

(12)

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: 2 869 347

 (51) Int. Cl.:

 C12Q 1/6827
 (2008.01)

 C12Q 1/6883
 (2008.01)

 G16B 20/10
 (2009.01)

TRADUCCIÓN DE PATENTE EUROPEA

Т3

(96)Fecha de presentación y número de la solicitud europea:23.07.2008E 12180138 (5)(97)Fecha y número de publicación de la concesión europea:07.04.2021EP 2557520

54 Título: Determinación de un desequilibrio de la secuencia de ácido nucleico

30 Prioridad:	Titular/es:
23.07.2007 US 951438 P	THE CHINESE UNIVERSITY OF HONG KONG
 Fecha de publicación y mención en BOPI de la traducción de la patente: 25.10.2021 	(100.0%) Technology Licensing Office, Room 226 Pi Ch'iu Building Shatin New Territories Hong Kong, CN (72) Inventor/es:
	LO, YUK-MING DENNIS; CHIU, ROSSA WAI KWUN; CHAN, KWAN CHEE; ZEE, BENNY CHUNG YING y CHONG, KA CHUN
	(⁷⁴) Agente/Representante:
	PONS ARIÑO, Ángel

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre Concesión de Patentes Europeas).

DESCRIPCIÓN

Determinación de un desequilibrio de la secuencia de ácido nucleico

5 Referencias cruzadas a solicitudes relacionadas

La presente solicitud también está relacionada con una solicitud no provisional presentada simultáneamente titulada "DIAGNÓSTICO DE ANEUPLOIDIA CROMOSÓMICA FETAL UTILIZANDO SECUENCIACIÓN GENÓMICA", (expediente de abogado nº 016285- -005220US).

Campo de la invención

La presente invención se refiere generalmente a las pruebas de diagnóstico de genotipos y enfermedades mediante la determinación de un deseguilibrio entre dos secuencias de ácidos nucleicos diferentes y, más particularmente, a la 15 identificación del síndrome de Down, otras aneuploidías cromosómicas, mutaciones y genotipos en un feto mediante el análisis de una muestra de sangre materna. La invención también se refiere a la detección de cáncer, la monitorización de trasplantes y la monitorización de enfermedades infecciosas.

Antecedentes

20

10

Las enfermedades genéticas, cánceres y otras afecciones a menudo son el resultado o producen un desequilibrio en dos cromosomas o alelos correspondientes u otras secuencias de ácidos nucleicos. Es decir, una cantidad de una secuencia respecto a otra secuencia es mayor o menor de lo normal. Habitualmente, la proporción normal es una proporción 50/50 uniforme. El síndrome de Down (trisomía 21) es una enfermedad que tiene un deseguilibrio de un cromosoma 21 de más.

25

Los métodos de diagnóstico prenatal convencionales de trisomía 21 implican el muestreo de materiales fetales mediante procedimientos invasivos tales como la amniocentesis o el muestreo de vellosidades coriónicas, que suponen un riesgo determinado de pérdida fetal. Los procedimientos no invasivos, tales como el cribado mediante de ecografía y marcadores bioquímicos, se han utilizado para estratificar el riesgo de mujeres gestantes antes de los

30 procedimientos de diagnóstico invasivos definitivos. Sin embargo, estos métodos de selección típicamente miden epifenómenos que se asocian con la trisomía 21 en lugar de la anomalía cromosómica del núcleo y por tanto, tienen una exactitud diagnóstica subóptima y otras desventajas, tal como estar influenciada altamente por la edad gestacional.

35

El descubrimiento de ADN fetal libre de células circulante en el plasma materno en 1997 abrió nuevas posibilidades para el diagnóstico prenatal no invasivo (Lo, YMD y Chiu, RWK 2007 Nat Rev Genet 8, 71-77). Si bien este método se ha aplicado fácilmente al diagnóstico prenatal ligado al sexo (Costa, JM et al. 2002 N Engl J Med 346, 1502) y a ciertos trastornos genéticos únicos (Lo, YMD et al. 1998 N Engl J Med 339, 1734-1738), su aplicación a la detección

- 40 prenatal de aneuploidías cromosómicas fetales ha representado un desafío considerable (Lo, YMD y Chiu, RWK 2007, anteriormente citado). Primero, los ácidos nucleicos fetales coexisten en el plasma materno con un elevado fondo de ácidos nucleicos de origen materno que pueden interferir con el análisis (Lo, YMD et al. 1998 Am J Hum Genet 62, 768-775). Segundo, los ácidos nucleicos circulan en el plasma materno predominantemente en una forma libre de células, dificultando la derivación de la información de dosis de genes o cromosomas dentro del genoma fetal. 45
 - Se han realizado desarrollos considerables para superar estos desafíos recientemente (Benachi, A y Costa, JM 2007 Lancet 369, 440-442). Un enfoque detecta los ácidos nucleicos específicos fetales en el plasma materno, superando por tanto el problema de la interferencia del fondo materno (Lo, YMD y Chiu, RWK 2007, anteriormente citado). La dosis del cromosoma 21 se dedujo a partir de las proporciones de alelos polimórficos en las moléculas de ADN/ARN
- 50 derivadas de placenta. Sin embargo, este método es menos exacto cuando las muestras contienen menos cantidad de ácido nucleico diana y solo pueden aplicarse a fetos que son heterocigóticos para los polimorfismos diana, lo cual es solo un subconjunto de la población si se usa un polimorfismo.
- Dhallan et al. (Dhallan, R, et al. 2007, anteriormente citado Dhallan, R, et al. 2007 Lancet 369, 474-481) describen una 55 estrategia alternativa de enriguecimiento de la proporción de ADN fetal circulante añadiendo formaldehído al plasma materno. La proporción de secuencias del cromosoma 21 aportadas por el feto en el plasma materno se determinó evaluando la proporción de alelos específicos fetales heredados por vía paterna respecto a alelos específicos no fetales para polimorfismos de un solo nucleótido, (SNP; del inglés, Single Nucleotide Polymorphisms) en el cromosoma 21. De forma análoga, se calcularon las proporciones de SNP para un cromosoma de referencia. A continuación, se
- dedujo un desequilibrio del cromosoma fetal 21 mediante la detección de una diferencia estadísticamente significativa 60 entre las proporciones de SNP para el cromosoma 21 y aquellas del cromosoma de referencia, donde el nivel de significación se definió utilizando un valor fijo de p \leq 0.05. Para garantizar una alta cobertura de la población, se seleccionaron más de 500 SNP por cromosoma. Sin embargo, ha habido controversias con respecto a la eficacia del formaldehído para enriquecer a una elevada proporción (Chung, GTY, et al. 2005 Clin Chem 51, 655-658) y por tanto
- 65 la reproducibilidad del método necesita evaluarse de forma adicional. Además, como cada feto y madre serían informativos para un número diferente de SNP para cada cromosoma, la potencia del ensayo estadístico para la

comparación de proporciones de SNP variaría en cada caso (Lo, YMD y Chiu, RWK. 2007 Lancet 369, 1997). Asimismo, dado que estos enfoques dependen de la detección de polimorfismos genéticos, se limitan a fetos heterocigóticos para estos polimorfismos.

- 5 La utilización de la reacción en cadena de la polimerasa (PCR) y la cuantificación de ADN de un locus del cromosoma 21 y de un locus de referencia en cultivos de amniocitos, obtenidos de fetos con trisomía 21 y euploides, Zimmermann et al. (2002 Clin Chem. 48, 362-363) pudo diferenciar los dos grupos de fetos basándose en el aumento de 1,5 veces en las secuencias de ADN del cromosoma 21 en el primer grupo. Dado que una diferencia de 2 veces en la concentración del molde de ADN constituye una diferencia de un solo ciclo umbral (Ct), la discriminación de una diferencia de 1,5 veces ha sido el límite de la PCR en tiempo real convencional. Para conseguir grados de 10
- discriminación cuantitativa más sutiles, se requieren estrategias alternativas. Por consiguiente, algunas realizaciones de la presente invención utilizan PCR digital (Vogelstein, B et al. 1999 Proc Natl Acad Sci USA 96, 9236-9241) para este propósito.
- 15 La PCR digital se ha desarrollado para la detección del sesgo de la proporción alélica en muestras de ácidos nucleicos (Chang, HW et al. 2002 J Natl Cancer Inst. 94, 1697-1703). Clínicamente, se ha mostrado su utilidad para la detección de la pérdida de heterocigosidad (LOH; del inglés, loss of heterozygosity) en muestras de ADN tumorales (Zhou, W. et al. 2002 Lancet 359, 219-225). Para el análisis de resultados de PCR digital, se ha adoptado en estudios previos una prueba de la proporción de probabilidades secuencial (SPRT; del inglés, Seguential Probability Ratio Testing) para
- 20 clasificar los resultados experimentales sugerentes de la presencia de LOH en una muestra o no (El Karoui et al. 2006 Stat Med 25, 3124-3133). En algunos métodos utilizados en los estudios previos, el valor de límite para determinar el LOH utilizó una proporción de referencia fija de los dos alelos en el ADN de 2/3. Como la cantidad, proporción y concentración de ácidos nucleicos fetales en plasma materno son variables, estos métodos no son adecuados para detectar la trisomía 21 utilizando ácidos nucleicos fetales en un fondo de ácidos nucleicos maternos en plasma 25 materno.

Es deseable tener una prueba no invasiva para la detección de trisomía 21 fetal (y otros desequilibrios) basada en el análisis de ácidos nucleicos fetales circulantes, especialmente uno que sea independiente del uso de polimorfismos genéticos y/o marcadores específicos fetales. Es deseable también tener una determinación exacta de valores límite

- 30 y de recuento de secuencias, que puedan reducir el número de pocillos de datos y/o la cantidad de moléculas de ácidos nucleicos de plasma materno necesarias para la exactitud, proporcionando por tanto una eficacia aumentada y una eficacia del coste. Es deseable también que las pruebas no invasivas tengan elevada sensibilidad y especificidad para minimizar los diagnósticos falsos.
- 35 Otra aplicación de la detección de ADN fetal en plasma materno es para el diagnóstico prenatal de trastornos génicos únicos, tales como la beta-talasemia. Sin embargo, como el ADN fetal solo constituye una fracción minoritaria del ADN en el plasma materno, se cree que este enfoque solo puede detectar una mutación que un feto ha heredado de su padre, pero que está ausente de la madre. Entre los ejemplos de esto se incluye la deleción de 4 pb en los codones 41/42 del gen de la beta-globina humana que provoca la beta-talasemia (Chiu RWK et al. 2002 Lancet, 360, 998-1000)
- 40 y la mutación de Q890X del gen regulador de la conductancia transmembrana de la fibrosis quística (Gonzalez-Gonzalez et al. 2002 Prenat Diagn, 22, 946-8). Sin embargo, dado que tanto la beta-talasemia como la fibrosis quística son afecciones recesivas autosómicas, en las que el feto necesitaría heredar una mutación de cada parental antes de que la enfermedad se manifestara, la detección de la mutación heredada meramente por vía paterna solo incrementaría el riesgo de que el feto tenga la enfermedad de un 25 % a un 50 %. Diagnósticamente, esto no es lo
- 45 ideal. Por tanto, la principal aplicación diagnóstica del enfoque existente sería para el escenario cuando se puede detectar la mutación fetal no heredada por vía paterna en el plasma materno, donde el feto a continuación, puede estar excluido de tener el estado de enfermedad homocigótico. Sin embargo, diagnósticamente, este enfoque tiene la desventaja de que la conclusión se realiza basada en la detección negativa de la mutación paterna. Por tanto, un enfoque que permitiera que se determine el genotipo fetal completo (sea homocigótico normal, homocigótico mutante
- 50 o heterocigótico) a partir de plasma materno, sin la limitación anterior, sería muy deseable.

Breve sumario

- De acuerdo con la presente invención, se proporciona un método para determinar una concentración fraccional de 55 ADN fetal en una muestra biológica de una mujer embarazada de un feto, incluyendo la muestra biológica moléculas de ácido nucleico de la mujer y del feto, y donde el sujeto femenino es homocigoto en un primer locus para un primer alelo y el feto es heterocigoto en el primer locus para el primer alelo y un segundo alelo diferente del primer alelo, comprendiendo el método: recibir los primeros datos de una primera pluralidad de reacciones que implican moléculas de ácido nucleico de la muestra biológica, donde las reacciones son indicativas de la presencia o ausencia de dos
- secuencias de polinucleótidos de interés, siendo las dos secuencias de polinucleótidos de interés el primer alelo y el 60 segundo alelo en el primer locus, donde la primera pluralidad de reacciones son reacciones en cadena de la polimerasa digital, y donde los primeros datos incluyen: (1) un primer conjunto de datos cuantitativos que indican un primer número de reacciones positivas para la presencia del primer alelo; y (2) un segundo conjunto de datos cuantitativos que indican un segundo número de reacciones positivas para la presencia del segundo alelo; y calcular una fracción del primer
- 65 número al segundo número para determinar la concentración fraccional de ADN fetal.

En una realización, el valor límite se determina basándose, al menos en parte, en el porcentaje de secuencias fetales (ácido nucleico clínicamente relevante) en una muestra biológica, tal como plasma materno o suero u orina, que contiene un fondo de secuencias de ácidos nucleicos maternos. En otra realización, el valor límite se determina basándose en una concentración promedio de una secuencia en una pluralidad de reacciones. En un aspecto, el valor límite se determina basándose en una concentración promedio de una secuencia en una pluralidad de reacciones. En un aspecto, el valor límite se determina de determina en entre en una secuencia en una pluralidad de reacciones. En una secuencia de determina en entre en una secuencia en una pluralidad de reacciones. En una secuencia de determina en entre en una secuencia en una pluralidad de reacciones. En una secuencia de determina en entre en

- 5 límite se determina a partir de una proporción de pocillos informativos que se estima que contienen una secuencia de ácido nucleico particular, donde la proporción se determina basándose en el porcentaje mencionado anteriormente y/o la concentración promedio.
- El valor límite se puede determinar utilizando muchos tipos diferentes de métodos, tales como SPRT, descubrimiento
 falso, intervalo de confianza, característica operativa del receptor (ROC; del inglés, receiver operating characteristic).
 Esta estrategia minimiza adicionalmente la cantidad de pruebas necesarias antes de que se pudiera realizar una clasificación segura. Esto es de una relevancia particular para los análisis de ácidos nucleicos plasmáticos en donde la cantidad de molde a menudo es limitante.
- 15 Otras realizaciones de la invención están dirigidas a sistemas y medios legibles por ordenador asociados con los métodos descritos en el presente documento.

Se puede obtener una mejor comprensión de la naturaleza y ventajas de la presente invención con referencia a la siguiente descripción detallada y los dibujos adjuntos.

Breve descripción de los dibujos

La Fig. 1 es un diagrama de flujo que ilustra un experimento de PCR digital.

La Fig. 2A ilustra un método de análisis digital de ARN-SNP y RCD de acuerdo con una realización de la presente invención.

La Fig. 2B muestra una tabla de ejemplos de anomalías cromosómicas detectables frecuentemente en cánceres.

30 La Fig. 3 ilustra un gráfico que tiene las curvas SPRT utilizadas para determinar el síndrome de Down de acuerdo con una realización de la presente invención.

La Fig. 4 muestra un método para determinar un estado de enfermedad utilizando un porcentaje de células fetales de acuerdo con una realización de la presente invención.

35

20

La Fig. 5 muestra un método para determinar un estado de enfermedad utilizando una concentración promedio de acuerdo con una realización de la presente invención.

La Fig. 6 muestra una tabla que tabula la proporción alélica de ARN-SNP digital esperada y la P_r de muestras de 40 trisomía 21 para un intervalo de concentraciones de moldes expresado como la concentración de moldes de referencia promedio por pocillo (m_r) de acuerdo con una realización de la presente invención.

La Fig. 7 muestra una tabla que tabula la Pr esperada para las concentraciones fraccionarias de ADN fetal de un 10 %, 25 %, 50 % y 100 % en muestras de trisomía 21 en un intervalo de concentraciones de moldes expresado como la concentración de moldes de referencia promedio por pocillo (mr) de acuerdo con una realización de la presente invención.

