Wang et al., 2017 - Google Patents
Design and analysis of QoE-aware quality adaptation for DASH: A spectrum-based approachWang et al., 2017
View PDF- Document ID
- 12935318725214503846
- Author
- Wang C
- Bhat D
- Rizk A
- Zink M
- Publication year
- Publication venue
- ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
External Links
Snippet
The dynamics of the application-layer-based control loop of dynamic adaptive streaming over HTTP (DASH) make video bitrate selection for DASH a difficult problem. In this work, we provide a DASH quality adaptation algorithm, named SQUAD, that is specifically tailored to …
- 230000004301 light adaptation 0 title abstract description 66
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/40—Services or applications
- H04L65/4069—Services related to one way streaming
- H04L65/4084—Content on demand
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/32—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
- H04L67/322—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources whereby quality of service [QoS] or priority requirements are taken into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/80—QoS aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5019—Ensuring SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television, VOD [Video On Demand]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of content streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/60—Media handling, encoding, streaming or conversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television, VOD [Video On Demand]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/24—Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/70—Admission control or resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/28—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television, VOD [Video On Demand]
- H04N21/60—Selective content distribution, e.g. interactive television, VOD [Video On Demand] using Network structure or processes specifically adapted for video distribution between server and client or between remote clients; Control signaling specific to video distribution between clients, server and network components, e.g. to video encoder or decoder; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/63—Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
- H04N21/647—Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorized alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
- H04N21/64746—Control signals issued by the network directed to the server or the client
- H04N21/64761—Control signals issued by the network directed to the server or the client directed to the server
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television, VOD [Video On Demand]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/239—Interfacing the upstream path of the transmission network, e.g. prioritizing client content requests
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/306—Route determination based on the nature of the carried application
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | SQUAD: A spectrum-based quality adaptation for dynamic adaptive streaming over HTTP | |
Cofano et al. | Design and experimental evaluation of network-assisted strategies for HTTP adaptive streaming | |
Spiteri et al. | BOLA: Near-optimal bitrate adaptation for online videos | |
US20210184979A1 (en) | Method and system for managing service quality according to network status predictions | |
Wang et al. | Design and analysis of QoE-aware quality adaptation for DASH: A spectrum-based approach | |
Miller et al. | QoE-based low-delay live streaming using throughput predictions | |
Kua et al. | A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP | |
Jiang et al. | Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive | |
Karagkioules et al. | Online learning for low-latency adaptive streaming | |
Bentaleb et al. | Want to play DASH? A game theoretic approach for adaptive streaming over HTTP | |
US9215182B2 (en) | Enhancing performance of rapid channel changes and other playback positioning changes in adaptive streaming | |
US20160142510A1 (en) | Cache-aware content-based rate adaptation mechanism for adaptive video streaming | |
Chen et al. | Smart streaming for online video services | |
Hu et al. | Content-aware adaptation scheme for QoE optimized DASH applications | |
Burger et al. | A generic approach to video buffer modeling using discrete-time analysis | |
Khan et al. | Reinforcement Learning in DASH | |
Zhang et al. | Presto: Towards fair and efficient HTTP adaptive streaming from multiple servers | |
Viola et al. | Predictive CDN selection for video delivery based on LSTM network performance forecasts and cost-effective trade-offs | |
Miller et al. | Optimal adaptation trajectories for block-request adaptive video streaming | |
Cofano et al. | A control architecture for massive adaptive video streaming delivery | |
Rückert et al. | Quality adaptation in P2P video streaming based on objective QoE metrics | |
Añorga et al. | Analysis of YouTube’s traffic adaptation to dynamic environments | |
Khan et al. | Server-based and network-assisted solutions for adaptive video streaming | |
De Cicco et al. | An experimental evaluation of akamai adaptive video streaming over hsdpa networks | |
Liu et al. | On adaptive video streaming with predictable streaming performance |