Nothing Special   »   [go: up one dir, main page]

Mishra et al., 2024 - Google Patents

A twofold approach for prolonging the lifespan of cobalt-free Na [Ni0. 55Mn0. 35Fe0. 1] O2 cathode via Bi5+-doping and Bi2O3 coating in sodium ion batteries

Mishra et al., 2024

Document ID
12574680127306713930
Author
Mishra R
Tiwari R
Patel A
Tiwari A
Singh R
Publication year
Publication venue
Journal of Energy Storage

External Links

Snippet

A cobalt-free biphasic (P2/O3) layered Na [Ni 0.55 Mn 0.35 Fe 0.1] O 2 (NFM) cathode material has been synthesized and dual surface and structural modifications have been performed. Bi 5+ is doped into pure NFM in order to tune the P2/O3 phase, whereas, a thin …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Liu et al. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating
Su et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries
Miao et al. Li2ZrO3-coated 0.4 Li2MnO3· 0.6 LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery
Chen et al. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries
Chen et al. Stable layered P3/P2 Na 0.66 Co 0.5 Mn 0.5 O 2 cathode materials for sodium-ion batteries
Kang et al. P2-Type Na x Cu0. 15Ni0. 20Mn0. 65O2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries
Yu et al. A simple dual-ion doping method for stabilizing Li-rich materials and suppressing voltage decay
Liu et al. Improved cycling stability of Na-doped cathode materials Li1. 2Ni0. 2Mn0. 6O2 via a facile synthesis
Ming et al. Effect of Nb and F co-doping on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for high-performance lithium-ion batteries
Zhao et al. One-step integrated surface modification to build a stable interface on high-voltage cathode for lithium-ion batteries
Xu et al. Enhanced electrochemical performance of LiNi0. 5Mn1. 5O4 cathode material by YPO4 surface modification
Meng et al. Surface modification of Li-rich layered Li [Li0. 17Ni0. 17Co0. 10Mn0. 56] O2 oxide with LiV3O8 as a cathode material for Li-ion batteries
Yi et al. Li-rich layered/spinel heterostructured special morphology cathode material with high rate capability for Li-ion batteries
Zhao et al. A versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO2 (M= Ni0. 5Mn0. 5 and Ni1/3Mn1/3Co1/3)
CN112531170B (en) P2 phase layered oxide, preparation method and application in sodium ion battery
Zhang et al. Dual-strategy of Cu-doping and O3 biphasic structure enables Fe/Mn-based layered oxide for high-performance sodium-ion batteries cathode
Gabrielli et al. Combining Optimized Particle Morphology with a Niobium‐Based Coating for Long Cycling‐Life, High‐Voltage Lithium‐Ion Batteries
He et al. SmPO4-coated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as a cathode material with enhanced cycling stability for lithium ion batteries
Sun et al. Sodium insertion cathode material Na0. 67 [Ni0. 4Co0. 2Mn0. 4] O2 with excellent electrochemical properties
Ji et al. Surface LiMn1. 4Ni0. 5Mo0. 1O4 coating and bulk Mo doping of Li-rich Mn-based Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode with enhanced electrochemical performance for lithium-ion batteries
Du et al. Improving the electrochemical performance of Li-rich Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 cathode material by LiF coating
Wang et al. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery
Du et al. Confined growth of primary grains towards stabilizing integrated structure of Ni-rich materials
Chen et al. Electrochemical performances of P2-Na2/3Ni1/3Mn2/3O2 doped with Li and Mg for high cycle stability
Karuppiah et al. Cobalt‐doped layered lithium nickel oxide as a three‐in‐one electrode for lithium‐ion and sodium‐ion batteries and supercapacitor applications