Subhashini et al., 2011 - Google Patents
Implementation Analysis of adaptive Viterbi Decoder for High Speed ApplicationsSubhashini et al., 2011
View PDF- Document ID
- 9106962721583996823
- Author
- Subhashini P
- Varma D
- Raju Y
- Publication year
- Publication venue
- International Journal of Computer Applications
External Links
Snippet
The demand for high speed, low power and low cost for Viterbi decoding especially in wireless communication are always required. Thus this paper presents the design of an adaptive Viterbi decoder that uses survivor path with parameters for wireless communication …
- 230000003044 adaptive 0 title abstract description 45
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/41—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
- H03M13/4107—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors implementing add, compare, select [ACS] operations
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/41—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
- H03M13/4138—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/3905—Maximum a posteriori probability [MAP] decoding and approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding; MAP decoding also to be found in H04L1/0055
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/3972—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using sliding window techniques or parallel windows
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6502—Reduction of hardware complexity or efficient processing
- H03M13/6505—Memory efficient implementations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0055—MAP-decoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6508—Flexibility, adaptability, parametrability and configurability of the implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0054—Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0059—Convolutional codes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barbulescu | Iterative decoding of turbo codes and other concatenated codes | |
US7657825B2 (en) | Programmable trellis decoder and associated methods | |
US7676736B2 (en) | Programmable continuous phase modulation (CPM) decoder and associated methods | |
US20070113161A1 (en) | Cascaded radix architecture for high-speed viterbi decoder | |
Katta | Design of convolutional encoder and Viterbi decoder using MATLAB | |
Subhashini et al. | Implementation Analysis of adaptive Viterbi Decoder for High Speed Applications | |
US7434148B2 (en) | Track buffer in a parallel decoder | |
Mandwale et al. | Implementation of High Speed Viterbi Decoder using FPGA | |
Veshala et al. | FPGA based design and implementation of modified Viterbi decoder for a Wi-Fi receiver | |
Nandula et al. | High speed area efficient configurable Viterbi decoder for WiFi and WiMAX systems | |
Nanthini et al. | An Efficient Low Power Convolutional Coding with Viterbi Decoding using FSM | |
Ahmed et al. | Viterbi algorithm performance analysis for different constraint length | |
Lepakshi et al. | RTL design and VLSI implementation of high speed convolutional encoder and adaptive Viterbi decoder | |
Sukhavasi et al. | Performance evaluation of turbo codes using hard decision viterbi algorithm in VHDL | |
Mahmood et al. | A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative St | |
Yang et al. | Design and Implementation of a High-speed and Area-efficient Viterbi Decoder | |
Steinert et al. | Power consumption optimization for low latency Viterbi Decoder | |
Akash et al. | Viterbi Decoder with Configurable Constraint Length with Bit Error Correction for Satellite Communication | |
SHIVANI et al. | A High Throughput and Area Efficient Convolution Encoder and Viterbi Decoder | |
BATCHALA et al. | Implementation of High Performance Convolutional Encoder and Viterbi Decoder | |
DEVI et al. | An On-Chip Implementation for Power Optimized Viterbi Decoder | |
Deshpande | Design of a low power asynchronous Viterbi decoder for wireless communications | |
REDDY et al. | FPGA Implementation of Convolutional Encoder and Viterbi Decoder using VHDL | |
Shyam et al. | High Speed Architecture Design Of Viterbi Decoder Using Verilog HDL | |
KEERTHY et al. | An Efficient Power Consumption of VITERBI Decoder for TCM System |