Gul et al., 2020 - Google Patents
Effect of TMP-based-cottonseed oil-biolubricant blends on tribological behavior of cylinder liner-piston ring combinationsGul et al., 2020
- Document ID
- 3127843712673343144
- Author
- Gul M
- Zulkifli N
- Masjuki H
- Kalam M
- Mujtaba M
- Harith M
- Syahir A
- Ahmed W
- Farooq A
- Publication year
- Publication venue
- Fuel
External Links
Snippet
Cottonseed oil-based biolubricant was synthesized by the TMP-based transesterification process. 10–50% by volume blends of TMP-based cotton-biolubricant and SAE-40 were prepared and tested on the high-frequency-reciprocating-rig with engine cylinder-liner and …
- 239000000203 mixture 0 title abstract description 69
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2220/00—Specified physical or chemical properties or characteristics, i.e. function, of single compounds in lubricating compositions
- C10N2220/02—Physico-chemical properties
- C10N2220/022—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2220/00—Specified physical or chemical properties or characteristics, i.e. function, of single compounds in lubricating compositions
- C10N2220/02—Physico-chemical properties
- C10N2220/08—Particles related characteristics
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/022—Ethene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2230/00—Specified physical or chemical properties of lubricating compositions
- C10N2230/06—Resistance to extreme pressure; Oiliness; Abrasion resistance; Friction; Anti-wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2230/00—Specified physical or chemical properties of lubricating compositions
- C10N2230/08—Resistance to extreme heat; Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2240/00—Specified uses or applications of lubricating compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2250/00—Form or state of lubricant compositions in which they are used
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gul et al. | Effect of TMP-based-cottonseed oil-biolubricant blends on tribological behavior of cylinder liner-piston ring combinations | |
Maleque et al. | Effect of mechanical factors on tribological properties of palm oil methyl ester blended lubricant | |
Shahabuddin et al. | Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil) | |
Imran et al. | Study of friction and wear characteristic of jatropha oil blended lube oil | |
Pawar et al. | Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication | |
Khemchandani et al. | A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants | |
Adhvaryu et al. | Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants | |
Yunus et al. | Lubrication properties of trimethylolpropane esters based on palm oil and palm kernel oils | |
Zulkifli et al. | Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant | |
Jabal et al. | The tribological characteristic of the blends of Rbd palm olein with mineral oil using four-ball tribotester | |
Talib et al. | Experimental evaluation of physicochemical properties and tapping torque of hexagonal boron nitride in modified jatropha oils-based as sustainable metalworking fluids | |
Sani et al. | Performance Evaluation of Palm-Olein TMP Ester Containing Hexagonal Boron Nitride and an Oil Miscible Ionic Liquid as Bio-Based Metalworking Fluids/Amiril Sahab Abdul Sani...[et al.] | |
del Río et al. | Tribological enhancement of potential electric vehicle lubricants using coated TiO2 nanoparticles as additives | |
Ameen et al. | Study of the tribological properties the mixture of soybean oil and used (waste) frying oil fatty acid methyl ester under boundary lubrication conditions | |
Kalam et al. | Tribological characteristics of amine phosphate and octylated/butylated diphenylamine additives infused bio-lubricant | |
Arumugam et al. | Synthesis, characterisation and tribological investigation of vegetable oil-based pentaerythryl ester as biodegradable compressor oil | |
Rajendiran et al. | Antiwear study on petroleum base oils with esters | |
Saravanakumar et al. | Development and testing of nano particulate lubricant for worm gear application | |
Shahabuddin et al. | Study on the tribological characteristics of plant oil-based bio-lubricant with automotive liner-piston ring materials | |
Jabal et al. | Tribological characteristics evaluation of mustard oil blends | |
Lee et al. | Trimethylolpropane trioleate as eco-friendly lubricant additive | |
Rajasozhaperumal et al. | Influence of fatty acid composition on the tribological performance of methyl esters under boundary lubrication regime | |
Hassan et al. | The tribological characteristics of the cactus and mineral oil blends using four-ball tribotester | |
Singh et al. | Effect of SiO 2 nanoparticles on the tribological behavior of Balanites Aegytiaca (Desert date) oil-based biolubricant | |
Jabal et al. | Performance features of the sunflower seeds oil as a hydraulic bio fluid under various normal loads |