Nothing Special   »   [go: up one dir, main page]

Narayan, 2011 - Google Patents

Study of Optically Active Biological Fluids Using Polarimetric Data Analysis

Narayan, 2011

View PDF
Document ID
8136443042888123207
Author
Narayan C
Publication year

External Links

Snippet

The purpose of this study was to explore the behavior of four different optically active biological fluids of various concentrations using polarimetric principles applied to optical imaging techniques. The samples used in the study were Vascular Endothelial Growth …
Continue reading at etd.ohiolink.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colour
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/444Evaluating skin marks, e.g. mole, nevi, tumour, scar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis

Similar Documents

Publication Publication Date Title
US10161870B2 (en) System and method for multi-parameter spectroscopy
Mourant et al. Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells
Alali et al. Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment
Wood et al. Polarized light propagation in multiply scattering media<? xpp qa?> exhibiting both linear birefringence and optical<? xpp qa?> activity: Monte Carlo model and experimental<? xpp qa?> methodology
Baba et al. Effect of temperature, p H, and corneal birefringence on polarimetric glucose monitoring in the eye
US9575001B2 (en) System and method for detection of materials using orbital angular momentum signatures
Layden et al. Quantitative polarimetry for tissue characterization and diagnosis
Lara et al. Axially resolved complete Mueller matrix confocal microscopy
US20180128739A9 (en) System and method for multi-parameter spectroscopy
Louie et al. Degree of optical polarization as a tool for detecting melanoma: proof of principle
Chue-Sang et al. Optical phantoms for biomedical polarimetry: a review
Hadley et al. Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media
Hall et al. Combined Stokes vector and Mueller matrix polarimetry for materials characterization
Pham et al. Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing
Ahmad et al. Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?
Pham et al. Extraction of effective parameters of anisotropic optical materials using a decoupled analytical method
Ignatenko et al. Applications of Mueller matrix polarimetry to biological and agricultural diagnostics: A review
Singh et al. Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light
Sun et al. Mueller matrix decomposition for determination of optical rotation of glucose molecules in turbid media
Co^ te´ et al. Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms
Dixon et al. Quantifying optical anisotropy in soft tissue membranes using Mueller matrix imaging
Mukherjee et al. Glucose sensing in the presence of scattering by analyzing a partial Mueller matrix
Lien et al. Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry
US7576853B2 (en) Electronically modulated dynamic optical phantoms for biomedical imaging
Wood et al. Towards noninvasive glucose sensing using polarization analysis of multiply scattered light