La Fig. 8 muestra un gráfico que ilustra el grado de diferencias en las curvas de SPRT para los valores de m_r de 0,1, 0,5 y 1,0 para los análisis de ARN-SNP digital de acuerdo con una realización de la presente invención.

50

45

La Fig. 9A muestra una tabla de una comparación de la eficacia de los algoritmos de SPRT nuevo y viejo para clasificar casos de euploidía y trisomía 21 en los análisis de ARN-SNP digital de 96 pocillos de acuerdo con una realización de la presente invención.

55 La Fig. 9B muestra una tabla de una comparación de la eficacia de los algoritmos de SPRT nuevo y viejo para clasificar casos de euploidía y trisomía 21 en los análisis de ARN-SNP digital de 384 pocillos de acuerdo con una realización de la presente invención.

La Fig. 10 es una tabla que muestra los porcentajes de fetos clasificados correcta e incorrectamente como 60 euploides y aneuploides y aquellos no clasificables para los recuentos informativos dados de acuerdo con una realización de la presente invención.

La Fig. 11 es una tabla 1100 que muestra simulaciones informáticas para un análisis de RCD digital para una muestra de ADN fetal puro (100 %) de acuerdo con una realización de la presente invención.

65

La Fig. 12 es una tabla 1200 que muestra los resultados de la simulación informática de exactitudes de análisis de

RCD digital para m_r=0,5 para la clasificación de muestras de fetos euploides o con trisomía 21 con concentraciones fraccionarias diferentes de ADN fetal de acuerdo con una realización de la presente invención.

La Fig. 13A muestra una tabla 1300 de análisis de ARN-SNP digital en tejidos placentarios de gestaciones de euploides y trisómicos 21 de acuerdo con una realización de la presente invención.

La Fig. 13B muestra una tabla 1350 de análisis de ARN-SNP digital de plasma materno de gestaciones de euploides y trisómicos 21 de acuerdo con una realización de la presente invención.

10 Las Fig. 14A-14C muestran gráficos que ilustran una curva límite resultado de un análisis RCD de acuerdo con una realización de la presente invención.

La Fig. 15A muestra una tabla de análisis de ARN-SNP digital en tejidos placentarios de gestaciones de euploides o de trisómicos 21 de acuerdo con una realización de la presente invención.

15

20

30

5

La Fig. 15B muestra una tabla de datos de ARN-SNP digital de los 12 paneles de reacción a partir de una muestra de tejido materno de acuerdo con una realización de la presente invención.

La Fig. 15C muestra una tabla de análisis de ARN-SNP digital de plasma materno de gestaciones de euploides o de trisómicos 21 de acuerdo con una realización de la presente invención.

La Fig. 16A muestra una tabla para un análisis de ARN-SNP digital de placentas de euploides y trisómicos 18 de acuerdo con una realización de la presente invención.

La Fig. 16B muestra una interpretación de SPRT de datos de ARN-SNP digital para placentas de euploides o de trisómicos 18 de acuerdo con una realización de la presente invención.

La Fig. 17 muestra una tabla de un análisis de RCD digital de mezclas de ADN celular de placenta/sangre materna al 50 % de gestaciones de euploides y trisómicos 21 de acuerdo con una realización de la presente invención.

La Fig. 18 muestra una curva de SPRT que ilustra los límites de decisión para la clasificación correcta de acuerdo con una realización de la presente invención.

La Fig. 19 muestra una tabla de análisis de RCD digital de muestras de líquido amniótico de gestaciones euploides 35 y de trisómicos 21 de acuerdo con una realización de la presente invención.

La Fig. 20 muestra una tabla de análisis de RCD digital de muestras de ADN placentario de gestaciones de euploides y trisómicos 18 (E= euploide; T18= trisomía 18) de acuerdo con una realización de la presente invención.

40 La Fig. 21 muestra una tabla de un análisis de RCD digital multiplexado de mezclas de ADN celular de placenta/sangre materna al 50 % de gestaciones de euploides y trisómicos 21.(E= euploide; T21= trisomía 21; U= sin clasificar) de acuerdo con una realización de la presente invención.

Las Figs. 22A y 22B muestran una tabla de análisis de RCD digital multiplexado de un 50 % de ADN genómico placentario de euploide o trisómico 21/50 % mezcla de ADN de capa leucocitaria materna de acuerdo con una realización de la presente invención. Sin clase indica inclasificable y T21 indica trisomía 21.

La Fig. 23 muestra un escenario en donde tanto las parejas masculinas como femeninas portan la misma mutación.

50 La Fig. 24A muestra una tabla de un análisis de RMD digital de mezclas de ADN mujer/hombre y hombre/hombre de acuerdo con una realización de la presente invención.

La Fig. 24B muestra una tabla de un análisis de RMD digital de mezclas con ADN un 25 % femenino y un 75 % masculino, de acuerdo con una realización de la presente invención.

55

La Fig. 25 muestra una tabla de un análisis de RMD digital de mezclas de un 15 %-50 % de ADN que imitan muestras de plasma materno para la mutación HbE de acuerdo con una realización de la presente invención.

La Fig. 26A muestra una tabla de un análisis de RMD digital de mezclas de un 5 %-50 % de ADN que imitan muestras de plasma materno para la mutación CD41/42 de acuerdo con una realización de la presente invención.

La Fig. 26B muestra una tabla de un análisis de RMD digital de mezclas de un 20 % de ADN que imitan muestras de plasma materno para la mutación CD41/42 de acuerdo con una realización de la presente invención.

65 La Fig. 27 muestra un diagrama de bloques de un aparato informático ejemplar utilizable con sistemas y métodos de acuerdo con las realizaciones de la presente invención.

Definiciones

La expresión "muestra biológica", como se utiliza en el presente documento, se refiere una cualquier muestra que se 5 toma de un sujeto (por ejemplo, un ser humano, tal como una mujer gestante) y contiene una o más moléculas de ácido nucleico de interés.

La expresión "ácido nucleico" o "polinucleótido" se refiere a un ácido desoxirribonucleico (ADN) o ácido ribonucleico (ARN) y a un polímero de los mismos en forma mono- o bicatenaria. A menos que esté específicamente limitado, la expresión abarca los ácidos nucleicos que contienen análogos conocidos de nucleótidos naturales que tienen 10 propiedades de unión similares a las del ácido nucleico de referencia y que se metabolizan de manera similar a la de los nucleótidos de origen natural. Salvo que se indique lo contrario, una secuencia particular del ácido nucleico también abarca implícitamente variantes modificadas conservativamente de la misma (por ejemplo, sustituciones de codones degenerados), alelos, ortólogos, SNP y secuencias complementarias así como la secuencia explícitamente indicada.

- 15 Específicamente, las sustituciones de codones degenerados se pueden lograr mediante la generación de secuencias en las que la tercera posición de uno o más codones seleccionados (o todos) se sustituye con restos de base mixta y/o de desoxiinosina (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); y Rossolini et al., Mol. Cell. Probes 8: 91-98 (1994)). La expresión ácido nucleico se utiliza indistintamente con gen, ÁDNc, ARNm, ARN pequeño no codificante, microARN (miARN), ARN asociado a Piwi y ARN corto en horquilla
- 20 (ARNhc) codificado por un gen o locus.

El término "gen" significa el segmento de ADN implicado en la producción de una cadena polipeptídica. Puede incluir regiones anteriores y posteriores a la región codificante (líder y remolque) así como las secuencias intervinientes (intrones) entre los segmentos de codificación individuales (exones).

25

El término "reacción", como se utiliza en el presente documento, se refiere a cualquier proceso que implica una acción química, enzimática o física que sea indicativa de la presencia o ausencia de una secuencia particular de polinucleótidos de interés. Un ejemplo de una "reacción" es una reacción de amplificación, tal como una reacción en cadena de la polimerasa (PCR). Otro ejemplo de una "reacción" es una reacción de secuenciación, por síntesis o por

- 30 ligadura. Una "reacción informativa" es una que indica la presencia de una o más secuencias particulares de polinucleótidos de interés y en un caso en donde solo una secuencia de interés está presente. El término "pocillo", como se utiliza en el presente documento, se refiere a una reacción en un lugar predeterminado dentro de una estructura confinada, por ejemplo, un vial, célula o cámara bien conformados en una matriz de PCR.
- 35 La expresión "secuencia de ácido nucleico clínicamente relevante", como se utiliza en el presente documento, puede referirse a una secuencia de polinucleótidos correspondiente a un segmento de una secuencia genómica más grande cuyo deseguilibrio potencial se va a someter a prueba o a la propia secuencia genómica más grande. Un ejemplo es la secuencia del cromosoma 21. Otros ejemplos incluyen el cromosoma 18, 13, X e Y. Todavía otros ejemplos incluyen secuencias genéticas mutadas o polimorfismos genéticos o variaciones del número de copias que un feto puede
- 40 heredar de uno de sus padres o de ambos. Todavía otros ejemplos incluyen secuencias que están mutadas, delecionadas o amplificadas en un tumor maligno, por ejemplo, secuencias en las que se produce pérdida de heterocigosidad o duplicación génica. En algunas realizaciones, pueden usarse secuencias múltiples de ácido nucleico clínicamente relevantes o marcadores equivalentemente múltiples de la secuencia de ácido nucleico clínicamente relevante para proporcionar datos para detectar el desequilibrio. Por ejemplo, pueden usarse datos de cinco 45 secuencias no consecutivas en el cromosoma 21 de una manera aditiva para la determinación de un posible
- desequilibrio del cromosoma 21, reduciendo eficazmente la necesidad de volumen de muestra a 1/5.

La expresión "secuencia de ácido nucleico de fondo", como se utiliza en el presente documento, se refiere a una secuencia de ácido nucleico cuya proporción normal se conoce respecto a la secuencia de ácido nucleico clínicamente 50 relevante, por ejemplo, una proporción de 1 a 1. Como un ejemplo, la secuencia de ácido nucleico de fondo y la secuencia de ácido nucleico clínicamente relevante son dos alelos del mismo cromosoma que se diferencian debido a la heterocigosidad. En otro ejemplo, la secuencia de ácido nucleico de fondo es un alelo que es heterocigótico respecto a otro alelo que es la secuencia de ácido nucleico clínicamente relevante. Asimismo, algo de cada secuencia de ácido nucleico de fondo y de la secuencia de ácido nucleico clínicamente relevante puede proceder de diferentes individuos.

55

La expresión "secuencia de ácido nucleico de referencia", como se utiliza en el presente documento, se refiere a una secuencia de ácido nucleico cuya concentración promedio por reacción se conoce o se ha medido de forma equivalente.

60

La expresión "secuencia de ácido nucleico sobrerrepresentada" como se utiliza en el presente documento se refiere a la secuencia de ácido nucleico entre dos secuencias de interés (por ejemplo, una secuencia clínicamente relevante y una secuencia de fondo) que es más abundante que la otra secuencia en una muestra biológica.

La expresión "basándose en" como se utiliza en el presente documento significa "basándose en al menos en parte" y 65 se refiere a un valor (o resultado) que se utiliza en la determinación de otro valor, tal como sucede en la relación de

una entrada de un método y una salida de ese método. El término "*deriva*" como se utiliza en el presente documento se refiere también a la relación de una entrada de un método y a la salida de ese método, tal como sucede cuando la derivación es el cálculo de una fórmula.

- 5 La expresión "*datos cuantitativos*" como se utiliza en el presente documento significa que los datos que se obtienen de una o más reacciones y que proporcionan uno o más valores numéricos. Por ejemplo, el número de pocillos que muestran un marcador fluorescente para una secuencia particular sería un dato cuantitativo.
- El término "*parámetro*" como se utiliza en el presente documento significa un valor numérico que caracteriza un conjunto de datos cuantitativo y/o una relación numérica entre conjuntos de datos cuantitativos. Por ejemplo, un parámetro es una proporción (o función de una proporción) entre una primera cantidad de una primera secuencia de ácido nucleico y una segunda cantidad de una segunda secuencia de ácido nucleico.
- La expresión "*valor límite*" (en inglés, cutoff value), como se utiliza en el presente documento, significa un valor numérico cuyo valor se utiliza para arbitrar entre dos o más estados de clasificación (por ejemplo, enfermo y no enfermo) de una muestra biológica. Por ejemplo, si un parámetro es mayor que el valor límite, se realiza una primera clasificación del dato cuantitativo (por ejemplo, estado enfermo); o si el parámetro es menor que el valor límite, se realiza una clasificación diferente de los datos cuantitativos (por ejemplo, estado no enfermo).
- 20 La expresión "*desequilibrio*" como se utiliza en el presente documento significa cualquier desviación significativa como se define por al menos un valor límite en una cantidad de la secuencia de ácido nucleico clínicamente relevante a partir de una cantidad de referencia. Por ejemplo, la cantidad de referencia podría ser una proporción de 3/5 y por tanto podría producirse un desequilibrio si la proporción medida es de 1:1.

25 Descripción detallada de la invención

La presente invención proporciona métodos, sistemas y aparatos para determinar si un aumento o una disminución en comparación con una cantidad de referencia (por ejemplo, no enfermo) de una secuencia de ácido nucleico clínicamente relevante en relación con otras secuencias de ácido nucleico clínicamente no relevantes (por ejemplo,

- 30 un desequilibrio cromosómico o alélico) existe dentro de una muestra biológica. Se seleccionan uno o más valores límite para determinar si existe un cambio en comparación con la cantidad de referencia (por ejemplo un desequilibrio), por ejemplo, respecto a la proporción de cantidades de dos secuencias (o conjuntos de regiones). El cambio detectado en la cantidad de referencia puede ser cualquier desviación (ascendente o descendente) en la relación de la secuencia de ácido nucleico clínicamente relevante con las otras secuencias clínicamente no relevantes. Por tanto, el estado de
- 35 referencia puede ser cualquier proporción u otra cantidad (por ejemplo, distinta de una correspondencia 1-1) y un estado medido que significa que un cambio puede ser cualquier proporción u otra cantidad que difiera de la cantidad de referencia como se determina por dichos uno o más valores límite.
- La secuencia de ácido nucleico clínicamente relevante y la secuencia de ácido nucleico de fondo pueden proceder de un primer tipo de células y de uno o más segundos tipos de células. Por ejemplo, en una muestra biológica están presentes secuencias de ácido nucleico fetal originadas de células fetales/placentarias, tal como plasma materno, que contiene un fondo de secuencias de ácido nucleico materno que se originan de células maternas. Por tanto, en una realización, el valor límite se determina basándose, al menos en parte, en el porcentaje del primer tipo de células en una muestra biológica. Obsérvese que el porcentaje de secuencias fetales en una muestra puede determinarse mediante cualquier loci derivado del feto y no limitarse a medir las secuencias de ácido nucleico clínicamente relevantes. En otra realización, el valor límite se determina basándose, al menos en parte, en el porcentaje de
- relevantes. En otra realización, el valor límite se determina basándose, al menos en parte, en el porcentaje de secuencias tumorales en una muestra biológica, tal como plasma, suero, saliva u orina, que contiene un fondo de secuencias de ácido nucleico derivadas de las células no malignas dentro del cuerpo.
- 50 En todavía otra realización, el valor límite se determina basándose en una concentración promedio de una secuencia en una pluralidad de reacciones. En un aspecto, el valor límite se determina a partir de una proporción de pocillos informativos que se estima que contienen una secuencia de ácido nucleico particular, donde la proporción se determina basándose en el porcentaje mencionado anteriormente y/o la concentración promedio. El valor límite se puede determinar utilizando muchos tipos diferentes de métodos, tales como SPRT, descubrimiento falso, intervalo de
- 55 confianza, característica operativa del receptor (ROC; del inglés, receiver operating characteristic). Esta estrategia minimiza adicionalmente la cantidad de pruebas necesarias antes de que se pueda realizar una clasificación segura. Esto es de una relevancia particular para los análisis de ácidos nucleicos plasmáticos en donde la cantidad de molde a menudo es limitante. Aunque se presenta con respecto a la PCR digital, se pueden utilizar otros métodos.
- 60 La PCR digital implica múltiples análisis de PCR sobre ácidos nucleicos extremadamente diluidos, de manera que la mayoría de amplificaciones positivas reflejan la señal a partir de una molécula molde individual. La PCR digital de este modo permite el recuento de moléculas molde individuales. La proporción de amplificaciones positivas entre el número total de PCR analizadas, permite una estimación de la concentración de molde en la muestra original sin diluir. Esta técnica se ha propuesto para permitir la detección de diversos fenómenos genéticos (Vogelstein, B *et al.* 1999,
- 65 anteriormente citado) y se ha utilizado previamente para la detección de la pérdida de heterocigosidad en muestras de tumor (Zhou, W. *et al.* 2002, anteriormente citado) y en el plasma de pacientes con cáncer (Chang, HW *et al.* 2002,

anteriormente citado). Dado que la cuantificación de moléculas molde mediante PCR digital no depende de las relaciones dependientes de la dosis entre los colorantes indicadores y las concentraciones de ácido nucleico, su precisión analítica teóricamente debe ser superior a la de la PCR en tiempo real. Por tanto, la PCR digital podría permitir potencialmente la discriminación de grados más sutiles de diferencias cuantitativas entre los loci diana y de referencia

5 referencia.

