Chen et al., 2010 - Google Patents
Design of $ X $-band and $ Ka $-band Colpitts oscillators using a parasitic cancellation techniqueChen et al., 2010
- Document ID
- 4658355658961777206
- Author
- Chen Y
- Mouthaan K
- Lin F
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
An X-band and two Ka-band monolithic microwave integrated circuit (MMIC) common drain Colpitts oscillators using a parasitic cancellation technique are designed and fabricated in a 0.2-μm GaAs pHEMT technology with af T of 60 GHz. The parasitic cancellation technique …
- 230000003071 parasitic 0 title abstract description 58
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1237—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
- H03B5/124—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1206—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
- H03B5/1212—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/12—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
- H03B5/1228—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B19/00—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
- H03B19/06—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source by means of discharge device or semiconductor device with more than two electrodes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/30—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B19/00—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
- H03B19/16—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source using uncontrolled rectifying devices, e.g. rectifying diodes or Schottky diodes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B2200/00—Indexing scheme relating to details of oscillators covered by H03B
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B1/00—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers | |
Sharma et al. | 216-and 316-GHz 45-nm SOI CMOS signal sources based on a maximum-gain ring oscillator topology | |
Ahmed et al. | 0.3-THz SiGe-based high-efficiency push–push VCOs with> 1-mW peak output power employing common-mode impedance enhancement | |
Padovan et al. | Design of low-noise $ K $-band SiGe bipolar VCOs: Theory and implementation | |
Monaco et al. | Injection-Locked CMOS Frequency Doublers for $\mu $-Wave and mm-Wave Applications | |
Wang et al. | A Low-Voltage Low-Power Wide-Tuning-Range Hybrid Class-AB/Class-B VCO With Robust Start-Up and High-Performance ${\rm FOM} _ {T} $ | |
Jain et al. | A BiCMOS dual-band millimeter-wave frequency synthesizer for automotive radars | |
Choi et al. | A 5.9-GHz fully integrated GaN frontend design with physics-based RF compact model | |
Hsieh et al. | A 15/30-GHz Dual-Band Multiphase Voltage-Controlled Oscillator in 0.18-$\mu $ m CMOS | |
Liu et al. | Design of Ultra-Low Phase Noise and High Power Integrated Oscillator in $0.25~\mu {\rm m} $ GaN-on-SiC HEMT Technology | |
Ku et al. | A milliwatt-level 70–110 GHz frequency quadrupler with> 30 dBc harmonic rejection | |
Khatibi et al. | An Efficient High-Power Fundamental Oscillator Above $ f_ {\max}/2$: A Systematic Design | |
El-Aassar et al. | Octave-tuning dual-core folded VCO leveraging a triple-mode switch-less tertiary magnetic loop | |
Mahalingam et al. | A 30-GHz power-efficient PLL frequency synthesizer for 60-GHz applications | |
Mahalingam et al. | $ K $-band High-PAE Wide-Tuning-Range VCO Using Triple-Coupled $ LC $ Tanks | |
Jang et al. | High even-modulus injection-locked frequency dividers | |
Sapone et al. | A 0.13-$\mu {\hbox {m}} $ SiGe BiCMOS Colpitts-Based VCO for $ W $-Band Radar Transmitters | |
Hsieh et al. | A $ V $-Band Divide-by-4 Direct Injection-Locked Frequency Divider in 0.18-$\mu {\hbox {m}} $ CMOS | |
Kim et al. | W-and G-band GaN voltage-controlled oscillators with high output power and high efficiency | |
Tarkeshdouz et al. | An 82.2-to-89.3 GHz CMOS VCO with DC-to-RF efficiency of 14.8% | |
Zhou et al. | An E-band SiGe high efficiency, high harmonic suppression amplifier multiplier chain with wide temperature operating range | |
Chen et al. | Design of $ X $-band and $ Ka $-band Colpitts oscillators using a parasitic cancellation technique | |
Hsieh et al. | A low phase noise 210-GHz triple-push ring oscillator in 90-nm CMOS | |
Kim et al. | A 60 ghz ingap/gaas hbt push-push mmic vco | |
Wang et al. | A 7/24-GHz CMOS VCO with high band ratio using a current-source switching topology |