Zhang et al., 2010 - Google Patents
Layered GdBa0. 5Sr0. 5Co2O5+ δ as a cathode for proton-conducting solid oxide fuel cells with stable BaCe0. 5Zr0. 3Y0. 16Zn0. 04O3− δ electrolyteZhang et al., 2010
- Document ID
- 803572564857709340
- Author
- Zhang X
- Jin M
- Sheng J
- Publication year
- Publication venue
- Journal of alloys and compounds
External Links
Snippet
The layered GdBa0. 5Sr0. 5Co2O5+ δ (GBSC) perovskite oxides are synthesized by modified Pechini method and investigated as a novel cathode material for solid oxide fuel cells (SOFCs) based on a stable perovskite oxide BaCe0. 5Zr0. 3Y0. 16Zn0. 04O3− δ …
- 239000003792 electrolyte 0 title abstract description 25
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ling et al. | Investigation of cobalt-free cathode material Sm0. 5Sr0. 5Fe0. 8Cu0. 2O3− δ for intermediate temperature solid oxide fuel cell | |
Tian et al. | Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer | |
Pang et al. | Systematic evaluation of cobalt-free Ln0. 5Sr0· 5Fe0· 8Cu0· 2O3− δ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells | |
Tao et al. | A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells | |
Huang et al. | Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs | |
Yamaura et al. | Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell | |
Xie et al. | Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells | |
Yao et al. | Investigation of layered perovskite NdBa0. 5Sr0. 25Ca0. 25Co2O5+ δ as cathode for solid oxide fuel cells | |
Mathur et al. | Recent progress in electrolyte-supported solid oxide fuel cells: a review | |
Lenka et al. | Comparative investigation on the functional properties of alkaline earth metal (Ca, Ba, Sr) doped Nd2NiO4+ δ oxygen electrode material for SOFC applications | |
Tao et al. | A stable La1. 95Ca0. 05Ce2O7− δ as the electrolyte for intermediate-temperature solid oxide fuel cells | |
Jin et al. | Layered PrBaCo2O5+ δ perovskite as a cathode for proton-conducting solid oxide fuel cells | |
Yao et al. | Characterization of layered double perovskite LaBa0. 5Sr0. 25Ca0. 25Co2O5+ δ as cathode material for intermediate-temperature solid oxide fuel cells | |
Zhang et al. | Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode | |
Zhao et al. | Novel BaCe0. 7In0. 2Yb0. 1O3− δ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells | |
Chen et al. | (La, Pr) 0.8 Sr0. 2FeO3− δ–Sm0. 2Ce0. 8O2− δ composite cathode for proton-conducting solid oxide fuel cells | |
Liu et al. | Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs | |
Li et al. | Evaluation of (Ba0. 5Sr0. 5) 0.85 Gd0. 15Co0. 8Fe0. 2O3− δ cathode for intermediate temperature solid oxide fuel cell | |
Cai et al. | Comparison of (Pr, Ba, Sr) FeO3-δ-SDC composite cathodes in proton-conducting solid oxide fuel cells | |
Zhang et al. | High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO 5+ x Cathode | |
Ling et al. | Potentiality of cobalt-free perovskite Ba0. 5Sr0. 5Fe0. 9Mo0. 1O3− δ as a single-phase cathode for intermediate-to-low-temperature solid oxide fuel cells | |
Jo et al. | Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs | |
Miao et al. | A strategy for improving the sinterability and electrochemical properties of ceria-based LT-SOFCs using bismuth oxide additive | |
Cai et al. | Enhanced electrochemical performance of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells | |
Wu et al. | Investigations on electrochemical performance of La2NiO4+ δ cathode material doped at A site for solid oxide fuel cells |