Para probar esto, los presentes investigadores primero calcularon si la PCR digital podría determinar la proporción alélica de ARNm de *PLAC4* (Lo, YMD, *et al.* 2007 Nat Med 13, 218-223), un transcrito placentario del cromosoma 21, en plasma materno y de este modo distinguir fetos trisómicos 21 y euploides. Se hace referencia a esta aproximación

10 como el método de ARN-SNP digital. A continuación, los presentes inventores evaluaron si la precisión aumentada de la PCR digital permitiría la detección de aneuploidías cromosómicas fetales sin depender de polimorfismos genéticos. Los presentes inventores denominan a esto un análisis de dosis cromosómica relativa (RCD; del inglés, relative chromosome dosage) digital. El enfoque anterior es dependiente del polimorfismo, pero requiere menos precisión en la discriminación cuantitativa, si bien el último enfoque es independiente del polimorfismo, pero requiere de una precisión más elevada para la discriminación cuantitativa.

I. RNA-SNP DIGITAL

A. Visión general

20

25

55

60

La PCR digital es capaz de detectar la presencia de sesgo de la proporción alélica de dos alelos en una muestra de ADN. Por ejemplo, se ha utilizado para detectar la pérdida de heterocigosidad (LOH) en una muestra de ADN de tumor. Asumiendo que hay dos alelos en la muestra de ADN, en concreto A y G y que el alelo A se perdería en las células con la LOH. Cuando la LOH está presente en un 50 % de células en la muestra de tumor, la proporción alélica G:A en la muestra de ADN sería 2:1. Sin embargo, si la LOH no está presente en la muestra de tumor, la proporción alélica de G:A sería 1:1.

La Fig. 1 es un diagrama de flujo 100 que ilustra un experimento de PCR digital. En la etapa 110, la muestra de ADN se diluyó y a continuación, se distribuyó en pocillos separados. Nótese que los inventores han determinado que algunas especies de ácidos nucleicos plasmáticos están ya bastante diluidos en la muestra original. Por consiguiente, no hay necesidad para la dilución de algunos moldes, si ya están presentes en las concentraciones necesarias. En los estudios previos (por ejemplo, Zhou *et al.* 2002, anteriormente citado), una muestra de ADN se diluyó hasta un punto de manera que la concentración promedio de un "ADN molde" específico es aproximadamente 0,5 molécula de uno de los dos moldes por pocillo. Nótese que el término "ADN molde" aparece para referirse a los alelos A o G y que no se proporciona ningún fundamento para esta concentración específica.

- En la etapa 120, en cada pocillo, se lleva a cabo un proceso de PCR para detectar el(los) alelo(s) A y/o G simultáneamente. En la etapa 130, se identifican los marcadores en cada pocillo (por ejemplo, a través de fluorescencia), por ejemplo, A, G, A y G o ninguno. En ausencia de LOH, la abundancia de los alelos A y G en la muestra de ADN sería la misma (una copia por célula). Por tanto, las probabilidades de que un pocillo sea positivo para el alelo A y para el alelo G serían las mismas. Esto se reflejaría por cifras similares de pocillos que sean positivos para los alelos A o G. Sin embargo, cuando la LOH está presente en un 50 % o más de células en una muestra de tumor, la proporción alélica de los alelos G y A sería al menos 2:1. Los métodos previos simplemente asumieron que la muestra era al menos un 50 % cancerosa. Por tanto, la probabilidad de que un pocillo sea positivo para el alelo G sería superior que para el alelo A. Como resultado, el número de pocillos que son positivos para el alelo G sería
- superior que para el alelo A.

En la etapa 140, para clasificar los resultados de la PCR digital, se contaría el número de pocillos que son positivos para cada alelo pero no el otro. En el ejemplo anterior, se cuenta el número de pocillos que son positivos para el alelo
A pero negativos para el alelo G y el número de pocillos positivos para el alelo G pero negativos para el alelo A. En una realización, el alelo q muestra menos pocillos positivos se considera como el alelo de referencia.

En la etapa 150, el número total de pocillos informativos se determina como la suma de las cifras de pocillos positivos para cualquiera de los dos alelos. En la etapa 160, se calcula la proporción (P_r) de pocillos informativos (un ejemplo de un parámetro) aportados por el alelo con más pocillos positivos.

Pr = N.º de pocillos positivos solo para el alelo con más pocillos positivos / N.º total de pocillos positivos solo para un alelo (A o G).

Otras realizaciones pueden utilizar todos los pocillos con uno de los alelos divididos por todos los pocillos con al menos un alelo.

En la etapa 170, se determina si el valor de P_r muestra un desequilibrio alélico. Como se desea exactitud y eficacia, esta tarea no es sencilla. Un método para determinar un desequilibrio utiliza un método de probabilidad de tipo Bayesiano, la prueba de la proporción de probabilidades secuencial (SPRT). La SPRT es un método que permite comparar dos hipótesis probabilísticas según se acumulan datos. En otras palabras, es un método estadístico para

65 clasificar los resultados de la PCR digital sugerentes de la presencia o ausencia de sesgo alélico. Tiene la ventaja de minimizar el número de pocillos a analizar para alcanzar una potencia estadística y una exactitud dadas. En un análisis de SPRT ejemplar, los resultados experimentales se ensayaron frente a la hipótesis nula y a la alternativa. La hipótesis alternativa se acepta cuando hay un sesgo de la proporción alélica en la muestra. La hipótesis nula se acepta cuando no hay un sesgo de la proporción alélica en la muestra. Se comparó el valor de P_r con dos valores límite para aceptar la bipótesis nula se la alternativa. Si pinguna de las bipótesis se acepta la muestra la muestra de las bipótesis se aceptar la bipótesis nula se la alternativa.

5 valores límite para aceptar la hipótesis nula o la alternativa. Si ninguna de las hipótesis se acepta, la muestra se marcó como sin clasificar, que significa que el resultado de la PCR digital observado no es suficiente para clasificar la muestra con la confianza estadística deseada.

Los valores límite para aceptar la hipótesis nula o la alternativa se han calculado típicamente basándose en un valor
 fijo de Pr bajo las asunciones establecidas en la hipótesis. En la hipótesis nula, se asume que la muestra no exhibe sesgo de la proporción alélica. Por tanto, las probabilidades de cada pocillo de ser positivo para los alelos A y G serían las mismas y por tanto, el valor esperado de Pr sería de 1/2. En la hipótesis alternativa, el valor esperado de Pr se toma como de 2/3 o aproximadamente a intermedio entre 0,5 y 2/3, por ejemplo, 0,585. Además, debido al un número limitado de experimentos, se puede elegir un corte superior (,585+3/N) y un corte inferior (,585-3/N).

15

20

B. Detección del síndrome de Down

En una realización de la presente invención, se utiliza la SNP digital para detectar el síndrome de Down fetal a partir del plasma de una mujer gestante. Utilizando marcadores específicos para células fetales/placentarias, se puede medir la proporción de alelos en el cromosoma 21. Por ejemplo, para determinar si un grado observado de sobrerrepresentación de un alelo de *PLAC4* es estadísticamente significativo, se utiliza la SPRT.

De acuerdo con una realización ilustrativa, el ARN-SNP digital determina un desequilibrio en la proporción de alelos polimórficos de un SNP A/G, rs8130833, localizado en el ARNm de *PLAC4* que se transcribe del cromosoma 21 y se expresa por la placenta. Para un feto euploide heterocigótico, los alelos A y G deben estar igualmente representados en el genoma fetal (proporción genómica de 1:1); si bien en la trisomía 21, el cromosoma 21 trisómico se asociaría con una copia adicional de uno de los alelos SNP en el genoma fetal, dado una proporción de 2:1. El objetivo del análisis de PCR digital es determinar si las cantidades de los dos alelos de *PLAC4* en la muestra analizada son iguales o de otro modo. Por tanto, los alelos de *PLAC4* tanto A como G son los moldes diana. Se diseñó un ensayo de PCR
en tiempo real para amplificar ARNm de *PLAC4* y se discriminaron los dos alelos SNP mediante sondas fluorescentes TaqMan. En la Fig. 2A se muestra una ilustración esquemática de las etapas analíticas.

- La Fig. 2A ilustra un método de ARN-SNP digital 200 de acuerdo con una realización de la presente invención. En la etapa 210, se recibe la muestra. En la etapa 220, la secuencia de ácido nucleico, por ejemplo, ARNm de *PLAC4*, se cuantifica en las muestras de ARN extraídas. En una realización, esto se realiza mediante PCR en tiempo real para el ARNm de PLAC4. En un aspecto, esta etapa proporciona al operador una idea acerca de cuánta dilución se necesita
- ARNM de PLAC4. En un aspecto, esta etapa proporciona al operador una idea acerca de cuanta dilución se necesita antes de que la diana alcance la "esfera" del análisis de la PCR digital.
 En la etapa 230, se diluye la muestra. En la etapa 240, se mide una concentración de la muestra diluida. La concentración de la muestra diluida se puede confirmar que es ~1 molde/pocillo (es decir, secuencia de referencia o
- 40 concentración de la muestra diluida se puede confirmar que es ~1 molde/pocillo (es decir, secuencia de referencia o no de referencia o cualquier alelo). Algunas realizaciones utilizan técnicas descritas en la sección IV para esta medición. Por ejemplo, los presentes inventores distribuyeron la muestra diluida en 96 pocillos para el análisis de RCP en tiempo real para confirmar que se había logrado una dilución utilizable. La concentración de dilución se puede dejar también como desconocida, eliminando por tanto esta etapa, como se explicará más adelante.
 - En la etapa 250, se realiza una PCR digital sobre cada pocillo de la matriz. Por ejemplo, la misma muestra diluida se distribuyó en 384 pocillos para el análisis de PCR en tiempo real. A partir de los resultados de la PCR, se identificó una cantidad de marcadores para cada secuencia de ácido nucleico y el número de pocillos informativos. Un pocillo informativo se define como uno que es positivo solo para el alelo A o el G, pero no para ambos. En la etapa 260, se
- 50 realizó un cálculo de un valor esperado de Pr. Estas etapas se describen en más detalle más adelante. El cálculo incluye determinar un parámetro a partir de valores determinados en la etapa 250. Por ejemplo, se puede calcular la concentración de molde promedio real por pocillo.
- En la etapa 270, se puede realizar un SPRT u otra prueba de la proporción de probabilidades para determinar si existe o no desequilibrio. Para un caso euploide, los presentes investigadores esperan un número igual de pocillos Apositivos y G-positivos. Sin embargo, cuando se analizan las moléculas molde de un feto con trisomía 21, el número de pocillos que contienen solo un alelo debe ser más elevado que el que contiene solo el otro alelo. En resumen, se espera un desequilibrio alélico para la trisomía 21.
- 60 Como se ha mencionado anteriormente, la SPRT es un método de probabilidad de tipo Bayesiano, que permite comparar dos hipótesis probabilísticas según se acumulan datos. En el análisis de PCR digital para la detección de trisomía 21, se acepta la hipótesis alternativa cuando existe desequilibrio alélico (es decir, trisomía 21 detectada); y se acepta la hipótesis nula cuando no existe desequilibrio alélico (es decir, trisomía 21 no detectada). El alelo con el número más elevado de recuentos se denomina como el alelo sobrerrepresentado potencialmente y se calcularía su
- 65 proporción entre todos los pocillos informativos (Pr). La SPRT se aplica a determinar si la Pr indica el suficiente grado de desequilibrio alélico que se esperaría para una muestra de trisomía 21.

Operacionalmente, la SPRT se puede aplicar e interpretar a través de la utilización de gráficos con un par de curvas de SPRT que se construyen para definir los límites probabilísticos para aceptar o rechazar cualquiera de las hipótesis. La Fig. 3 ilustra un gráfico que tiene las curvas de SPRT para determinar el síndrome de Down de acuerdo con una

- 5 realización de la presente invención. Las curvas de SPRT representan la proporción requerida de pocillos informativos positivos para el alelo sobrerrepresentado Protencialmente (eje y), para un número total dado de pocillos informativos (eje x) cuando se pudiera hacer una clasificación segura. Como se muestra en la Fig. 3, la curva superior establece los límites probabilísticos para aceptar de la hipótesis alternativa; si bien la curva inferior establece los límites probabilísticos para aceptar de la hipótesis nula.
- 10

El valor de Pr derivado experimentalmente se compararía con el valor esperado de Pr para aceptar o rechazar cualquiera de las hipótesis. Si se aceptó la hipótesis nula, las muestras se clasificaron como que se han obtenido de mujeres gestantes con fetos euploides. Si se acepta la hipótesis alternativa, las muestras se clasificaron como que se han obtenido de mujeres gestantes con fetos trisómicos 21. Como alternativa, cualquiera de las hipótesis podría no

- 15 aceptarse si la Pr para el número dado de recuentos informativos no ha alcanzado el nivel requerido de confianza estadística para la clasificación de enfermedades. Estos casos se consideraron inclasificables hasta que se disponga de más casos. Si la clasificación de enfermedad no es posible, se pueden realizar placas de 384 pocillos adicionales hasta que los datos agregados se conviertan en clasificables mediante la SPRT.
- 20 La SPRT ofrece por tanto la ventaja de que se requiere una cantidad más pequeña de prueba para un nivel de confianza dado respecto a otros métodos estadísticos. En términos prácticos, la SPRT permite la aceptación o rechazo de cualquiera de las hipótesis tan pronto como la cantidad de datos requeridos se haya acumulado y por tanto minimiza los análisis adicionales innecesarios. Esta característica es de relevancia particular para el análisis de ácidos nucleicos plasmáticos que están presentes habitualmente en bajas concentraciones, en donde el número de moléculas molde
- 25 disponibles es limitado. Además de una clasificación estricta, la clasificación puede incluir también un porcentaje de exactitud. Por ejemplo, una clasificación que resulta de una comparación con un valor límite puede proporcionar que una muestra exhiba una probabilidad de un deseguilibrio de secuencias de ácido nucleico con un cierto porcentaje o de forma equivalente, que un desequilibrio determinado sea exacto hasta cierto porcentaje u otro valor.
- Un enfoque similar podía aplicarse para determinar el genotipo de un feto respecto a una mutación o un polimorfismo 30 genético, utilizando ácidos nucleicos fetales en plasma materno o suero. Debe recordarse que un feto heredaría la mitad de su genoma de su madre. Como una ilustración, considérese un locus genético particular con dos alelos, A y B. Si la madre es una heterocigótica con un genotipo de AB, el feto podría tener teóricamente un genotipo de AA, BB o AB. Si el feto tiene un genotipo de AB, es decir, el mismo que el de la madre, a continuación, solo habrá ácidos
- nucleicos del genotipo AB (tanto de la madre como del feto) en el plasma materno. Por tanto, en el plasma materno 35 se observa el equilibrio de ácidos nucleicos o alélico. Por otro lado, si el feto tiene un genotipo de AA o BB, a continuación, habría un desequilibrio alélico con una sobrerrepresentación del alelo A o el B, respectivamente, en el plasma materno. Esta consideración también es aplicable a las mutaciones que causan enfermedades (por ejemplo, aquellas que causan fibrosis quística o beta-talasemia o atrofia muscular espinal), en cuyo caso se podría considerar 40 A como el alelo silvestre y el B se podría considerar como el alelo mutante.

