Yeşilyurt, 2019 - Google Patents
Design and realization of a broad band antenna loaded with a metamaterial-inspired lens for subsurface microwave imaging applicationsYeşilyurt, 2019
View PDF- Document ID
- 9297851401998460312
- Author
- Yeşilyurt
- Publication year
External Links
Snippet
Ultra-wideband antennas are critical sensors for microwave imaging. In this work, radiation performance of an antipodal Vivaldi antenna is enhanced by using a broadband metasurface lens structure in 1-6 GHz bandwidth. Radiation pattern for the lens integrated …
- 238000003384 imaging method 0 title abstract description 26
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
- H01Q9/26—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/30—Resonant aerials with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot aerials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
- H01Q19/06—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line aerials; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0018—Space- fed arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting aerial units or systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Substrate integrated waveguide leaky-wave antenna with wide bandwidth via prism coupling | |
Dadgarpour et al. | One-and two-dimensional beam-switching antenna for millimeter-wave MIMO applications | |
Yang et al. | Wide-band and wide-angle scanning phased array antenna for mobile communication system | |
Dadgarpour et al. | Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves | |
Dhouibi et al. | Compact metamaterial-based substrate-integrated Luneburg lens antenna | |
Gao et al. | Beam steering performance of compressed Luneburg lens based on transformation optics | |
Guo et al. | A compact antipodal tapered slot antenna with artificial material lens and reflector for GPR applications | |
Jain et al. | Flat-base broadband multibeam Luneburg lens for wide-angle scan | |
Pandey et al. | Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna | |
Borhani Kakhki et al. | Twenty‐eight‐gigahertz beam‐switching ridge gap dielectric resonator antenna based on FSS for 5G applications | |
Duangtang et al. | Creating a gain enhancement technique for a conical horn antenna by adding a wire medium structure at the aperture | |
Liu et al. | Wideband circular patch antenna with I‐shaped structure for horizontal omnidirectional gain enhancement | |
Wani et al. | Dual-beam antenna using routing of electromagnetic waves by single-epsilon-high anisotropic medium at 28 GHz | |
Aziz et al. | EM lens design using thin planar metasurfaces for high antenna gain and low SLL applications | |
Priyadharisini et al. | A double negative metamaterial inspired miniaturized rectangular patch antenna with improved gain and bandwidth | |
Xue et al. | Patch-fed planar dielectric slab waveguide Luneburg lens | |
Yeşilyurt | Design and realization of a broad band antenna loaded with a metamaterial-inspired lens for subsurface microwave imaging applications | |
Zhu et al. | Compact spoof surface plasmon polariton leaky‐wave antenna with consistent gain | |
Horestani et al. | A Wideband Rotary-Joint-Free H-Plane Horn Antenna With 360° Steerable Radiation Pattern Using Gap Waveguide Technology | |
Briqech et al. | 60 GHz circular patch-fed high gain transparent lens antenna | |
Duangtang et al. | Wire Medium Structure for Gain Enhancement of Conical Horn Antenna | |
Ghate | Beamforming using quasi optical approach for 5G backhaul | |
Naqvi et al. | Beam-steerable antenna array with metasurface at millimeter wave frequency range | |
Ali et al. | Optimal Dimensions and Performance Evaluation of a Truncated Spherical Dielectric Lens Antenna at X-Band Frequencies | |
Zetterstrom et al. | Planar Glide-Symmetric Dielectric Half-Luneburg Lens at $ K/K_ {a} $-Band |