Dallavalle et al., 2001 - Google Patents
Novel cytotoxic 7-iminomethyl and 7-aminomethyl derivatives of camptothecinDallavalle et al., 2001
View PDF- Document ID
- 8221305087035829267
- Author
- Dallavalle S
- Ferrari A
- Merlini L
- Penco S
- Carenini N
- De Cesare M
- Perego P
- Pratesi G
- Zunino F
- Publication year
- Publication venue
- Bioorganic & medicinal chemistry letters
External Links
Snippet
A series of new 7-iminomethyl derivatives of camptothecin were obtained from camptothecin- 7-aldehyde and aromatic, alicyclic and aliphatic amines. Their hydrogenation led to the corresponding amines. All the imines and the less polar amines showed a marked increase …
- VSJKWCGYPAHWDS-FQEVSTJZSA-N Camptothecin   C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 0 title abstract description 39
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4738—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4745—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/22—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/18—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
- C07D471/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dallavalle et al. | Novel 7-oxyiminomethyl derivatives of camptothecin with potent in vitro and in vivo antitumor activity | |
US5180722A (en) | 10,11-methylenedioxy-20(RS)-camptothecin and 10,11-methylenedioxy-20(S)-camptothecin analogs | |
TWI272272B (en) | Camptothecin derivatives having antitumor activity | |
CA2066780C (en) | 10,11-methylenedioxy-20(rs)-camptothecin and 10,11-methylenedioxy-20(s)-camptothecin analogs | |
Mathew et al. | Novel pyridopyrazine and pyrimidothiazine derivatives as FtsZ inhibitors | |
US5340817A (en) | Method of treating tumors with anti-tumor effective camptothecin compounds | |
Dallavalle et al. | Novel cytotoxic 7-iminomethyl and 7-aminomethyl derivatives of camptothecin | |
EP0906317A1 (en) | Novel water-soluble c-ring analogues of 20(s)-camptothecin | |
Dallavalle et al. | Synthesis and cytotoxic activity of substituted 7-aryliminomethyl derivatives of camptothecin | |
WO2003101998A1 (en) | Nitrogen-based homo-camptothecin derivatives | |
RU2450007C2 (en) | Camptothecin derivatives with anticancer activity | |
WO1991004260A2 (en) | 10,11-methylenedioxy-20(rs)-camptothecin and 10,11-methylenedioxy-20(s)-camptothecin analogs | |
JP2011509251A (en) | N-phenyl-imidazo [1,2-a] pyridine-2-carboxamide compound, its preparation and its therapeutic use | |
JP3600248B2 (en) | Novel water-soluble C-ring analog of 20 (S) -camptothecin | |
CZ2000711A3 (en) | Optically pure camptothecin analogs, synthesis intermediates and process for preparing thereof | |
Ke et al. | Design, synthesis of 10-alkoxy-5-spiro CPT and preliminary biological evaluation in vitro | |
EP2920191B1 (en) | Methods for the total chemical synthesis of enantiomerically-pure 7-(2'-trimethylsilyl) ethyl camptothecin | |
Li et al. | The solvolysis of topotecan in alcohols and acetic anhydride | |
Yu et al. | Synthesis and preliminary anticancer evaluation of 10-hydroxycamptothecin analogs | |
RU2200163C2 (en) | Carbocyclic analogs of 20(s)-camptothecin, methods of their synthesis, pharmaceutical composition, method of treatment | |
沢田誠吾 et al. | Synthesis and Antitumor Activity of 20 (S)-Camptothecin Derivatives: Carbamate-Linked, Water-Soluble Derivatives of 7-Ethyl-10-hydroxycamptothecin. | |
JP6129951B6 (en) | Novel pyrido [3,4-C] [1,9] phenanthroline and 11,12 dihydropyrido [3,4, -C] [1,9] phenanthroline derivatives and their use, particularly for treating cancer | |
JP6129951B2 (en) | Novel pyrido [3,4-C] [1,9] phenanthroline and 11,12 dihydropyrido [3,4, -C] [1,9] phenanthroline derivatives and their use, particularly for treating cancer | |
AU640950B2 (en) | 10,11-methylenedioxy-20(RS)-camptothecin and 10,11-methylenedioxy-20(S)-camptothecin analogs | |
JP5198447B2 (en) | Camptothecin derivatives having antitumor activity |