Chang et al., 2019 - Google Patents
Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standardChang et al., 2019
View HTML- Document ID
- 18120631912375772814
- Author
- Chang P
- Zhang S
- Shang H
- Chen J
- Publication year
- Publication venue
- Applied Physics B
External Links
Snippet
We achieve a compact ultra-stable 420 nm blue diode laser system by immediately stabilizing the laser on the hyperfine transition line of Rb atom. The Allan deviation of the residual error signal reaches 1 Hz-level Allan deviation within 1 s averaging time, and the …
- 230000003287 optical 0 title abstract description 54
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising more than two reflectors
- H01S3/083—Ring lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal mode control, e.g. specifically multimode
- H01S3/08031—Single-mode emission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
- H01S3/109—Frequency multiplying, e.g. harmonic generation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency, amplitude
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infra-red or ultra-violet waves
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard | |
Zhu et al. | Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer | |
Hagemann et al. | Providing $10^{-16} $ Short-Term Stability of a 1.5-$\mu\hbox {m} $ Laser to Optical Clocks | |
US6654394B1 (en) | Laser frequency stabilizer using transient spectral hole burning | |
Zhang et al. | Compact Rb optical frequency standard with 10− 15 stability | |
Jin et al. | Laser frequency instability of 2× 10− 16 by stabilizing to 30-cm-long Fabry-Pérot cavities at 578 nm | |
Bertinetto et al. | Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method | |
Shi et al. | Realization of phase locking in good-bad-cavity active optical clock | |
Didier et al. | 946-nm Nd: YAG digital-locked laser at 1.1× 10− 16 in 1 s and transfer-locked to a cryogenic silicon cavity | |
Lee et al. | Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser | |
Shi et al. | Frequency stabilization of a Cesium Faraday laser with a double-layer vapor cell as frequency reference | |
CN112366515A (en) | Bidirectional beam expanding and frequency stabilizing method and device for cold atom interferometer | |
Wu et al. | Semiconductor laser active frequency stabilization technologies: a review | |
Shi et al. | A highly integrated single-mode 1064 nm laser with 8.5 kHz linewidth for dual-wavelength active optical clock | |
Zhao et al. | Sub-Hertz frequency stabilization of a commercial diode laser | |
Ye et al. | High-resolution frequency standard at 1030 nm for Yb: YAG solid-state lasers | |
Almat et al. | Characterization of Frequency-Doubled 1.5-$\mu $ m Lasers for High-Performance Rb Clocks | |
Liu et al. | An atomic filter laser with a compact Voigt anomalous dispersion optical filter | |
Shi et al. | Optical frequency divider: Capable of measuring optical frequency ratio in 22 digits | |
Meyer et al. | Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization | |
Yamoah et al. | Robust kHz-linewidth distributed Bragg reflector laser with optoelectronic feedback | |
Yu et al. | An Yb optical lattice clock: current status at KRISS | |
Li et al. | A phase-locked laser system based on double direct modulation technique for atom interferometry | |
Takata et al. | Current-feedback-stabilized laser system for quantum simulation experiments using Yb clock transition at 578 nm | |
Kim et al. | Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system |