II. RCD DIGITAL

- Una desventaja del ARN-SNP digital es que solo puede aplicarse a casos de heterocigosis para el SNP analizado. 45 Una mejora que sería ideal si una prueba no invasiva para detectar la trisomía 21 fetal u otra aneuploidía cromosómica fetal (por ejemplo, la trisomía 18, 13 y las aneuploidías cromosómicas sexuales) basada en el análisis de ácidos nucleicos fetales circulantes fuera independiente del uso de polimorfismos genéticos. Por tanto, en una realización, la dosis de cromosomas se determina mediante análisis de PCR digital de un locus del cromosoma 21 no polimórfico respecto a uno situado en un cromosoma de referencia, en concreto, el cromosoma 1 en este estudio. Un cambio de
- 50 la proporción del cromosoma 21 respecto al cromosoma 1 de 2:2 en el genoma de un feto euploide se diferencia de un caso de trisomía 21. En el análisis de PCR digital para la detección de trisomía 21, las dos hipótesis a comparar serían la hipótesis nula en la que no hay desequilibrio cromosómico (es decir, trisomía 21 no detectada) y la hipótesis alternativa en la que existe un desequilibrio cromosómico (es decir, trisomía 21 detectada).
- 55 Este enfoque se puede generalizar a los otros cromosomas implicados en otras aneuploidías cromosómicas, por ejemplo, el cromosoma 18 en la trisomía 18, cromosoma 13 en la trisomía 13, cromosoma X en el síndrome de Turner. Además, aparte del cromosoma 1, pueden utilizarse otros cromosomas no implicados en las aneuploidías afectadas como un cromosoma de referencia. Un enfoque similar se puede aplicar también a la detección del cáncer, analizando el cambio de proporción de un cromosoma suprimido comúnmente, en parte, en el cáncer, respecto a un cromosoma
- de referencia. Entre los ejemplos de lo primero se incluyen el cromosoma 5q en el cáncer colorrectal, el cromosoma 60 3p en el cáncer de pulmón y el cromosoma 9p en el carcinoma nasofaríngeo. La Fig. 2B enumera algunas de las anomalías cromosómicas relacionadas con cánceres comunes que dan como resultado un deseguilibrio de secuencias.
- La Fig. 2A ilustra también un método RCD digital 205 de acuerdo con una realización de la presente invención. En 65 una realización para las etapas 220-230, se cuantifica el ADN extraído, por ejemplo, a través de técnicas Nanodrop y

se diluyó hasta una concentración de aproximadamente un molde diana de cromosomas 21 o del cromosoma que normaliza (tal como el cromosoma 1) por pocillo. En una realización en la etapa 240, la confirmación se puede realizar analizando la muestra de ADN diluida mediante el ensayo utilizando la sonda del cromosoma 1 solo en un formato de 96 pocillos para confirmar si el nivel ~37 % de los pocillos fueron negativos antes de que se procediera al análisis de RCD digital utilizando ambas sondas TaqMan en placas de 384 pocillos. La significación del 37 % se describirá

5 RCD digital utilizando ambas sondas TaqMan en placas de 384 pocillos. La significación del 37 % se describirá posteriormente en la Sección IV.

La prueba de la etapa 240 y los resultados de la etapa 250 pueden hacerse con un ensayo de PCR en tiempo real diseñado para amplificar una secuencia paráloga (Deutsch, S. *et al.* 2004 J Med Genet 41, 908-915) presente en ambos cromosomas que se distinguen por variaciones de secuencias parálogas que se discriminan mediante un par de sondas TaqMan. En este contexto, un pocillo informativo se define como uno que es positivo solo para el locus del cromosoma 21 o el locus del cromosoma 1, pero no para ambos. Para un feto euploide, el número de pocillos informativos positivos para cualquier locus debe ser aproximadamente igual. Para un feto con trisomía 21, debe haber una sobrerrepresentación de pocillos para el cromosoma 21 respecto al cromosoma 1. La proporción exacta

15 de la sobrerrepresentación se describe en las siguientes secciones.

III. INCORPORACIÓN DEL PORCENTAJE DE SECUENCIAS FETALES

- Una desventaja de las realizaciones de los métodos 200 y 205 descritos anteriormente es que se necesitan marcadores específicos fetales. Por consiguiente, en una realización de la presente invención, se utilizan marcadores específicos no fetales. Para utilizar tales marcadores específicos no fetales, las realizaciones de la presente invención miden la concentración fraccionaria de ADN fetal en el plasma materno (es decir, la muestra biológica). Con tal información, se puede calcular un valor más útil de Pr como sigue.
- Incluso con el pequeño porcentaje fraccionario de ADN fetal en el plasma materno, un feto con trisomía 21 aportaría una dosis adicional de secuencias del cromosoma 21 por equivalentes de genoma (GE; del inglés, genome-equivalent) de ADN fetal liberado en el plasma materno. Por ejemplo, una muestra de plasma materno de una gestante euploide que contiene 50 GE/ml de ADN total con 5 GE/ml de ADN aportado por el feto (es decir, un 10 % de concentración fraccionaria de ADN fetal) debe contener un total de 100 copias (90 copias maternas +10 copias fetales) de secuencias
- del cromosoma 21 por mililitro de plasma materno. Para una gestante de trisómico 21, cada GE fetal aportaría tres copias del cromosoma 21, dando como resultado un total de 105 copias/ml (90 copias maternas +15 copias fetales) de secuencias del cromosoma 21 en el plasma materno. En un 10 % de concentración de ADN fetal, la cantidad de secuencias derivadas del cromosoma 21 en el plasma materno de una gestación de trisómico sería por tanto 1,05 veces la de un caso euploide. Por tanto, si se pudiera desarrollar un enfoque analítico para determinar este pequeño grado de diferencia cuantitativa, se conseguiría una prueba independiente del polimorfismo para el diagnóstico
- 35 grado de diferencia cuantitativa, se conseguiría una prueba independi prenatal no invasivo de la trisomía 21 fetal.

Por consiguiente, el grado de sobrerrepresentación sería dependiente de la concentración de ADN fetal fraccionaria en la muestra de ADN analizada. Por ejemplo, cuando el ADN placentario se analiza, la proporción de RCD teórica en el genoma debe ser 3:2, es decir, una diferencia de 1,5 veces. Sin embargo, como se ha descrito anteriormente, la proporción de RCD teórica disminuiría a 1,05 cuando se analiza una muestra de plasma materno que contiene un 10 % de ADN fetal. La Pr derivada experimentalmente se calcula dividiendo el número de pocillos positivos solo para el locus del cromosoma 21 locus por el número total de pocillos informativos. La Pr derivada experimentalmente está sujeta al análisis de SPRT con la Pr calculada y la proporción de RCD teórica.

45

La Fig. 4 muestra un método 400 para determinar un estado de enfermedad utilizando un porcentaje de ácidos nucleicos fetales de acuerdo con una realización de la presente invención. En la etapa 410, se mide el porcentaje fraccionario de material fetal. En una realización, el porcentaje fraccionario se determina midiendo la cantidad de un marcador específico fetal (por ejemplo, el cromosoma Y, marcadores de polimorfismo genético (por ejemplo, SNP),

50 firmas epigenéticas placentarias) en relación con un marcador específico no fetal (es decir, secuencia génica presente tanto en la madre como en el feto). La medición real se podría hacer mediante PCR en tiempo real, PCR digital, reacciones de secuenciación (incluyendo la secuenciación paralela masiva) o cualesquiera otros métodos cuantitativos. En un aspecto, es preferible no utilizar el gen diana que podría estar en desequilibrio alélico potencialmente para esta medición.

55

60

65

En la etapa 420, se realiza una PCR digital u otro método de medición, incluyendo la dilución de la muestra, situando la muestra diluida en los pocillos y midiendo las reacciones en cada pocillo. En la etapa 430, los resultados de la PCR se utilizan para identificar los marcadores de diferentes secuencias de ácidos nucleicos de referencia (tales como cromosomas o alelos). En la etapa 440, se calcula la proporción real (P_r) de la secuencia sobrerrepresentada. En la etapa 450, el valor límite para determinar un estado de enfermedad se calcula utilizando el porcentaje de material fetal en la muestra. En la etapa 460, a partir de la P_r real y el valor límite, se determina si un existe un desequilibrio.

En una realización, el porcentaje fraccionario de las secuencias de ácidos nucleicos de referencia se incorpora en un método de ARN-SNP digital. Por tanto, cuando se investiga una LOH debido a células cancerosas, esto se puede realizar con muestras de tumor con menos de un 50 % de células cancerosas. Se puede utilizar también en muestras con más de un 50 % de células cancerosas para obtener una Pr más exacta y por tanto reducir el número de falsos

11

positivos, que conducirían a diagnósticos incorrectos. En otra realización, el porcentaje de ácido nucleico fetal se incorpora en un método de PCR digital para determinar si un feto ha heredado una mutación génica parental (por ejemplo, que causa fibrosis quística o beta-talasemia o atrofia muscular espinal) o un polimorfismo, a partir del análisis de ácidos nucleicos plasmáticos maternos.

5

IV. INCORPORACIÓN DE UNA CONCENTRACIÓN PROMEDIO POR POCILLO

Otra desventaja de los métodos previos (por ejemplo, Zhou, W. *et al.*2002, anteriormente citado) es que la concentración promedio de moldes por pocillo (*m*) es necesario que sea de 1 por pocillo. Dado que es difícil obtener
 una concentración exacta, esto puede conducir a inexactitudes. Asimismo, incluso con una concentración exacta de 1 molde por pocillo, los métodos previos han ignorado la distribución estadística de los moldes en un pocillo. En los métodos previos, es decir, el algoritmo viejo, el valor esperado de Pr para aceptar la hipótesis alternativa se asume que es la proporción alélica y por tanto, es independiente de la concentración promedio del ADN molde por pocillo.

Sin embargo, debido a una variación estadística natural de los moldes en la muestra diluida, no habrá exactamente 1 molde por pocillo. Las realizaciones de la presente invención miden la concentración promedio de al menos una de las secuencias, que se utiliza a continuación para calcular el valor límite, es decir, la Pr esperada. En un aspecto, este cálculo implica una distribución estadística para determinar una probabilidad de que un pocillo contenga las secuencias de ácidos nucleicos diferentes, que se utiliza a continuación para determinar la Pr esperada.

20

En una realización, la concentración promedio se toma de una secuencia de ácido nucleico de referencia, que en un caso es una secuencia de ácido nucleico con la concentración más baja en la muestra de ADN. En el caso de una muestra sin un desequilibrio, las concentraciones de las dos secuencias en la muestra serían las mismas y cualquiera de las dos se podría considerar como el alelo de referencia. En el caso de una muestra con, por ejemplo, LOH, el alelo

que se suprime en las células cancerosas se podría considerar como el alelo de referencia. La concentración promedio del alelo de referencia se indicaría como m_r. En otra realización, la secuencia con la concentración más elevada se podría tomar como la secuencia de referencia.

A. SNP digital. Ejemplo utilizando SPRT y PCR digital

30

La Fig. 5 muestra un método 500 para determinar un estado de enfermedad utilizando una concentración de molde promedio de acuerdo con una realización de la presente invención. En la etapa 510, se mide una cantidad de las diferentes secuencias. Esto se puede hacer, por ejemplo, contando los marcadores en un experimento de PCR digital, como se explicó anteriormente. Sin embargo, se puede hacer mediante otros métodos que no implican una etapa de amplificación o que no utilizan un marcador fluorescente, pero podrían utilizar otras propiedades, tales como

35 amplificación o que no utilizan un marcador fluorescente, pero podrían utilizar otras propiedades, tales como propiedades físicas como la masa, propiedades ópticas específicas o propiedades de emparejamiento de bases.

En la etapa 520, se determina la proporción real de la secuencia sobrerrepresentada. Esto puede realizarse como se ha descrito anteriormente tomando el número de pocillos que muestran solo esa secuencia y dividiendo por el número
de pocillos informativos. En la etapa 530, se mide la concentración promedio de al menos una de las secuencias (la secuencia de referencia). En una realización, la secuencia de referencia es la secuencia sobrerrepresentada. En otra realización, la secuencia de referencia es la secuencia de referencia es la secuencia de referencia. En otra realización, la secuencia de referencia es la secuencia de referencia en el experimento de PCR digital. La relación entre la proporción de pocillos negativos y la concentración de molde promedio se describe por la distribución de Poisson, como se describe en la siguiente subsección.

En la etapa 540, se calcula una cantidad esperada de pocillos positivos para las diferentes secuencias, por ejemplo, utilizando la distribución de Poisson. La cantidad esperada puede ser como una probabilidad de la secuencia por pocillo, una secuencia promedio por pocillo, el número de pocillos que contienen la secuencia o cualquier otra cantidad

50 adecuada. En la etapa 550, la Pr esperada se calcula a partir de las cantidades esperadas. En la etapa 560, se calcula un valor límite a partir de la Pr esperada, por ejemplo, mediante una SPRT. En la etapa 570, se determina una clasificación del desequilibrio de las secuencias de ácido nucleico. A continuación, se describen aspectos específicos del método 500.

55 <u>1. Determinación de la cantidad esperada de secuencias</u>

Una vez se conoce la concentración promedio por pocillo (reacción o mezcla de reacción) a partir de la etapa 530, el número esperado de pocillos que muestra esa secuencia se puede calcular en la etapa 540. Esta cantidad se puede expresar como un %, un valor fraccionario o un valor entero. Utilizando un ejemplo específico con fines ilustrativos, se

- 60 supone que la concentración promedio del molde de referencia por pocillo (mr) es 0,5 y que el genotipo del feto con trisomía 21 en el SNP de *PLAC4*, rs8130833, es AGG. Por tanto, el molde de referencia sería el alelo A y el molde sobrerrepresentado sería el alelo G.
- En una realización, se asume una distribución de Poisson para la distribución del alelo A entre las mezclas de reacción de los pocillos del procedimiento de medición, tal como la PCR digital. En otras realizaciones, se utilizan otras funciones de distribución, tales como la distribución binomial.

 $P(n) = \frac{m^n e^{-1}}{m^n}$

La ecuación de Poisson es: *n*^{tt} donde, *n*=número de moléculas molde por pocillo; P(n)=probabilidad de n moléculas molde en un pocillo particular; y *m*= número promedio de moléculas molde en un pocillo en un experimento de PCR digital.

5

Por consiguiente, la probabilidad de que cualquier pocillo no contenga ninguna molécula del alelo A en una concentración promedio del alelo A de 0,5 sería:

$$P(0) = \frac{0.5^{\circ} e^{-0.5}}{0!} = e^{-0.5} = 0.6065.$$

10

Por tanto, la probabilidad de que cualquier pocillo contenga al menos una molécula del alelo A sería: 1 - 0,6065 = 0,3935. Por tanto, se esperaría que ~39 % de los pocillos contuviera al menos una molécula del alelo A.

En cuanto a la secuencia de ácido nucleico no de referencia, para cada célula de un feto con trisomía 21, la proporción
 genómica de A respecto a G sería de 1:2. Asumiendo que la proporción de A respecto a G en el ARN o ADN extraído de la muestra permanecería sin cambiar, la concentración promedio del alelo G por pocillo sería dos veces la del alelo A, es decir, 2 x 0,5 = 1.

Por consiguiente, la probabilidad de que cualquier pocillo no contenga ninguna molécula del alelo G en una concentración promedio del alelo G de 1 sería:

$$P(0) = \frac{1^0 e^{-1}}{0!} = e^{-1} = 0,3679$$

Por tanto, la probabilidad de que cualquier pocillo contenga al menos una molécula del alelo G sería: 1 - 0,3679 = 0,6321. Por tanto, se esperaría que ~63 % de los pocillos contuviera al menos una molécula del alelo G.

