Zhou et al., 2016 - Google Patents
Analysis of precision in tumor tracking based on optical positioning system during radiotherapyZhou et al., 2016
View PDF- Document ID
- 13102162956092957500
- Author
- Zhou H
- Shen J
- Li B
- Chen J
- Zhu X
- Ge Y
- Wang Y
- Publication year
- Publication venue
- Journal of X-ray Science and Technology
External Links
Snippet
Tumor tracking is performed during patient set-up and monitoring of respiratory motion in radiotherapy. In the clinical setting, there are several types of equipment for this set-up such as the Electronic Portal imaging Device (EPID) and Cone Beam CT (CBCT). Technically, an …
- 238000001959 radiotherapy 0 title abstract description 33
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
- A61N5/1067—Beam adjustment in real time, i.e. during treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1061—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1058—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using ultrasound imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1069—Target adjustment, e.g. moving the patient support
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1077—Beam delivery systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1075—Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
- A61N2005/1076—Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1092—Details
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
- A61B6/04—Positioning of patients; Tiltable beds or the like
- A61B6/0407—Tables or beds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
- A61B6/02—Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7853308B2 (en) | System and method for patient positioning for radiotherapy in the presence of respiratory motion | |
Willoughby et al. | Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy | |
Bartlett et al. | Voluntary breath-hold technique for reducing heart dose in left breast radiotherapy | |
Chang et al. | 6D image guidance for spinal non-invasive stereotactic body radiation therapy: Comparison between ExacTrac X-ray 6D with kilo-voltage cone-beam CT | |
JP2019524418A (en) | Online angle selection in rotational imaging and tracking systems | |
JP2019528149A (en) | Online angle selection in rotational imaging and tracking systems | |
US20080021300A1 (en) | Four-dimensional target modeling and radiation treatment | |
Chang et al. | Accuracy and feasibility of cone‐beam computed tomography for stereotactic radiosurgery setup | |
Mao et al. | Fast internal marker tracking algorithm for onboard MV and kV imaging systems | |
Huntzinger et al. | Dynamic targeting image-guided radiotherapy | |
Infusino et al. | Estimation of patient setup uncertainty using BrainLAB Exatrac X‐Ray 6D system in image‐guided radiotherapy | |
CN110381838A (en) | Use disposition target Sport Administration between the gradation of the view without view of volume imagery | |
Wang et al. | Target repositional accuracy and PTV margin verification using three‐dimensional cone‐beam computed tomography (CBCT) in stereotactic body radiotherapy (SBRT) of lung cancers | |
Bryant et al. | Registration of clinical volumes to beams‐eye‐view images for real‐time tracking | |
Sarudis et al. | Surface guided frameless positioning for lung stereotactic body radiation therapy | |
Garibaldi et al. | Deep inspiration breath‐hold technique guided by an opto‐electronic system for extracranial stereotactic treatments | |
Delombaerde et al. | Development and accuracy evaluation of a single-camera intra-bore surface scanning system for radiotherapy in an O-ring linac | |
Munbodh et al. | 2D–3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field‐of‐view 2D kV radiograph | |
Ueda et al. | Craniocaudal safety margin calculation based on interfractional changes in tumor motion in lung SBRT assessed with an EPID in cine mode | |
Ali et al. | Evaluation of the setup accuracy of a stereotactic radiotherapy head immobilization mask system using kV on‐board imaging | |
Deantonio et al. | Detection of setup uncertainties with 3D surface registration system for conformal radiotherapy of breast cancer | |
Sharma et al. | Evaluation of automated image registration algorithm for image-guided radiotherapy (IGRT) | |
Aristophanous et al. | EPID‐guided 3D dose verification of lung SBRT | |
Kuo et al. | A phantom study to evaluate three different registration platform of 3D/3D, 2D/3D, and 3D surface match with 6D alignment for precise image‐guided radiotherapy | |
Masi et al. | On-line image guidance for frameless stereotactic radiotherapy of lung malignancies by cone beam CT: comparison between target localization and alignment on bony anatomy |