Nothing Special   »   [go: up one dir, main page]

Subhashini et al., 2011 - Google Patents

Implementation Analysis of adaptive Viterbi Decoder for High Speed Applications

Subhashini et al., 2011

View PDF
Document ID
9106962721583996823
Author
Subhashini P
Varma D
Raju Y
Publication year
Publication venue
International Journal of Computer Applications

External Links

Snippet

The demand for high speed, low power and low cost for Viterbi decoding especially in wireless communication are always required. Thus this paper presents the design of an adaptive Viterbi decoder that uses survivor path with parameters for wireless communication …
Continue reading at citeseerx.ist.psu.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4107Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors implementing add, compare, select [ACS] operations
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4138Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3905Maximum a posteriori probability [MAP] decoding and approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding; MAP decoding also to be found in H04L1/0055
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3972Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using sliding window techniques or parallel windows
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • H03M13/6505Memory efficient implementations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes

Similar Documents

Publication Publication Date Title
Barbulescu Iterative decoding of turbo codes and other concatenated codes
US7657825B2 (en) Programmable trellis decoder and associated methods
US7676736B2 (en) Programmable continuous phase modulation (CPM) decoder and associated methods
US20070113161A1 (en) Cascaded radix architecture for high-speed viterbi decoder
Katta Design of convolutional encoder and Viterbi decoder using MATLAB
Subhashini et al. Implementation Analysis of adaptive Viterbi Decoder for High Speed Applications
US7434148B2 (en) Track buffer in a parallel decoder
Mandwale et al. Implementation of High Speed Viterbi Decoder using FPGA
Veshala et al. FPGA based design and implementation of modified Viterbi decoder for a Wi-Fi receiver
Nandula et al. High speed area efficient configurable Viterbi decoder for WiFi and WiMAX systems
Nanthini et al. An Efficient Low Power Convolutional Coding with Viterbi Decoding using FSM
Ahmed et al. Viterbi algorithm performance analysis for different constraint length
Lepakshi et al. RTL design and VLSI implementation of high speed convolutional encoder and adaptive Viterbi decoder
Sukhavasi et al. Performance evaluation of turbo codes using hard decision viterbi algorithm in VHDL
Mahmood et al. A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative Study of Viterbi Decoding Algorithm for Code Rate A Comparative St
Yang et al. Design and Implementation of a High-speed and Area-efficient Viterbi Decoder
Steinert et al. Power consumption optimization for low latency Viterbi Decoder
Akash et al. Viterbi Decoder with Configurable Constraint Length with Bit Error Correction for Satellite Communication
SHIVANI et al. A High Throughput and Area Efficient Convolution Encoder and Viterbi Decoder
BATCHALA et al. Implementation of High Performance Convolutional Encoder and Viterbi Decoder
DEVI et al. An On-Chip Implementation for Power Optimized Viterbi Decoder
Deshpande Design of a low power asynchronous Viterbi decoder for wireless communications
REDDY et al. FPGA Implementation of Convolutional Encoder and Viterbi Decoder using VHDL
Shyam et al. High Speed Architecture Design Of Viterbi Decoder Using Verilog HDL
KEERTHY et al. An Efficient Power Consumption of VITERBI Decoder for TCM System