Asgari et al., 2020 - Google Patents
Digital multiplier-less spiking neural network architecture of reinforcement learning in a context-dependent taskAsgari et al., 2020
- Document ID
- 937817068318021284
- Author
- Asgari H
- Maybodi B
- Kreiser R
- Sandamirskaya Y
- Publication year
- Publication venue
- IEEE Journal on Emerging and Selected Topics in Circuits and Systems
External Links
Snippet
Neuromorphic engineers develop event-based spiking neural networks (SNNs) in hardware. These SNNs closer resemble the dynamics of biological neurons than conventional artificial neural networks and achieve higher efficiency thanks to the event-based, asynchronous …
- 230000001537 neural 0 title abstract description 48
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/0635—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/10—Simulation on general purpose computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/004—Artificial life, i.e. computers simulating life
- G06N3/008—Artificial life, i.e. computers simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. robots replicating pets or humans in their appearance or behavior
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A system hierarchy for brain-inspired computing | |
Furber et al. | Neural systems engineering | |
Graupe | Principles of artificial neural networks | |
Javanshir et al. | Advancements in algorithms and neuromorphic hardware for spiking neural networks | |
Asgari et al. | Digital multiplier-less spiking neural network architecture of reinforcement learning in a context-dependent task | |
Stewart et al. | Online few-shot gesture learning on a neuromorphic processor | |
Liu et al. | Gradient descent using stochastic circuits for efficient training of learning machines | |
Ranjan et al. | A novel and efficient classifier using spiking neural network | |
Asgari et al. | Low-energy and fast spiking neural network for context-dependent learning on FPGA | |
Lotfi et al. | Competitive brain emotional learning | |
Li et al. | Brain-inspired computing: A systematic survey and future trends | |
Bishop | History and philosophy of neural networks | |
Wan et al. | Circuit and system technologies for energy-efficient edge robotics | |
Zanatta et al. | Directly-trained Spiking Neural Networks for Deep Reinforcement Learning: Energy efficient implementation of event-based obstacle avoidance on a neuromorphic accelerator | |
Liu et al. | Advancing brain-inspired computing with hybrid neural networks | |
Indiveri | Neuromorphic engineering | |
Asgari et al. | Digital multiplier-less event-driven spiking neural network architecture for learning a context-dependent task | |
Haider et al. | Is Neuromorphic Computing the Key to Power-Efficient Neural Networks: A Survey | |
Wu et al. | Development of fpga toolbox for implementation of spiking neural networks | |
Wang et al. | BrainScale: Enabling scalable online learning in spiking neural networks | |
Gholami et al. | Digital cellular implementation of Morris-Lecar neuron model | |
Isik et al. | Advancing neuromorphic computing: Mixed-signal design techniques leveraging brain code units and fundamental code units | |
Rueckert | Update on brain-inspired systems | |
Wang et al. | Neuromorphic computing | |
Asgari et al. | A digital multiplier-less neuromorphic model for learning a context-dependent task |