2. Determinación de la proporción de la secuencia sobrerrepresentada

- Después de calcularse las cantidades esperadas, se puede determinar la proporción de la secuencia de ácido nucleico sobrerrepresentada. Asumiendo que el llenado de los pocillos con el alelo A y el alelo G es independiente, la probabilidad de que un pocillo contenga ambos alelos sería de 0,3935 x 0,6321 = 0,2487. Por tanto, se esperaría que ~25 % de los pocillos contuviera ambos alelos.
- La proporción de pocillos esperada que contienen el alelo A pero no el alelo G sería el número de pocillos que 35 contienen al menos un alelo A al que se le deduce el número de pocillos que contienen tanto el alelo A como el alelo G: 0,3935 - 0,2487 = 0,1448. De forma análoga, la proporción de pocillos esperada que contienen el alelo G pero no el alelo A sería: 0,6321 - 0,2487 = 0,3834. Un pocillo informativo se define como un pocillo que es positivo para el alelo A o alelo G, pero no para ambos.
- 40 Por tanto, la proporción esperada de pocillos que contienen el alelo A respecto al alelo G en un análisis de ARN-SNP digital es 0,1448/0,3834. En otras palabras, la proporción de pocillos positivos solo para el alelo G es 2,65 veces la de pocillos positivos solo para el alelo A. Esto está en contraste con la proporción genómica fetal en donde el alelo sobrerrepresentado es 2 veces la del otro alelo.
- 45 Para el análisis de SPRT, la proporción de los pocillos informativos positivos para el alelo sobrerrepresentado (P_r) se calcula e interpreta utilizando las curvas de SPRT. En el ejemplo actual, la proporción de pocillos informativos sería: 0,1448 + 0,3834 = 0,5282. Por tanto, la Pr esperada de un caso de trisomía 21 en m_r 0,5 es: 0,3834/0,5282 = 0,73.

Como la concentración de molde promedio (*m*) es un parámetro clave en la ecuación de Poisson, la Pr variará con *m*.
 La Fig. 6 muestra una tabla 600 que tabula la proporción alélica de ARN-SNP digital esperada y la Pr de muestras de trisomía 21 para un intervalo de concentraciones de molde expresado como la concentración de molde de referencia promedio por pocillo (mr), de acuerdo con una realización de la presente invención. La Tabla 600 muestra la proporción alélica esperada y la proporción de pocillos informativos positivos para el alelo sobrerrepresentado (Pr) para una serie de concentraciones de molde de referencia promedio por pocillo (mr).

El valor esperado de Pr varía con la concentración promedio del alelo de referencia por pocillo (mr) en un modo no lineal. Como se muestra en la Tabla 600, el valor esperado de Pr para aceptar la hipótesis alternativa aumentaría con mr. Como el valor esperado de Pr para aceptar la hipótesis nula está fijo en 0,5, las muestras con y sin desequilibrio alélico se separarían más ampliamente en términos del valor de Pr cuando aumenta mr. Nótese que en otras

60 realizaciones el valor para aceptar la hipótesis nula puede ser diferente de 0,5. Esto podría ocurrir cuando la proporción

normal es diferente de 1:1, por ejemplo, 5:3 y por tanto, ocurriría un desequilibrio cuando la proporción se desviara de 5:3. La diferencia en las cantidades de las dos secuencias de ácido nucleico diferentes a continuación se determinaría individualmente.

- 5 Sin embargo, como en los métodos previos (por ejemplo, Zhou, W. *et al.* 2002, anteriormente citado) utilizaron un valor esperado de P_r fijo para las muestras de LOH, subestimaron el valor de P_r para aquellas muestras con LOH (hipótesis alternativa aceptada). El grado de subestimación aumentaría con m_r. En otras palabras, cuanto mayor es la concentración promedio del alelo de referencia en la muestra de ADN, más inexactos son los viejos métodos. Esta subestimación de P_r para aceptar la hipótesis alternativa conduciría al cálculo inexacto de los valores límite para aceptar tanto la hipótesis nula como la alternativa.
 - . .

3. Cálculo de los valores límite basados en la Pr esperada

Para las realizaciones que utilizan una SPRT, se pueden utilizar las ecuaciones para calcular los límites superiores e
inferiores de las curvas de SPRT a partir de El Karoui *et al.* (2006). Asimismo, el nivel de confianza estadística preferido para aceptar la hipótesis nula o alternativa podría variarse ajustando el umbral de probabilidad en las ecuaciones. En este estudio, se utiliza una proporción del umbral de probabilidad de 8 debido a que este valor se ha demostrado que proporciona un rendimiento satisfactorio para discriminar muestras con y sin desequilibrio alélico en el contexto de la detección del cáncer. Por tanto, en una realización, las ecuaciones para calcular los límites superiores e inferiores de las curvas de SPRT son:

Límite superior = [(ln 8)/N - ln δ]/ln γ

Límite inferior = [(ln l/8)/N - ln δ]/ln γ

 $\delta = (1 - \theta_1)/(1 - \theta_0)$

 $y = -(\theta_1(I - \theta_0)/\theta_0(1 - \theta_1))$

25

donde.

30

35

55

65

 θ_0 = proporción de pocillos informativos que contienen el alelo no de referencia si la hipótesis nula es verdadera = 0,5 (véase más adelante)

 θ_1 = proporción de pocillos informativos que contienen el alelo no de referencia (es decir, sobrerrepresentado) si la hipótesis alternativa es verdadera

N = número de pocillos informativos = número de pocillos para cualquier alelo solo

(In es un símbolo matemático que representa el logaritmo natural, es decir, $log\theta$.)

- 40 Para la determinación de θ₀ para aceptar la hipótesis nula, se asume que la muestra se ha obtenido de una mujer gestante que porta un feto euploide. Bajo esta asunción, el número esperado de pocillos positivos para cualquier molde sería 1:1 y por tanto, la proporción esperada de pocillos informativos que contienen el alelo no de referencia sería de 0,5.
- 45 Para la determinación de θ₁ para aceptar la hipótesis alternativa, se asume que la muestra se ha obtenido de una mujer gestante que porta un feto con trisomía 21. Los cálculos para la P_r esperada de casos de trisomía 21 para el análisis de ARN-SNP digital se detallan en la Tabla 600. Por tanto, θ₁ para el análisis de ARN-SNP digital se refiere a los datos mostrados en la última columna de la tabla 600.

50 <u>4. Medición de la concentración promedio</u>

La medición de m_r se puede realizar a través de diferentes mecanismos como conocen o conocerán los expertos en la materia. En una realización, se determina el valor de m_r durante el proceso experimental del análisis de PCR digital. Como la relación entre el valor de m_r y el número total de pocillos que son positivos para el alelo de referencia se puede regir por una distribución (por ejemplo, la distribución de Poisson, se puede calcular la m_r a partir del número de pocillos que son positivos para el alelo de referencia utilizando esta fórmula:

mr = - In (1 - proporción de pocillos que son positivos para el alelo de referencia)

60 Nótese que In es el logaritmo natural, es decir, log_e. Este enfoque proporciona una estimación directa y precisa de m_r en la muestra de ADN utilizada para el experimento de PCR digital.

Este método puede utilizarse para lograr una concentración deseada. Por ejemplo, los ácidos nucleicos extraídos de una muestra se pueden diluir hasta una concentración específica, tal como una molécula molde por pocillo de reacción, como se hizo en la etapa 240 del método 200. En una realización utilizando la distribución de Poisson, la proporción esperada de pocillos sin molde se puede calcular como e^{-m}, donde *m* es la concentración promedio de moléculas

molde por pocillo. Por ejemplo, a una concentración promedio de una molécula molde por pocillo, la proporción esperada de pocillo sin molécula molde viene dada por e-1, es decir, 0,37 (37 %). El 63 % de pocillos restantes contendrán una o más moléculas molde. Normalmente, a continuación se contaría el número de pocillos positivos e informativos en una ejecución de PCR digital. La definición de pocillos informativos y la manera en la que los datos de PCR digital se interpretan dependen de la aplicación.

En otras realizaciones, la concentración promedio por pocillo, mr, se mide mediante otro método de cuantificación, por ejemplo, PCR cuantitativa en tiempo real, PCR competitiva semicuantitativa, PCR competitiva real utilizando métodos de espectrometría de masas, etc.

B. RCD digital

5

10

Se puede realizar una RCD digital utilizando la concentración promedio de una forma similar al método de SNP digital descrito anteriormente. Las cifras de pocillos positivos para el marcador del cromosoma de referencia (no el 15 cromosoma 21), el marcador del cromosoma 21 y ambos marcadores, se pueden determinar mediante PCR digital. La concentración promedio del marcador de referencia por pocillo (mr) se puede calcular a partir del número total de pocillos negativos para el marcador de referencia, independientemente del positivo del marcador del cromosoma 21, de acuerdo con la función de probabilidad de Poisson, como en el cálculo de mr para el análisis de SNP digital.

- 20 A continuación, el análisis de SPRT puede utilizarse para clasificar una muestra de plasma como proveniente de una mujer gestante que porta un feto euploide o trisómico 21. La hipótesis nula se aceptaría cuando el feto fuese euploide. En este escenario, la proporción esperada para los pocillos positivos para el marcador de referencia y el marcador del cromosoma 21 sería 1:1 y por tanto, la proporción esperada de pocillos informativos con señal positiva para el marcador del cromosoma 21 sería 0,5. La hipótesis alternativa se aceptaría cuando el feto fuese trisómico para el cromosómica 21. En este escenario, si la muestra de ADN se derivara solamente del feto, la concentración promedio
- 25 del marcador del cromosoma 21 en cada pocillo sería 3/2 veces la concentración promedio del marcador de referencia (m_r) .
- Si bien el RCD digital puede utilizarse para determinar la dosis de cromosomas a través de la detección de marcadores 30 específicos fetales, por ejemplo, las firmas epigenéticas de la placenta (Chim, SSC. et al. 2005 Proc Natl Acad Sci USA 102, 14753-14758), una realización del análisis de RCD digital utiliza marcadores específicos no fetales. Por tanto, una etapa adicional de medición del porcentaje de material fetal tendría lugar cuando se utilizan marcadores específicos no fetales. Por tanto, la concentración promedio del marcador del cromosoma 21 por pocillo sería dependiente de la proporción del ADN fetal en la muestra y podría calcularse utilizando: mr [(200 % + porcentaje de 35
- ADN fetal)/200 %].

Utilizando, de nuevo, un ejemplo específico con fines ilustrativos, la concentración promedio del molde de referencia, cromosoma 1, por pocillo (mr) se asume que es 0,5 y se asume que un 50 % del ADN se deriva del feto y que un 50 % del ADN en la muestra se deriva de la madre.

40

Por consiguiente, utilizando la distribución de Poisson, la probabilidad de que cualquier pocillo no contenga ninguna molécula del locus del cromosoma 1 cuando su concentración promedio es 0,5 por pocillo sería:

$$P(0) = \frac{0.5^{\circ} e^{-0.5}}{0!} = e^{-0.5} = 0,6065$$

45

Por tanto, la probabilidad de que cualquier pocillo contenga al menos una molécula del locus del cromosoma 1 sería: 1 - 0,6065 = 0,3935. Por tanto, se esperaría que ~39 % de los pocillos contuviera al menos una molécula del locus.

- Para cada célula de este feto con trisomía 21, la proporción genómica del cromosoma 21 frente al cromosoma 1 sería 50 3:2. La proporción entre el cromosoma 21 y el cromosoma 1 en la muestra de ADN dependería de la concentración de ADN fetal fraccionaria (% de ADN fetal) y sería: 3 x % de ADN fetal + 2 (1 - % ADN fetal) : 2 x % de ADN fetal + 2 x (1 - % ADN fetal). Por tanto, en este caso cuando la concentración de ADN fetal fraccionaria es un 50 %, la proporción sería: (3 x 50 % + 2 x 50 %) / (2 x 50 % + 2 x 50 %) = 1,25. Si el método de SNP digital no utilizó marcadores específicos fetales, tal cálculo se podría utilizar también para calcular la concentración promedio de la secuencia no de referencia.
- 55

Por tanto, cuando la concentración promedio del locus del cromosoma 1 por pocillo es 0,5, la concentración promedio del locus del cromosoma 21 por pocillo es: 1,25 x 0,5 = 0,625. Por consiguiente, la probabilidad de que cualquier pocillo no contenga ninguna molécula del locus del cromosoma 21 cuando su concentración promedio es 0.625 por pocillo sería:

60

$$P(0) = \frac{0.625^{\circ} e^{-0.625}}{0!} = e^{-0.625} = 0.5353$$

Por tanto, la probabilidad de que cualquier pocillo contenga al menos una molécula del locus del cromosoma 21 sería: 1 - 0,5353 = 0,4647. Por tanto, se esperaría que ~46 % de los pocillos contenga al menos una molécula del locus. Asumiendo que el llenado de los pocillos con cada loci es independiente, la probabilidad de que un pocillo contenga ambos loci sería de $0,3935 \times 0,4647 = 0,1829$. Por tanto, se esperaría que ~18 % de los pocillos contuviera ambos loci.

5 loci.

10

15

20

La proporción de pocillos esperada que contienen el locus del cromosoma 1 pero no el locus del cromosoma 21 sería el número de pocillos que contienen al menos un locus del cromosoma 1 al que se le deduce el número de pocillos que contienen ambos loci: 0,3935 - 0,1829 = 0,2106. De forma análoga, la proporción de pocillos esperada que contienen el locus del cromosoma 21 pero no ambos loci sería: 0,4647 - 0,1829 = 0,2818. Un pocillo informativo se define como un pocillo positivo para el locus del cromosoma 1 o el locus del cromosoma 21, pero no para ambos.

Por tanto, la proporción esperada del cromosoma 21 respecto al cromosoma 1 en el análisis de RCD digital es 0,2818/0,2106 = 1,34. En otras palabras, la proporción de pocillos positivos solo para el locus del cromosoma 21 es 1,34 veces la de pocillos positivos solo para el locus del cromosoma 1. Esto está en contraste con la proporción de 1,25 en la muestra de ADN.

Para el análisis de SPRT, se necesitaría que la proporción de los pocillos informativos positivos para el locus del cromosoma 21 (P_r) se calculara e interpretara utilizando las curvas de SPRT. En el ejemplo actual, la proporción de pocillos informativos sería: 0,2106 + 0,2818 = 0,4924. Por tanto, la Pr esperada de un caso de trisomía 21 con un 50 % de ADN fetal en m_r 0,5 es: 0,2818/0,4924 = 0,57.

Como la concentración de molde promedio (*m*) es un parámetro clave en la ecuación de Poisson, la Pr variará con *m*. La Fig. 7 muestra una tabla 700 que tabula la Pr esperada para las concentraciones de ADN fetal fraccionarias de un 10 %, 25 %, 50 % y 100 % en muestras de trisomía 21 en un intervalo de concentraciones de molde expresado como la concentración de molde de referencia promedio por pocillo (mr) de acuerdo con una realización la presente invención. Los cálculos para la Pr esperada de casos de trisomía 21 para el análisis de RCD digital se detallan en la Tabla 700. Por tanto, θ1 para el análisis de RCD digital de muestras con concentraciones de ADN fetal fraccionarias variables, se puede obtener a partir de las columnas que muestran los valores de Pr esperados correspondientes en la tabla 700.

C. Resultados

1. Comparación de diferentes m_r

35

40

La base para la diferencia entre el grado teórico (como en el genoma fetal) y el esperado experimentalmente de desequilibrio alélico o cromosómico y los cálculos para determinar el último para un intervalo de valores de m_r se muestran en las tablas 600 y 700. En el análisis de ARN-SNP digital de una muestra de trisomía 21, cuando m_r=0,5, los pocillos que contienen solo el alelo sobrerrepresentado con respecto a los pocillos que contienen solo el alelo de referencia, en concreto la proporción ARN-SNP digital, es 2,65 (tabla 600). En el análisis de RCD digital de un espécimen compuesto de un 100 % de ADN fetal, cuando m_r=0,5, los pocillos positivos solamente para el locus del cromosoma 21 con respecto a aquellos positivos solamente para el locus del cromosoma 1, en concreto la proporción RCD digital, es 1,7 (tabla 700) (P_r = 0,63, por tanto, la proporción de RCD digital es 0,63/(1-0,63) = 1,7). Según la concentración de ADN fetal fraccionaria disminuye, la proporción de RCD digital disminuye para la misma m_r (tabla

45 700).

