Lugano et al., 2006 - Google Patents
A pragmatic protocol for database replication in interconnected clustersLugano et al., 2006
View PDF- Document ID
- 3183044609635367240
- Author
- Lugano U
- Minho U
- Pedone F
- Oliveira R
- Pereira J
- Correia A
- Soares L
- Grov J
- Publication year
- Publication venue
- 2006 12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
External Links
Snippet
Multi-master update everywhere database replication, as achieved by protocols based on group communication such as DBSM and Postgres-R, addresses both performance and availability. By scaling it to wide area networks, one could save costly bandwidth and avoid …
- 238000004891 communication 0 abstract description 20
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/202—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
- G06F11/2023—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant details of failing over
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/2097—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements maintaining the standby controller/processing unit updated
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/2053—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant
- G06F11/2056—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant by mirroring
- G06F11/2064—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant by mirroring while ensuring consistency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1658—Data re-synchronization of a redundant component, or initial sync of replacement, additional or spare unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
- G06F9/546—Message passing systems or structures, e.g. queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/1675—Temporal synchronisation or re-synchronisation of redundant processing components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/52—Programme synchronisation; Mutual exclusion, e.g. by means of semaphores; Contention for resources among tasks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30345—Update requests
- G06F17/30377—Details of updates performed during online database operations; commit processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30575—Replication, distribution or synchronisation of data between databases or within a distributed database; Distributed database system architectures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/835—Timestamp
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schiper et al. | P-store: Genuine partial replication in wide area networks | |
JP5689106B2 (en) | Matching server for financial exchange with fault-tolerant operation | |
Sciascia et al. | Scalable deferred update replication | |
EP3118743B1 (en) | Fault tolerance and failover using active copy-cat | |
Du et al. | Clock-si: Snapshot isolation for partitioned data stores using loosely synchronized clocks | |
CA2659395C (en) | Match server for a financial exchange having fault tolerant operation | |
Fritchie | Chain replication in theory and in practice | |
Park et al. | Exploiting commutativity for practical fast replication | |
Wester et al. | Tolerating Latency in Replicated State Machines Through Client Speculation. | |
Li et al. | Sarek: Optimistic parallel ordering in byzantine fault tolerance | |
Spirovska et al. | Paris: Causally consistent transactions with non-blocking reads and partial replication | |
Coulon et al. | Consistency management for partial replication in a high performance database cluster | |
Geng et al. | Nezha: Deployable and high-performance consensus using synchronized clocks | |
Dharavath et al. | A scalable generic transaction model scenario for distributed NoSQL databases | |
Lugano et al. | A pragmatic protocol for database replication in interconnected clusters | |
Padhye et al. | Transaction management using causal snapshot isolation in partially replicated databases | |
Oliveira et al. | Revisiting 1-copy equivalence in clustered databases | |
Pereira et al. | A pragmatic protocol for database replication in interconnected clusters | |
Grov et al. | WICE-SI: Pragmatic Inter-Cluster Replication | |
Zhang et al. | Building consistent transactions with inconsistent replication (extended version) | |
Suganuma et al. | Distributed and fault-tolerant execution framework for transaction processing | |
Grov | Transactional Data Management for Multi-Site Systems: New Approaches and Formal Analysis | |
Mostafa et al. | Bidirectional chain replication for higher throughput provision | |
Zhu et al. | To vote before decide: A logless one-phase commit protocol for highly-available datastores | |
Kolltveit et al. | Preventing orphan requests by integrating replication and transactions |