Nothing Special   »   [go: up one dir, main page]

Roche et al., 2015 - Google Patents

A multi-agent model and strategy for residential demand response coordination

Roche et al., 2015

Document ID
37247949243219397
Author
Roche R
Suryanarayanan S
Hansen T
Kiliccote S
Miraoui A
Publication year
Publication venue
2015 IEEE Eindhoven PowerTech

External Links

Snippet

This paper proposes a multi-agent model and strategy for aggregator-based residential demand response, and details how elements in the system interact to solve an issue requiring load to be temporarily decreased. The system uses assets such as plug-in hybrid …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Systems supporting the management or operation of end-user stationary applications, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y04S20/20End-user application control systems
    • Y04S20/22The system characterised by the aim of the control
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Systems supporting the management or operation of end-user stationary applications, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y04S20/20End-user application control systems
    • Y04S20/24The system characterised by the end-user application
    • Y04S20/242The system characterised by the end-user application the end-user application being or involving home appliances
    • Y04S20/244The system characterised by the end-user application the end-user application being or involving home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/32End-user application control systems
    • Y02B70/3208End-user application control systems characterised by the aim of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation and communication or information technologies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Communication or information technology specific aspects supporting electrical power generation, transmission, distribution or end-user application management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Systems integrating technologies related to power network operation and communication or information technologies mediating in the improvement of the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as enabling technology in buildings sector
    • Y02B90/26Communication technology specific aspects
    • Y02B90/2607Details of the transmission structure or support between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Similar Documents

Publication Publication Date Title
AlSkaif et al. Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery
US11625059B2 (en) Appliance load manager that cycles an air conditioner to reduce peak demand
Shafie-Khah et al. A stochastic home energy management system considering satisfaction cost and response fatigue
Nguyen et al. Joint optimization of electric vehicle and home energy scheduling considering user comfort preference
Rastegar et al. Home energy management incorporating operational priority of appliances
Althaher et al. Automated demand response from home energy management system under dynamic pricing and power and comfort constraints
Rasheed et al. Priority and delay constrained demand side management in real‐time price environment with renewable energy source
Chen et al. Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization
Erdinc et al. Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR
JP6429200B2 (en) Method and system for operating a power system
Liang et al. Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market
Huang et al. Cost-Effective and comfort-aware electricity scheduling for home energy management system
Nizami et al. On the application of Home Energy Management Systems for power grid support
Fakhrazari et al. Optimal energy scheduling for a smart entity
Mohsenzadeh et al. Two stage residential energy management under distribution locational marginal pricing
Caramanis et al. Uniform and complex bids for demand response and wind generation scheduling in multi-period linked transmission and distribution markets
Roche et al. A multi-agent model and strategy for residential demand response coordination
Yu et al. Optimal real-time price based on a statistical demand elasticity model of electricity
Vasirani et al. A collaborative model for participatory load management in the smart grid
Zhu et al. Real-time pricing considering different type of smart home appliances based on Markov decision process
Yang et al. A novel dynamic load-priority-based scheduling strategy for home energy management system
Saber et al. A user-friendly transactive coordination model for residential prosumers considering voltage unbalance in distribution networks
Zhou et al. Many-criteria optimality of coordinated demand response with heterogeneous households
Minhas et al. Modeling and optimizing energy supply and demand in home area power network (HAPN)
Fan et al. Multi-objective optimization model for energy mangement of household micro-grids participating in demand response