobe o paticuar ele-aceInvention earlier document but published on or after the International document of particular relevance; the claimed Invention filing date cannot be considered novel or cannot be considered to W7 document which may throw doubts on priority claim(s) or Involve an inventive step which Is cited to establish the publication date of another document of particular relevance; the claimed Invention citation or other special reason (as specified) cannot be considered to Involve in inventive step when the 0' document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu- other means ments, such combination being obvious to a person Wkiled qP document pubilshed prior to the international filing date but in the art later than the priority date claimed W document member of the same patent famly TV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search Report 22 JANUARY 1992 39.292 International Searching Authority Signature of Authorized Officer EUROPEAN PATENT OFFICE CAUWENBERG C.L. PCTr ISA2O (.cd uhed) (Jmary 1915) ANNEX TO THE INTERNATIONAL SEARCH REPORJS ON INTERNATIONAL PATENT APPLICATION NO. SA 9105985 51560 Tis annex fists the patent family members relating to the patent documents cited in the above-nientioned international search report. Ile members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which arm merely given for the purpose of information. 22/0 1/92 EP-A-00 13052 09-07-80 N L-A- AT-T- JP-A- US-A- 7812460 3643 55089310 4412051 24-06-80 15-06-83 05-07-80 25-10-83 US-A-3072588 BE-A-, 589307 DE-B- 1161427 FR-A- 1260631 GB-A- 880338 LU-A- 38451 NL-C- 120509 NL-A- 249958 ba For more details about this annex :see Official Journal of the European Patent Office, No. 12/82
AU84498/91A 1990-09-06 1991-08-21 Flame retardant brominated styrene-based latices Ceased AU653548B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US57906390A 1990-09-06 1990-09-06
US579063 1990-09-06
PCT/US1991/005985 WO1992004387A1 (en) 1990-09-06 1991-08-21 Flame retardant brominated styrene-based latices

Publications (2)

Publication Number Publication Date
AU8449891A AU8449891A (en) 1992-03-30
AU653548B2 true AU653548B2 (en) 1994-10-06

Family

ID=24315424

Family Applications (1)

Application Number Title Priority Date Filing Date
AU84498/91A Ceased AU653548B2 (en) 1990-09-06 1991-08-21 Flame retardant brominated styrene-based latices

Country Status (9)

Country Link
EP (1) EP0547091A1 (en)
JP (1) JPH06500812A (en)
KR (1) KR930702408A (en)
AU (1) AU653548B2 (en)
CA (1) CA2049857A1 (en)
IL (1) IL99392A (en)
MX (1) MX174495B (en)
TW (1) TW203614B (en)
WO (1) WO1992004387A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718851B2 (en) * 1992-04-07 1998-02-25 帝人化成株式会社 Emulsion polymerization of brominated styrene
US5304618A (en) * 1993-07-22 1994-04-19 Great Lakes Chemical Corporation Polymers of brominated styrene
CN101519563B (en) * 2008-10-10 2012-03-21 兰州理工大学 Bromocarbon acrylic acid tunnel fireproof coating and preparation method thereof
CN105968255B (en) * 2016-06-28 2018-03-09 合众(佛山)化工有限公司 A kind of self-flame-retardant acrylic emulsion and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013052A1 (en) * 1978-12-22 1980-07-09 Stamicarbon B.V. Copolymer of nucleo-brominated styrene and acrylonitrile and process for preparing the same
AU8051791A (en) * 1990-06-20 1992-01-07 Great Lakes Chemical Corporation Flame retardant brominated styrene-based polymers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072588A (en) * 1958-10-13 1963-01-08 Dow Chemical Co Method of preparing aqueous latex of high molecular weight vinylbenzyl halide polymer and resulting product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0013052A1 (en) * 1978-12-22 1980-07-09 Stamicarbon B.V. Copolymer of nucleo-brominated styrene and acrylonitrile and process for preparing the same
AU8051791A (en) * 1990-06-20 1992-01-07 Great Lakes Chemical Corporation Flame retardant brominated styrene-based polymers

Also Published As

Publication number Publication date
JPH06500812A (en) 1994-01-27
EP0547091A1 (en) 1993-06-23
WO1992004387A1 (en) 1992-03-19
TW203614B (en) 1993-04-11
IL99392A (en) 1994-07-31
IL99392A0 (en) 1992-08-18
AU8449891A (en) 1992-03-30
KR930702408A (en) 1993-09-09
CA2049857A1 (en) 1992-03-07
MX174495B (en) 1994-05-18

Similar Documents

Publication Publication Date Title
AU654282B2 (en) Flame retardant brominated styrene-based polymers
US20070145338A1 (en) Flame retardant polymer emulsion
US6930143B2 (en) Acrylic latex composition
AU651134B2 (en) Flame retardant brominated styrene-based coatings
AU653548B2 (en) Flame retardant brominated styrene-based latices
US5438096A (en) Flame retardant brominated styrene-based latices
JPH03128978A (en) Emulsion paint composition
US4959416A (en) Polymeric blend composition
DE69525848T2 (en) DIBROMOSTYROL GLYCIDYL (METH) ACRYLATE COPOLYMER
US5484839A (en) Flame retardant brominated styrene graft latex compositions
US5296306A (en) Flame retardant brominated styrene graft latex coatings
JP2841621B2 (en) Heat-curable antifogging agent composition for plastic molding material and plastic molding material coated with antifogging cosmetic film
JP2961438B2 (en) Flame retardant resin emulsion composition
EP0555386A1 (en) Composite materials including flame retardant brominated styrene-based coatings
JPH0649250A (en) Object made of flame-retardant polymer and having compatible (meth)acrylate coating film
JPS629243B2 (en)
JPH0259161B2 (en)
JPH08506839A (en) Flame-retardant brominated styrene graft latex composition