Como se muestra en las Tabla 600 y 700, la extensión de sobrerrepresentación alélica o cromosómica se incrementa con m_r . Sin embargo, el porcentaje de pocillos informativos se aproxima a su máximo alrededor de $m_r = 0,5$ y disminuye gradualmente con aumento adicional en m_r . En la práctica, la disminución en la proporción de pocillos informativos se podría compensar aumentando el número total de pocillos analizados si la cantidad de molécula molde para el

50 podría compensar aumentando el número total de pocillos analizados si la cantidad de molécula molde para el espécimen no es limitante, pero los pocillos adicionales requerirían un aumento en costes de reactivos. Por tanto, el rendimiento de PCR digital óptimo es una compensación entre la concentración de molde y el número total de pocillos ensayados por muestra.

55 <u>2. Ejemplo utilizando las curvas de SPRT</u>

Como se ha analizado anteriormente, el grado esperado de desequilibrio alélico o cromosómico para un experimento de PCR digital depende de la concentración de molde real por mezcla de reacción (por ejemplo, un pocillo). Los presentes inventores describen la concentración de molde basada en el alelo de referencia, es decir, la concentración

- 60 de molde de referencia promedio por pocillo (m_r). Como se muestra en la ecuación anterior, la P_r esperada se puede utilizar para determinar la representación de las curvas de SPRT superior e inferior. Dado que la P_r esperada es, a su vez, dependiente del valor de m_r, la representación de las curvas de SPRT dependerían esencialmente del valor de m_r. Por tanto, en la práctica, se necesitaría un conjunto de curvas de SPRT relevantes para la m_r real de un conjunto de datos de PCR digital para la interpretación de la P_r a partir de esa ejecución particular.
- 65

La Fig. 8 muestra un gráfico 800 que ilustra el grado de diferencias en las curvas de SPRT para los valores de mr de

0,1, 0,5 y 1,0 para los análisis de ARN-SNP digital de acuerdo con una realización de la presente invención. Cada conjunto de datos de PCR digital debe interpretarse con las curvas específicas relevantes para el valor de m_r exacto de esa ejecución particular. Nótese que dado que grado de desequilibrio alélico o cromosómico esperado para los enfoques de ARN-SNP y RCD digitales son diferentes (2:1 para el primero y 3:2 para el último), se necesitan diferentes

- 5 conjuntos de curvas de SPRT para los dos sistemas de PCR digital. La Pr derivada experimentalmente se interpreta con las curvas de SPRT relevantes seleccionadas mediante la mr correspondiente de la ejecución de PCR digital. Esto está en contraste con el uso informado anterior de la SPRT para la detección molecular de LOH mediante PCR digital en donde se ha utilizado un conjunto fijo de curvas.
- La forma práctica de interpretar los datos de PCR digital utilizando SPRT se ilustra más adelante utilizando una ejecución de ARN-SNP digital hipotética. Tras el análisis de ARN-SNP digital de cada caso, se cuenta el número de pocillos positivos para el alelo A solo, el alelo G solo o ambos alelos. El alelo de referencia se define como el alelo con el número más pequeño de pocillos positivos. El valor de m_r se calcula utilizando el número total de pocillos negativos para el alelo de referencia, independientemente de si el otro alelo es positivo, de acuerdo con la función de densidad de probabilidad de Poisson. Los datos del ejemplo hipotético de los presentes investigadores son como sigue:
- En una reacción de 96 pocillos, 20 pocillos son positivos para el alelo A solo, 24 pocillos son positivos para el alelo G solo y 33 pocillos son positivos para ambos alelos. El alelo A se considera como el alelo de referencia debido a que existen menos pocillos positivos para A que positivos para G. El número de pocillos negativos para el alelo de referencia es 96 20 33 =43. Por tanto, se puede calculare mr utilizando la ecuación de Poisson: -ln(43/96) = 0,80. La Pr de este caso determinada experimentalmente es: 24/ (20 + 24) = 0,55.
- De acuerdo con la Tabla 600, la Pr esperada de una muestra de trisomía 21 en mr = 0,8 es 0,76. Por tanto, θ1 es 0,76 para este caso. Las curvas de SPRT basadas en θ1 = 0,76 se utilizarían para interpretar la Pr derivada experimentalmente de este caso que es 0,55. Cuando se ajusta la Pr=0,55 en las curvas de SPRT relevantes, los puntos de datos caen bajo la curva inferior. Por tanto, el caso se clasifica como euploide, véase la Fig. 3.

3. Comparación con el método viejo

- 30 La Fig. 9A muestra una tabla 900 de una comparación de la eficacia de los algoritmos de SPRT nuevo y viejo para clasificar casos de euploidía y trisomía 21 en los análisis de ARN-SNP digital de 96 pocillos. La Fig. 9B muestra una tabla 950 de una comparación de la eficacia de los algoritmos de SPRT nuevo y viejo para clasificar casos de euploidía y trisomía 21 en los análisis de ARN-SNP digital de 384 pocillos. El nuevo algoritmo se refiere a la selección de curvas de SPRT específicas para la mr derivada de los datos de PCR digital. El viejo algoritmo se refiere al uso de un conjunto
- 35 fijo de curvas de SPRT para todas las ejecuciones de PCR digital. El efecto de un cálculo incorrecto de los valores límite sobre la exactitud de la clasificación se revela mediante los análisis de simulación mostrados en la tabla 900.

En comparación con el uso de un conjunto fijo de curvas de SPRT en estudios previos, la proporción de datos inclasificables es mucho más baja con el enfoque de los presentes inventores, como se muestra en las tablas 900 y
 950. Por ejemplo, utilizando el enfoque de los presentes inventores, con mr=0,5, un 14 % y un 0 % de muestras de trisomía 21 serían inclasificables para los análisis de ARN-SNP digital de 96 pocillos y de 384 pocillos, respectivamente, pero serían un 62 % y un 10 %, respectivamente, con el uso de curvas fijas (véase la Tabla 900). Por tanto, el enfoque de los presentes inventores permite la clasificación de enfermedades con menor número de pocillos informativos.

45

Como se muestra en la Tabla 900, el nuevo algoritmo es más exacto en la clasificación de las muestras como que tienen o no tienen sesgo en la proporción alélica para todos los valores de m_r de 0,1 a 2,0. Por ejemplo, cuando m_r es igual a 1,0 y se realiza una ejecución de ARN-SNP digital de 96 pocillos, el nuevo algoritmo clasifica correctamente un 88 % y un 92 % de muestras con y sin sesgo de la proporción alélica, respectivamente, si bien el porcentaje de clasificación correcta de muestras con y sin sesgo de la proporción alélica utilizando el algoritmo viejo es solo un 19 %

50 clasificación correcta de muestras con y sin sesgo de la proporción alélica utilizando el algoritmo viejo es solo u y un 36 %, respectivamente.

Utilizando el algoritmo nuevo, la separación de muestras con y sin sesgo de la proporción alélica aumentaría con mr. Como resultado, las exactitudes de la clasificación aumentarían con mr. El efecto de aumentar la separación de los dos grupos de muestras sobre la exactitud de la clasificación disminuiría cuando aumentara mr a más de 2,0 debido a la reducción en el porcentaje de pocillos informativos. Por el contrario, utilizando el algoritmo viejo, las exactitudes de la clasificación aumenta mr debido a la desviación aumentada del valor de P esperado respecto a su valor verdadero.

- 60 Los datos experimentales y de simulación de los presentes investigadores muestran que el ARN-SNP digital es un método eficaz y exacto para la detección de la trisomía 21. Dado que el ARNm de PLAC4 en el plasma materno se deriva puramente del feto, para 12 de las 13 muestras de plasma materno ensayadas, solo se necesitó uno de los experimentos de PCR digital de 384 pocillos para una clasificación correcta (Tabla 1350 de la Fig. 13B). Este enfoque homogéneo basado en PCR digital en tiempo real ofrece por tanto una alternativa al enfoque basado en espectrometría
- 65 de masas para el análisis de ARN-SNP (Lo, YMD, *et al.* 2007 Nat Med, anteriormente citado). Además de los transcritos de ARNm específicos de placenta, los presentes inventores también conciben que se podrían utilizar otros

tipos de especies de ácidos nucleicos específicos fetales en plasma materno para la detección basada en PCR digital de aneuploidías cromosómicas fetales. Un ejemplo son los marcadores epigenéticos fetales (Chim, SSC *et al.* (2005) Proc Natl Acad Sci USA 102, 14753-14758; Chan, KCA *et al.* (2006) Clin Chem 52, 2211-2218), que se han utilizado recientemente para la detección prenatal no invasiva de trisomía 18 utilizando el enfoque de la proporción alélica epigenética (EAR; del inglés, epigenetic allelic ratio) (Tong, YK *et al.* (2006) Clin Chem 52, 2194-2202). Por tanto, los

5 epigenética (EAR; del inglés, epigenetic allelic ratio) (Tong, YK *et al.* (2006) Clin Chem 52, 2194-2202). Por tanto, los presentes inventores predicen que la EAR digital sería una técnica analítica posible.

V. AUMENTO DEL %, MARCADORES MÚLTIPLES Y ALTERNATIVAS DE PCR

- 10 Como se ha descrito anteriormente, la aplicación de las realizaciones de la presente invención al ADN extraído de plasma materno puede complicarse cuando el ADN fetal solo constituye una fracción menor del ADN del plasma materno, con una concentración fraccionaria promedio de alrededor de un 3% entre las semanas 11 y 17 de gestación. No obstante, como se muestra en el presente documento, el RCD digital permite la detección de aneuploidías incluso cuando el ADN aneuploide está presente como una población menor. Con una concentración fraccionaria decreciente
- 15 de ADN fetal, tal como puede estar presente durante la gestación temprana, se necesita un mayor número de recuentos informativos para el RCD digital. Un significado del presente trabajo, como se resume en la tabla 1200 de la Fig. 12, es que los presentes investigadores han proporcionado un conjunto de parámetros de referencia, por ejemplo, se requiere ADN fetal fraccionario y moléculas molde totales, sobre las que se pueden construir ensayos de diagnóstico. En opinión de los presentes investigadores, el número total de 7680 reacciones para una concentración
- 20 de ADN fetal fraccionaria de un 25% es un conjunto particularmente atractivo de parámetros de referencia. Estos parámetros deberían permitir que las muestras de euploides y de trisomía 21 se clasifiquen correctamente un 97% de las veces, como se muestra en la tabla 1200.
- El número de moléculas de ADN plasmático que están presentes por unidad de volumen de plasma materno es limitado (Lo, YMD. *et al.* 1998 Am J Hum Genet 62, 768-7758). Por ejemplo, en la gestación temprana, la concentración plasmática materna promedio de un locus autosómico, el gen *β-globina*, se ha demostrado que es de 986 copias/ml, con contribuciones tanto del feto como de la madre (Lo, YMD. *et al.* 1998 Am J Hum Genet 62, 768-7758). Para capturar 7.680 moléculas, se necesitaría ADN extraído de unos 8 ml de plasma materno. Este volumen de plasma, obtenible de ~15 ml de sangre materna, está en el límite de la práctica habitual. Sin embargo, los presentes
- 30 investigadores prevén que se pueden combinar múltiples conjuntos diana de cr21 (cr, cromosoma) y cromosomas de referencia para el análisis digital de RCD. Para 5 pares de cr21 y cromosomas de referencia diana, solo se necesitarían 1,6 ml de plasma materno para proporcionar el número de moléculas molde necesarias para el análisis. Podría realizarse una PCR multiplexada de una sola molécula. La solidez de dicho análisis de una sola molécula multiplexado se ha demostrado previamente para el haplotipado de una sola molécula (Ding, C. y Cantor, CR. 2003 Proc Natl Acad 25 existence).
- 35 Sci USA 100, 7449-7453).

Como alternativa, para lograr una concentración de ADN fetal fraccionaria del 25%, los métodos pueden permitir el enriquecimiento selectivo del ADN fetal (Li, Y. *et al.* 2004 Clin Chem 50, 1002-1011) o la supresión del ADN materno de fondo (Dhallan, R *et al.* 2004 JAMA 291, 1114-1119) o ambos, en el plasma materno. Además de tales métodos físicos para el enriquecimiento del ADN fetal y la supresión del ADN materno, también sería posible utilizar una estrategia de enriquecimiento molecular, tal como dirigirse a moléculas de ADN fetal que exhiban un patrón de metilación de ADN particular (Chim, SSC *et al.*, 2005 Proc Natl Acad Sci USA 102,14753-14758, Chan, KCA *et al.* 2006 Clin Chem 52, 2211-2218; Chiu, RWK *et al.* 2007 Am J Pathol 170, 941-950.)

- 45 Adicionalmente, ahora hay varios enfoques alternativos a la configuración manual de análisis de PCR digital en tiempo real como se utiliza en el estudio actual para realizar la PCR digital. Estos enfoques alternativos incluyen chips de PCR digital microfluídicas (Warren *et al.* 2006 Proc Natl Acad Sci USA 103, 17807-17812; Ottesen, EA *et al.* 2006 Science 314, 1464-1467), PCR en emulsión (Dressman, D *et al.* 2003 Proc Natl Acad Sci USA 100, 8817-8822) y secuenciación genómica paralela masiva (Margulies, M. *et al.* 2005 Nature 437, 376-380) utilizando por ejemplo la
- 50 plataforma Roche 454, la plataforma de Illumina Solexa y el sistema SOLiD™ de Applied Biosystems, etc. Con respecto a lo último, el método de los presentes inventores también es aplicable a métodos de secuenciación paralela masiva en moléculas de ADN individuales, que no requieren un paso de amplificación, tal como la tecnología de secuenciación de ADN Helicos True Single Molecule DNA (Harris TD *et al.* 2008 Science, 320, 106-109), la molécula individual, tecnología en tiempo real (SMRT[™]) de Pacific Biosciences y la secuenciación de nanoporos (Soni GV y Meller A.
- 55 2007 Clin Chem 53, 1996-2001). Cón la utilización de estos métodos, el ARN-SNP digital y el RCD digital podrían realizarse rápidamente sobre un gran número de muestras, mejorando por tanto la viabilidad clínica de los métodos propuestos aquí para el diagnóstico prenatal no invasivo.

Ejemplos 60

40

Los siguientes ejemplos se ofrecen para ilustrar, pero no para limitar la invención reivindicada.

I. SIMULACIONES POR ORDENADOR

65 Se realizó una simulación por ordenador para estimar la exactitud del diagnóstico de trisomía 21 utilizando el enfoque de SPRT. La simulación por ordenador se realizó con el software Microsoft Excel 2003 (Microsoft Corp., EE.UU.) y el

software SAS 9.1 para Windows (SAS Institute Inc., Carolina del Norte, EE.UU.). El rendimiento de la PCR digital es una interacción entre la concentración del molde de referencia (mr), el número de recuentos informativos y el grado proyectado de desequilibrio alélico o cromosómico (Pr). Se realizaron simulaciones por separado para una gama de cada una de estas variables. Dado que los límites de decisión de las curvas SPRT para el ARN-SNP digital y el RCD digital eran diferentes, los análisis de simulación para los dos sistemas se realizaron por separado.

Para cada condición de PCR digital simulada (es decir, mr, concentración de ADN fetal fraccionaria, número total de pocillos), se realizaron dos rondas de simulación. La primera ronda simuló el escenario de que las muestras analizadas se obtuvieron de mujeres gestantes portadoras de fetos euploides. La segunda ronda simuló el escenario donde las muestras analizadas se obtuvieron de mujeres gestantes con fetos con trisomía 21. Para cada ronda, se simuló la prueba de 5000 fetos.

