Grathwohl et al., 2019 - Google Patents
Scalable reversible generative models with free-form continuous dynamicsGrathwohl et al., 2019
View PDF- Document ID
- 15948756339021923930
- Author
- Grathwohl W
- Chen R
- Bettencourt J
- Duvenaud D
- Publication year
- Publication venue
- International Conference on Learning Representations
External Links
Snippet
A promising class of generative models maps points from a simple distribution to a complex distribution through an invertible neural network. Likelihood-based training of these models requires restricting their architectures to allow cheap computation of Jacobian determinants …
- 230000002441 reversible 0 title description 9
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grathwohl et al. | Scalable reversible generative models with free-form continuous dynamics | |
Grathwohl et al. | Ffjord: Free-form continuous dynamics for scalable reversible generative models | |
Onken et al. | Ot-flow: Fast and accurate continuous normalizing flows via optimal transport | |
Ruthotto et al. | Deep neural networks motivated by partial differential equations | |
Finlay et al. | How to train your neural ODE: the world of Jacobian and kinetic regularization | |
Falorsi et al. | Reparameterizing distributions on lie groups | |
Li et al. | Scalable gradients and variational inference for stochastic differential equations | |
Song et al. | Mintnet: Building invertible neural networks with masked convolutions | |
Yang et al. | Feed-forward neural network training using sparse representation | |
Fan et al. | Convergence of online gradient method for feedforward neural networks with smoothing L1/2 regularization penalty | |
Gabrié et al. | Training Restricted Boltzmann Machine via the Thouless-Anderson-Palmer free energy | |
CN108764460A (en) | A kind of Time Series Forecasting Methods based on time convolution sum LSTM | |
Chilinski et al. | Neural likelihoods via cumulative distribution functions | |
CN114341891A (en) | Neural network pruning | |
CN109034034A (en) | A kind of vein identification method based on nitrification enhancement optimization convolutional neural networks | |
Sengupta et al. | How robust are deep neural networks? | |
MacDonald et al. | Enabling equivariance for arbitrary lie groups | |
Potapczynski et al. | Invertible gaussian reparameterization: Revisiting the gumbel-softmax | |
CN114611384A (en) | Medical knowledge graph node importance evaluation method based on graph neural network | |
Li et al. | Calibrating multi-dimensional complex ODE from noisy data via deep neural networks | |
CN113298129A (en) | Polarized SAR image classification method based on superpixel and graph convolution network | |
Tan et al. | Performance comparison of three types of autoencoder neural networks | |
Admon et al. | A new modern scheme for solving fractal–fractional differential equations based on deep feedforward neural network with multiple hidden layer | |
Potapczynski et al. | Invertible gaussian reparameterization: Revisiting the gumbel-softmax | |
Xu et al. | Pseudoinverse learning algorithom for fast sparse autoencoder training |