Yang et al., 2004 - Google Patents
Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variabilityYang et al., 2004
- Document ID
- 2722124598954221459
- Author
- Yang C
- Everitt J
- Bradford J
- Murden D
- Publication year
- Publication venue
- Precision Agriculture
External Links
Snippet
Increased availability of hyperspectral imagery necessitates the evaluation of its potential for precision agriculture applications. This study examined airborne hyperspectral imagery for mapping cotton (Gossypium hirsutum L.) yield variability as compared with yield monitor …
- 229920000742 Cotton 0 title abstract description 60
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral line directly on the spectrum itself
- G01J3/36—Investigating two or more bands of a spectrum by separate detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/0063—Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
- G06K9/00657—Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas of vegetation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variability | |
Yang et al. | Yield estimation from hyperspectral imagery using spectral angle mapper (SAM) | |
Yang et al. | Relationships between yield monitor data and airborne multidate multispectral digital imagery for grain sorghum | |
Sakamoto et al. | An alternative method using digital cameras for continuous monitoring of crop status | |
Hoffmann et al. | Crop water stress maps for an entire growing season from visible and thermal UAV imagery | |
Ahamed et al. | A review of remote sensing methods for biomass feedstock production | |
AU752868B2 (en) | Method for monitoring nitrogen status using a multi-sprectral imaging system | |
Chen et al. | Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management | |
Yang et al. | Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns | |
Yang | A high-resolution airborne four-camera imaging system for agricultural remote sensing | |
Yang et al. | Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield | |
US20010016053A1 (en) | Multi-spectral imaging sensor | |
Yang et al. | Airborne hyperspectral imagery and yield monitor data for estimating grain sorghum yield variability | |
Mäkeläinen et al. | 2D hyperspectral frame imager camera data in photogrammetric mosaicking | |
Yang et al. | Mapping grain sorghum yield variability using airborne digital videography | |
Singh et al. | Multi-temporal high resolution unmanned aerial vehicle (UAV) Multispectral imaging for menthol mint crop monitoring | |
Pauly | Applying conventional vegetation vigor indices to UAS-derived orthomosaics: issues and considerations | |
Yang et al. | Evaluating high resolution SPOT 5 satellite imagery to estimate crop yield | |
Yang et al. | Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield | |
Yang et al. | Evaluating high-resolution QuickBird satellite imagery for estimating cotton yield | |
Yang | Hyperspectral imagery for mapping crop yield for precision agriculture | |
Yang et al. | Estimating cabbage physical parameters using remote sensing technology | |
Yang et al. | Using multispectral imagery and linear spectral unmixing techniques for estimating crop yield variability | |
Yang et al. | Airborne hyperspectral imaging and yield monitoring of grain sorghum yield variability | |
Yang et al. | Optimum time lag determination for yield monitoring with remotely sensed imagery |