A. ARN-SNP

- 15 Para el ARN-SNP digital, se realizaron simulaciones de un experimento de 384 pocillos con $m_r = 0,1$ a $m_r = 2,0$. En cada valor de mr, los presentes inventores simularon el escenario de modo que se ensayaron 5000 fetos euploides y 5000 fetos con trisomía 21. Las curvas de SPRT adecuadas para la mr dada se utilizaron para clasificar los 10.000 fetos. La Fig. 10 es una tabla 1000 que muestra los porcentajes de fetos clasificados correcta e incorrectamente como euploides o aneuploides y aquellos no clasificables para los recuentos informativos dados de acuerdo con una
- 20 realización de la presente invención. Las exactitudes para diagnosticar casos euploides y aneuploides son ambas de un 100%, para mr entre 0,5 y 2,0. Cuando mr=0,1, sólo un 57% y un 88% de los fetos euploides y con trisomía 21 pudieron clasificarse con precisión después del análisis de 384 pocillos.

Los datos de simulación se generaron como se describe en las siguientes etapas:

25

45

5

10

En la etapa 1, para cada pocillo, se generaron dos números aleatorios utilizando la función Random(Poisson) del programa informático SAS ((www.sas.com/technologies/analytics/statistics/index.html) para representar los alelos A y G, respectivamente. La función Random(Poisson) generaría números enteros positivos comenzando a partir del 0 (es decir, 0, 1, 2, 3,...) y la probabilidad de que se genere cada número entero dependió de la probabilidad de este número

- 30 de acuerdo con la función de densidad de probabilidad de Poisson para un valor promedio dado que representó la concentración promedio de los alelos por pocillo. Un pocillo se consideró positivo para el alelo A si el número aleatorio que representa el alelo A fue mayor que cero, es decir, contenía 1 o más moléculas del alelo A. De forma análoga, el pocillo se consideró como positivo para el alelo G si el número aleatorio que representa el alelo G fue mayor que cero.
- 35 Para simular el escenario de una mujer gestante que porta un feto euploide, se utilizó el mismo valor promedio para generar los números aleatorios para el alelo A y el alelo G. Por ejemplo, en el análisis que simula el análisis de ARN-SNP digital con $m_r = 0.5$, el valor promedio para el alelo A o el alelo G se estableció de forma idéntica en 0.5, lo que significó una concentración promedio para cada alelo de 0,5 moléculas por pocillo. Utilizando la ecuación de Poisson, con una concentración promedio de 0,5, la proporción de pocillos positivos para los alelos A y G serían las mismas y
- 40 fue de 0,3935, véase la tabla 600.

Cuando se simula el análisis de ARN-SNP digital de una mujer gestante con un feto con trisomía 21 con mr = 0,5, la concentración promedio del alelo sobrerrepresentado por pocillo se esperaría que fuera 2 veces la del alelo de referencia, es decir, 1. En esta situación, la probabilidad de que un pocillo sea positivo para el alelo sobrerrepresentado fue de 0,6321, véase la tabla 600.

Después de generar un número aleatorio para un pocillo de PCR digital, el pocillo podría clasificarse en uno de los siguientes estados:

- 50 a. negativo para los alelos A y G
 - b. positivo para los alelos A y G
 - c. positivo para el alelo A pero negativo para el alelo G
 - d. positivo para el alelo G pero negativo para el alelo A
- 55 En la etapa 2, se repitió el paso 1 hasta que se generó el número deseado de pocillos, 384 pocillos para la simulación actual. Se contó el número de pocillos positivos solo para el alelo A y solo para el alelo G. El alelo con menos pocillos positivos se consideró como el alelo de referencia y el alelo con más pocillos positivos se consideró como el alelo potencialmente sobrerrepresentado. El número de pocillos informativos fue el número total de pocillos positivos para cualquiera de los alelos, pero no para ambos. A continuación, se calculó la proporción de pocillos informativos que
- contienen el alelo potencialmente sobrerrepresentado (Pr). Se calcularon los límites superior e inferior para las curvas 60 de SPRT relevantes para aceptar la hipótesis nula o alternativa de acuerdo con una realización de la presente invención.
- En la etapa 3, se realizaron 5000 simulaciones para cada uno de los dos escenarios de la mujer gestante que porta 65 un feto euploide o con trisomía 21. Cada simulación podría considerarse como una muestra biológica independiente obtenida de mujeres gestantes. En la Tabla 1000, la clasificación correcta de casos euploides se refiere a aquellos

casos euploides en los que se aceptó la hipótesis nula y la clasificación incorrecta de casos euploides se refiere a aquellos casos euploides en los que se aceptó la hipótesis alternativa. De forma análoga, aquellos casos de trisomía 21 en los que se aceptó la hipótesis alternativa se consideraron como correctamente clasificados y aquellos casos de trisomía 21 en los que se aceptó la hipótesis nula se consideraron incorrectamente clasificados. Para ambos grupos, aquellos casos en los que no se aceptó la hipótesis nula o la alternativa, después de que se hubiera simulado el número total preespecificado de pocillos, se consideraron sin clasificar.

En la etapa 4, las etapas 1 a 3 se realizaron para m_r que varían de 0,1 a 2,0 en incrementos de 0,1.

10 <u>**B. RCD**</u>

5

La Fig. 11 es una tabla 1100 que muestra simulaciones por ordenador para el análisis RCD digital para una muestra de ADN fetal puro (100%) para m_r que varía de 0,1 a 2,0, de acuerdo con una realización de la presente invención. Según disminuye la concentración de ADN fetal fraccionaria, decrece el grado de sobrerrepresentación del cromosoma 21 y por tanto, se requiere un mayor púmero de pocillos informativos para una clasificación precisa de la enfermedad.

- 15 21 y por tanto, se requiere un mayor número de pocillos informativos para una clasificación precisa de la enfermedad. Por tanto, se realizaron simulaciones adicionales para concentraciones de ADN fetal de un 50%, 25% y 10% para un número total de pocillos que varían de 384 a 7680 pocillos con m_r =0,5.
- La Fig. 12 es una tabla 1200 que muestra los resultados de la simulación informática de exactitudes de análisis de RCD digital con m_r=0,5 para la clasificación de muestras de fetos euploides o con trisomía 21 con diferentes concentraciones fraccionarias de ADN fetal de acuerdo con una realización de la presente invención. El rendimiento del RCD digital es mejor para los casos con una concentración fraccionaria de ADN fetal más elevada. Con una concentración de ADN fetal de un 25% y un número total de 7680 análisis de PCR, un 97% de casos tanto euploides como aneuploides serían clasificables sin una clasificación incorrecta. El 3% restante de los casos requiere análisis 25 adicionales hasta que se pueda lograr la clasificación.
 - Los procedimientos para simular análisis digitales RCD fueron similares a aquellos descritos para el análisis digital ARN-SNP. Las etapas para las simulaciones se describen a continuación:
- En la etapa 1, se generaron dos números aleatorios bajo la función de densidad de probabilidad de Poisson para representar el locus de referencia, el cromosoma 1 y el locus del cromosoma 21. Para los sujetos femeninos portadores de fetos euploides, las concentraciones promedio de ambos loci del cromosoma 1 y del cromosoma 21 fueron las mismas. En este análisis de simulación, se utilizó una concentración promedio de molde de 0,5 para cada locus por pocillo. Para los sujetos femeninos portadores de fetos con trisomía 21, el m_r en esta simulación fue de 0,5, pero la concentración promedio del locus del cromosoma 21 por pocillo dependería de la concentración de ADN fetal
- 35 fraccionario en la muestra analizada, como se muestra en la Tabla 700. La distribución del locus de referencia y/o del cromosoma 21 para un pocillo se determinó mediante los números aleatorios que representan el locus respectivo que se generaron de acuerdo con la función de densidad de probabilidad de Poisson con la concentración promedio adecuada del locus por pocillo.
- 40 En la etapa 2, se repitió el paso 1 hasta que se generó el número deseado de pocillos, por ejemplo, 384 pocillos para un experimento de placas de 384 pocillos. Se contó el número de pocillos positivos para el cromosoma 1 solo y el cromosoma 21 solo. El número de pocillos informativos fue el número total de pocillos positivos para uno de los cromosomas, pero no para ambos. La proporción de pocillos informativos positivos para el cromosoma 21 (P_r) se calculó, a continuación. Los límites superior e inferior de las curvas de SPRT relevantes para aceptar la hipótesis nula o alternativa se calcularon como se describe en la sección anterior sobre el análisis de SPRT.

En la etapa 3, se realizaron 5000 simulaciones para cada uno de los dos escenarios de la mujer gestante que porta un feto euploide o con trisomía 21. Cada simulación podría considerarse como una muestra biológica independiente obtenida de mujeres gestantes. En la Tabla 1100, la clasificación correcta de casos euploides se refiere a aquellos

- 50 casos euploides en los que se aceptó la hipótesis nula y la clasificación incorrecta de casos euploides se refiere a aquellos casos euploides en los que se aceptó la hipótesis alternativa. De forma análoga, aquellos casos de trisomía 21 en los que se aceptó la hipótesis nula se consideraron como correctamente clasificados y aquellos casos de trisomía 21 en los que se aceptó la hipótesis nula se consideraron incorrectamente clasificados. Para ambos grupos, aquellos casos en los que no se aceptó la hipótesis nula o la alternativa, después de que se hubiera simulado el prómete terte presente en experience en
- 55 número total preespecificado de pocillos, se consideraron sin clasificar.

En la etapa 4, se repitieron las etapas 1 a 3 para las muestras con 10%, 25%, 50% y 100% de ADN fetal con cifras totales de pocillos que varían de 384 a 7680.

60 II. VALIDACIÓN DE LA DETECCIÓN DE TRISOMÍA 21

A. ARN-SNP para PLAC4

La viabilidad práctica del ARN-SNP digital se demostró utilizando el SNP rs8130833 sobre el gen *PLAC4* en el cromosoma 21 (Lo, YMD *et al.* 2007 Nat Med 13, 218-223). Se analizaron muestras de ADN y ARN placentario de placentas heterocigóticas, dos euploides y dos con trisomía 21. Las muestras de ADN placentario se analizaron con

el protocolo de ARN-SNP digital, pero con la omisión de la etapa de transcripción inversa, por tanto, convirtiendo el procedimiento esencialmente en un análisis de *ADN*-SNP digital. Para encontrar el equilibrio entre la posibilidad de una clasificación correcta de los casos y la proporción de pocillos informativos, los presentes inventores diluyeron las muestras con el objetivo de un alelo de cualquier tipo por pocillo y lo confirmaron mediante un análisis de PCR digital de 96 pocillos. A esto le siguió un experimento de ARN-SNP digital de 384 pocillos. Se calcularon P_r y m_r y la curva

- de SPRT para este valor de m_r se utilizó para la interpretación de los datos. La Fig. 13A muestra una tabla 1300 de análisis de ARN-SNP digital en tejidos placentarios de gestaciones euploides
- y de trisomía 21 de acuerdo con una realización de la presente invención. Los genotipos se determinaron mediante
 un ensayo de espectrometría de masas. "Euploide" se asignó cuando el Pr obtenido experimentalmente estuvo por debajo de la región inclasificable; "T21", que representa la trisomía 21, se asignó cuando la Pr obtenida experimentalmente estuvo por encima de la región inclasificable. T21, trisomía 21. Cada uno de estos casos se clasificó correctamente, utilizando muestras tanto de ADN como de ARN, con un experimento de 384 pocillos.
- 15 Los presentes inventores analizaron adicionalmente muestras de ARN plasmático de nueve mujeres portadoras de fetos euploides y cuatro mujeres portadoras de fetos con trisomía 21. La Fig. 13B muestra una tabla 1350 de análisis de ARN-SNP digital de plasma materno de gestaciones de euploides y trisómicos 21 de acuerdo con una realización de la presente invención. Todos los casos se clasificaron correctamente. Los resultados iniciales para un caso de trisomía 21 (M2272P) cayeron dentro de la región inclasificable, entre las curvas de SPRT, después de un experimento
- 20 de 384 pocillos. Por tanto, se realizó una ejecución adicional de 384 pocillos. Se calcularon valores nuevos de mr y Pr a partir de los datos agregados del total de 768 pocillos y la clasificación se realizó utilizando un nuevo conjunto de curvas de SPRT seleccionadas basándose en este valor de mr. A continuación, el caso se puntuó correctamente como aneuploide.
- 25 Los datos experimentales y de simulación de los presentes investigadores muestran que el ARN-SNP digital es un método eficaz y exacto para la detección de la trisomía 21. Dado que el ARNm de PLAC4 en el plasma materno se deriva puramente del feto, para 12 de las 13 muestras de plasma materno ensayadas, solo se necesitó uno experimento de PCR digital de 384 pocillos para una clasificación correcta. Este enfoque homogéneo, basado en PCR digital en tiempo real ofrece por tanto una alternativa al enfoque basado en espectrometría de masas para el análisis
- 30 de ARN-SNP. Además de los transcritos de ARNm específicos de placenta, los presentes inventores también conciben que se podrían utilizar otros tipos de especies de ácidos nucleicos específicos fetales en plasma materno para la detección basada en PCR digital de aneuploidías cromosómicas fetales. Un ejemplo son los marcadores epigenéticos fetales que se han utilizado recientemente para la detección prenatal no invasiva de la trisomía 18 utilizando el enfoque de la relación alélica epigenética (EAR) (Tong YK et al. 2006 Clin Chem, 52, 2194-2202). Por tanto, los presentes
- 35 inventores predicen que la EAR digital sería una técnica analítica posible.

B. RCD

65

5

- La viabilidad práctica del RCD digital para la detección de trisomía 21 se investigó también utilizando un ensayo de PCR dirigido a secuencias parálogas en los cromosomas 21 y 1. Los loci parálogos se utilizaron aquí a modo de ejemplos. Las secuencias no parálogas en el cromosoma 21 y cualquier otro cromosoma de referencia pueden utilizarse también para el RCD. Las muestras de ADN placentario de dos placentas euploides y dos de trisomía 21 se diluyeron hasta aproximadamente un molde diana de cada cromosoma por pocillo y se confirmaron mediante un análisis de PCR digital de 96 pocillos. Cada muestra confirmada se analizó mediante un experimento de RCD digital de 384 pocillos y se calcularon los valores de Pr y Mr. Para el RCD digital, el parálogo del cromosoma 1 fue el molde
- de 364 pochios y se calculatori los valores de Pr y Mr. Para el RCD digital, el paralogo del comosonia i fue el molde de referencia. Este valor de mr se utilizó para seleccionar un conjunto correspondiente de curvas de SPRT para la interpretación de datos. Todas las muestras de placenta se clasificaron correctamente como se muestra en la Fig. 14A.
- 50 Para demostrar que el enfoque de RCD digital se puede utilizar para detectar ADN de trisomía 21 que se mezcla con un exceso de ADN euploide, tal como el escenario de ADN fetal en plasma materno, se analizaron las mezclas que contienen un 50 % y un 25 % de ADN placentario de trisomía 21 en un fondo de ADN de células sanguíneas maternas euploides. El ADN de la placenta de 10 casos de trisomía 21 y de 10 casos euploides se mezcló cada uno con una cantidad igual de ADN de células sanguíneas euploides maternas, produciendo por tanto veinte mezclas de ADN al
- 55 50 %. La Fig. 14B muestra un gráfico 1440 que ilustra la interpretación de SPRT para el análisis RCD de las mezclas de un 50 % de ADN fetal de acuerdo con una realización de la presente invención. De forma análoga, el ADN placentario de 5 casos de trisomía 21 y de 5 casos euploides se mezcló cada uno con un exceso 3 veces mayor de ADN de células sanguíneas euploides maternas, produciendo por tanto diez mezclas de ADN al 25 %. La Fig. 14C muestra un gráfico 1470 que ilustra la interpretación de SPRT para el análisis RCD de las mezclas de un 25 % de
- 60 ADN fetal. Todas las mezclas de ADN euploide y aneuploide se clasificaron correctamente, como se muestra en las Figs. 14B y 14C.

Cada muestra alcanzó el punto de ser clasificable después de varios análisis de PCR digital de 384 pocillos, como se marca en las Figs. 14B y 14C. Para las mezclas de ADN al 50 %, el número de placas de 384 pocillos necesarios varió de uno a cinco. Para las mezclas de ADN al 25 %, el número de placas de 384 pocillos necesarios varió de uno a siete. La proporción acumulada de casos que se clasificaron correctamente con la adición de cada análisis de PCR

digital de 384 fue como la predicha por la simulación por ordenador presentada en la Tabla 1200.

