Amani et al., 2013 - Google Patents
High-temperature thermoelectric properties of compounds in the system Zn x In y O x+ 1.5 yAmani et al., 2013
- Document ID
- 1922676402505674610
- Author
- Amani M
- Tougas I
- Gregory O
- Fralick G
- Publication year
- Publication venue
- Journal of electronic materials
External Links
Snippet
Based on results obtained utilizing combinatorial chemistry techniques to screen the thermoelectric power factor of materials in the system Zn x In y O x+ 1.5 y, several multiphase candidates were down-selected and investigated in terms of their thermoelectric …
- 150000001875 compounds 0 title description 19
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/32—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/34—Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders | |
Bux et al. | Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb 9 Mn 4.2 Sb 9 | |
Nagai et al. | Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure | |
Banik et al. | Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe 1− x Se x system | |
Ponnambalam et al. | On the thermoelectric properties of Zintl compounds Mg 3 Bi 2− x Pn x (Pn= P and Sb) | |
JP6219386B2 (en) | Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric devices | |
Liu et al. | Thermoelectric performance of Cu 1− x− δ Ag x InTe 2 diamond-like materials with a pseudocubic crystal structure | |
Farooq et al. | Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site | |
Chen et al. | Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1− xSnx (0.1≤ x≤ 0.8) solid solutions by flux method | |
Wang et al. | Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO (SrTiO3) n (n= 1, 2) ceramics | |
Zhang et al. | Enhanced thermoelectric performance of CuGaTe 2 based composites incorporated with nanophase Cu 2 Se | |
Zhu et al. | Multiple doped ZnO with enhanced thermoelectric properties | |
Li et al. | BaCu 2 Se 2 based compounds as promising thermoelectric materials | |
Ren et al. | Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides | |
Takas et al. | Effects of Ir substitution and processing conditions on thermoelectric performance of p-type Zr 0.5 Hf 0.5 Co 1− x Ir x Sb 0.99 sn 0.01 half-Heusler alloys | |
Fu et al. | Study on thermoelectric properties of polycrystalline SnSe by Ge doping | |
Wang et al. | High-temperature thermoelectric properties of Cd1− xPrxO ceramics | |
Li et al. | Thermoelectric properties of indium-added skutterudites In x Co 4 Sb 12 | |
Li et al. | Effect of Ce-doping on thermoelectric properties in PbTe alloys prepared by spark plasma sintering | |
Wu et al. | Realizing tremendous electrical transport properties of polycrystalline SnSe2 by Cl-doped and anisotropy | |
Zheng et al. | A universal all-solid synthesis for high throughput production of halide perovskite | |
Gong et al. | Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient | |
Bakhshi et al. | Improvements in the thermoelectric efficiency of SrTiO3 through donor doping | |
Ohta et al. | Preparation and Thermoelectric Properties of LaGd 1+ x S 3 and SmGd 1+ x S 3 | |
Farooq et al. | Pronounced effect of ZnTe nanoinclusions on thermoelectric properties of Cu2-xSe chalcogenides |