III. MÉTODO CON PCR DIGITAL

5 I. ARN-SNP DIGITAL

Todas las muestras de ARN se sometieron primero a transcripción inversa con un cebador de transcripción inversa específico de gen utilizando la transcriptasa inversa de ThermoScript (Invitrogen). La secuencia del cebador de transcripción inversa fue 5'-AGTATATAGAACCATGTTTAGGCCAGA-3' (Integrated DNATechnologies, Coralville, lowa). El tratamiento posterior de las muestras de ARN transcrito de forma inversa (es decir, el ADNc) para el ARN-10 SNP digital y las muestras de ADN (por ejemplo, ADN placentario) fue el mismo, esencialmente. Antes del análisis de PCR digital, las muestras de ADN y de ADNc primero se cuantificaron, utilizando un ensayo de PCR en tiempo real para PLAC4 aue consta de los cebadores 5'-CCGCTAGGGTGTCTTTTAAGC-3', 5'-GTGTTGCAATACAAAATGAGTTTCT-3' y de la sonda fluorescente 5'-(FAM)ATTGGAGCAAATTC(MGBNFQ)-3' (Applied Biosystems, Foster City, California), en donde FAM es la 6-carboxifluoresceína y MGBNFQ es un 15 desactivador no fluorescente de unión a surco menor.

Se preparó una curva de calibración mediante diluciones en serie de oligonucleótidos de ADN sintético monocatenario purificados por HPLC (Proligo, Singapur) especificando el amplicón. La secuencia fue 5'-CGCCGCTAGGGTGTCTTTTAAGCTATTGGAGCAAATTCAAATTTGGCTTAAAGAA

20 CGCCGCTAGGGTGTCTTTTÅAGCTATTGGÅGCÅAATTCAAATTTGGCTTAÅÅGAA AAAGAAACTCATTTTGTATTGCAACACCAGGAGTATCCCAAGGGACTCG-3'. La reacción se estableció utilizando 2X TaqMan Universal PCR Master Mix (Applied Biosystems) en un volumen de reacción de 25 ml. Se utilizaron 400 nM de cada cebador y 80 nM de la sonda en cada reacción. La reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 45 ciclos de 95 °C durante 15 seg y 60 °C durante 1 min en un sistema de detección de 25 couparias ABL PBISM 7000HT (Applied Biosystems). A continuación se llavaron a caba diluciones en socia de las

- 25 secuencias ABI PRISM 7900HT (Applied Biosystems). A continuación, se llevaron a cabo diluciones en serie de las muestras de ADN o de ADNc de manera que la amplificación posterior por PCR digital se pudiera realizar con aproximadamente una molécula molde por pocillo. A tal concentración, se esperaba que aproximadamente el 37 % de los pocillos de reacción mostraran amplificación negativa y se confirmó primero realizando un análisis de PCR en tiempo real digital de 96 pocillos. A esto le siguió un análisis de ARN-SNP digital realizado en placas de 384 pocillos
- utilizando un conjunto de cebadores que no abarcan intrones: el cebador directo 5'-TTTGTATTGCAACACCATTTGG 3' y el cebador de transcripción inversa específico del gen descrito anteriormente.

Se diseñaron dos sondas TaqMan específicas de alelo dirigidas a cada uno de los dos alelos del SNP rs8130833 en el *PLAC4*. Sus secuencias fueron 5'-(FAM)TCGTCGTCTAACTTG(MGBNFQ)-3' y 5'-

- 35 (VIC)ATTCGTCATCTAACTTG(MGBNFQ) para los alelos G y A, respectivamente. La reacción se estableció utilizando 2X TaqMan Universal PCR Master Mix en un volumen de reacción de 5 ml. Cada reacción contiene 1X TaqMan Universal PCR Master Mix, 572 nM de cada cebador, 107 nM de la sonda específica del alelo G y 357 nM de la sonda específica del alelo A. La reacción se llevó a cabo en el sistema de detección de secuencias ABI PRISM 7900HT. La reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 45 ciclos de 95 °C durante 15 seg y 57
- 40 °C durante 1 min. Durante la reacción, los datos de fluorescencia se recogieron mediante la aplicación "Absolute Quantification" del software SDS 2.2.2 (Applied Biosystems). El software calculó automáticamente los valores basales y umbrales. El número de pocillos que fueron positivos para los alelos A o G se registró y se sometió a análisis de SPRT.

45 B. Análisis de RCD digital

Todas las muestras de ADN placentario y de capa leucocitaria materna utilizadas en este estudio se cuantificaron primero mediante el espectrofotómetro de NanoDrop (NanoDrop Technology, Wilmington, Delaware). La concentración de ADN se convierte en copias/ml utilizando una conversión de 6,6 pg/célula. La cantidad de ADN

- 50 correspondiente a aproximadamente un molde por pocillo se determinó diluyendo en serie las muestras de ADN y se confirmó con el ensayo de PCR en tiempo real en un formato de 96 pocillos en donde los presentes investigadores esperan que aproximadamente el 37 % de los pocillos muestre una amplificación negativa. La configuración de la PCR para la placa confirmatoria fue la misma, como se describe a continuación, excepto que solo se agregó la sonda para el cromosoma de referencia. En el análisis de RCD digital, los loci parálogos en el cromosoma 21 y 1 (Deutsch, S. *et*
- 55 *al.* 2004 J Med Genet 41, 908-915) se coamplificaron primero mediante el cebador directo 5'-GTTGTTCTGCAAAAAACCTTCGA-3' y el cebador inverso 5'-CTTGGCCAGAAATACTTCATTACCATAT-3'. Se diseñaron dos sondas TaqMan específicas de cromosomas para dirigirse a los parálogos del cromosoma 21 y 1 y sus secuencias fueron 5'-(FAM)TACCTCCAT AATGAGTAAA(MGBNFQ)-3' y 5'-(VIC)CGTACCTCTGTAATGTGTAA(MGBNFQ)-3', respectivamente. Cada reacción contiene 1X TaqMan Universal
- 60 PCR Master Mix (Applied Biosystems), 450 nM de cada cebador y 125 nM de cada sonda. El volumen total de reacción fue de 5 ml/pocillo. La reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 50 ciclos de 95 °C durante 15 seg y 60 °C durante 1 min. Todos los experimentos de PCR en tiempo real se llevaron a cabo en un sistema de detección de secuencias ABI PRISM 7900HT (Applied Biosystems) y los datos de fluorescencia se recogieron mediante la aplicación "Absolute Quantification" del software SDS 2.2.2 (Applied Biosystems). Se utilizaron los valores
- 65 basales por defecto y los valores umbral manuales. Se registró el número de pocillos que fueron positivos para el cromosoma 21 o el cromosoma 1 y se sometió a análisis de SPRT. Se analizarían una o más placas de 384 pocillos

hasta que se pudiera clasificar la enfermedad mediante la SPRT.

IV. UTILIZACIÓN DE PCR DIGITAL BASADA EN MICROFLUIDOS

5 I. ARN-SNP DIGITAL

Este ejemplo demuestra el rendimiento del análisis de PCR digital utilizando PCR digital basada en microfluidos. Una variante de este enfoque se ilustra aquí, a modo de ejemplo, aunque no de forma limitativa, utilizando un sistema Fluidigm BioMark™. Este sistema puede realizar más de 9000 PCR digitales por ejecución.

10

Se obtuvieron muestras de tejido placentario y de sangre periférica materna de mujeres gestantes portadoras de fetos euploides o trisómicos 21. El genotipado del SNP rs8130833 en el gen *PLAC4* en muestras de ADN placentario mediante la prolongación del cebador seguido de espectrometría de masas. Se extrajo ARN de las muestras de placenta y de plasma materno.

15

Todas las muestras de ARN se sometieron a transcripción inversa con un cebador de transcripción inversa específico de gen (5-AGTATATAGAACCATGTTTAGGCCAGA-3') utilizando la transcriptasa inversa ThermoScript (Invitrogen). Para las muestras de ADNc placentario, se realizaron diluciones en serie de manera que la amplificación posterior por PCR digital podría realizarse en aproximadamente una molécula molde por pocillo.

20

La PCR digital se realizó en el sistema BioMark[™] (Fluidigm) con una matriz digital 12.765 (Fluidigm). Cada matriz digital consta de 12 paneles para alojar 12 mezclas de ensayo de muestras. Cada panel se divide adicionalmente en 765 pocillos para llevar a cabo una reacción de 7-nL/pocillo. La región de SNP rs8130833 en el gen *PLAC4* se amplificó mediante el cebador directo (5'-TTTGTATTGCAACACCATTTGG-3') y el cebador de transcripción inversa específico

- del gen descrito anteriormente. Se diseñaron dos sondas TaqMan específicas de alelo dirigidas a cada uno de los dos alelos del SNP rs8130833. Sus secuencias fueron 5'-(FAM)TCGTCGTCTAACTTG(MGBNFQ)-3' y 5'-(VIC)ATTCGTCATCTAACTTG(MGBNFQ) para los alelos G y A, respectivamente. La reacción para un panel de matriz se estableció utilizando 2X TaqMan Universal PCR Master Mix en un volumen de reacción de 10 ml. Cada reacción contiene 1X TaqMan Universal PCR Master Mix, 572 nM de cada cebador, 53,5 nM de la sonda específica del alelo
- 30 G, 178,5 nM de la sonda específica del alelo A y 3,5 ml de la muestra de ADNc. Se utilizó un panel de reacción para cada muestra de ADNc placentario, si bien se utilizaron 12 paneles para cada muestra de plasma materno. Las mezclas de ensayo de muestra se cargaron en el Digital Array mediante un Controlador IFC de NanoFlex ™ (Fluidigm). La reacción se llevó a cabo en el sistema BioMark[™]. La reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 40 ciclos de 95 °C durante 15 seg y 57 °C durante 1 min.
- 35

Se analizaron muestras de ARN placentario de una placenta euploide y dos placentas heterocigóticas T21 en un panel de reacción de 765 pocillos. Para cada muestra, se contó el número de pocillos informativos, que comprenden los positivos para el alelo A o para el G (pero no para ambos). Se determinó la proporción del alelo sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas para la concentración de molde de referencia promedio exacta por pocillo (mr) de estas ejecuciones se aplicaron para determinar si el Pr obtenido

- 40 promedio exacta por pocillo (mr) de estas ejecuciones se aplicaron para determinar si el Pr obtenido experimentalmente indicaba una muestra euploide o T21. Como se muestra en la Fig. 15A, todas las muestras de ARN se clasificaron correctamente utilizando este enfoque.
- Los presentes inventores analizaron adicionalmente muestras de ARN plasmático de cuatro mujeres portadoras de fetos euploides y una mujer portadora de un feto con trisomía 21. Cada muestra se analizó en doce paneles de reacción de 765 pocillos, es decir, 9180 reacciones por muestra de ARN de plasma. La Fig. 15B muestra el número de pocillos informativos para cada uno de los 12 paneles para esta muestra de ARN de plasma. Como se muestra en la tabla, la concentración de molde en la muestra de plasma estaba tan diluida que el número de pocillos informativos en cualquier panel de reacción no era suficiente para la clasificación SPRT. Los pocillos informativos de tres paneles de reacción
- 50 tuvieron que combinarse antes de que esta muestra se clasificara como muestra euploide (Fig. 15C). La Fig. 15C muestra que utilizando los datos agregados de dos a doce paneles, podrían clasificarse correctamente todos los casos de plasma.
- En comparación con el método manual para realizar la PCR digital, este método basado en microfluidos es mucho más rápido y requiere menos mano de obra. El proceso completo podría completarse en dos horas y media.

B. Análisis de ARN-SNP digital para la detección prenatal de trisomía 18

- En este ejemplo, Los presentes inventores utilizaron un ensayo de discriminación alélica digital basado en PCR sobre el inhibidor del ARNm de serpina peptidasa clado B (ovoalbúmina) miembro 2 (SERPINB2), un transcrito expresado por la placenta en el cromosoma 18, para detectar un desequilibrio en la proporción de alelos polimórficos para fetos con trisomía 18. La extracción de ADN y ARN de muestras de tejido placentario se realizó utilizando el mini Kit de ADN QIAamp (Qiagen, Hilden, Alemania) y el reactivo TRIzol (Invitrogen, Carlsbad, California), respectivamente, como se describe en los protocolos de los fabricantes. Las muestras de ARN placentario extraídas se sometieron a tratamiento con ADNace L (Invitrogen) para eliminar el ADN genémico contaminante La genetinade del SNI prof0002 en el agor
- 65 con ADNasa I (Invitrogen) para eliminar el ADN genómico contaminante. La genotipado del SNP rs6098 en el gen SERPINB2 se llevó a cabo en muestras de ADN de tejido placentario con un ensayo Homogenous MassEXTEND

(hME) utilizando MassARRAY Compact (Sequenom, San Diego) como se describió anteriormente.

La transcripción inversa para el transcrito de SERPINB2 se realizó en las muestras de ARN de tejido placentario con un cebador específico de gen 5'-CGCAGACTTCTCACCAAACA-3 (Integrated DNA Technologies, Coralville, Iowa)

- 5 utilizando la transcriptasa inversa ThermoScript (Invitrogen). Todas las muestras de ADNc se diluyeron hasta una concentración de manera que la amplificación posterior por PCR digital podría realizarse en una concentración promedio de una molécula molde por pocillo. La PCR digital se estableció utilizando la TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, California) y los reactivos BiomarkTM PCR (Fluidigm, San Francisco). El cebador directo 5'-CTCAGCTCTGCAATCAATGC-3 '(Integrated DNA Technologies) y el cebador inverso (idéntico al cebador
- 10 específico del gen utilizado para la transcripción inversa) se utilizaron a una concentración de 600 nM. Las dos sondas TaqMan dirigidas al alelo A o G del SNP rs6098 en la secuencia SERPINB2 fueron 5'-(FAM)CCACAGGGAATTATTT(MGBNFQ)-3' y 5'-(FAM)CCACAGGGGATTATTT(MGBNFQ)-3' (Applied Biosystems). FAM es la 6-carboxifluoresceína y MGBNFQ es un desactivador no fluorescente de unión al surco menor y se utilizaron en concentraciones de 300 nM y 500 nM, respectivamente. Cada mezcla de muestra-reactivo se dividió en 765 pocillos
- de reacción en una matriz digital 12.765 de BioMark™ utilizando el controlador IFC de Nanoflex™ (Fluidigm). Tras la partición, la matriz se colocó en el sistema de PCR en tiempo real de BioMark™ (Fluidigm) para la amplificación térmica. La reacción se inició a 50 °C durante 2 min y continuó a 95 °C durante 5 min seguido de 45 ciclos de 95 °C durante 15 seg y 59 °C durante 1 min. Después de la amplificación, se contó el número de pocillos informativos (uno que fue positivo solo para el alelo A o para el G) y el número de pocillos positivos para ambos alelos y se sometió a un análisis de prueba de la proporción de probabilidades secuencial (SPRT).
 - Para un feto euploide heterocigótico, los alelos A y G deben estar igualmente representados (1: 1) en el genoma fetal, si bien para la trisomía 18, habría una copia adicional de un alelo, dando por tanto una proporción de 2:1 en el genoma fetal. Se generó una serie de curvas de SPRT para la interpretación de diferentes muestras. Estas curvas ilustran la
- 25 proporción esperada de pocillos informativos positivos para el alelo Pr sobrerrepresentado (eje y) para un número total dado de pocillos informativos (eje x) necesarios para la clasificación. Para cada muestra, la Pr derivada experimentalmente se comparó con el valor de Pr esperado. Las muestras por encima de la curva superior se clasificaron como trisomía 18, si bien aquellas por debajo de la curva inferior se clasificaron como euploides. El área entre las dos curvas es la región inclasificable.
- 30

La viabilidad del análisis digital de ARN-SNP para la detección de trisomía 18 fetal se demostró utilizando el SNP rs6098 en el gen SERPINB2. Las muestras de ADN de tejido placentario de sujetos con fetos euploides y trisomía 18 primero se genotiparon mediante espectrometría de masas para identificar los casos heterocigóticos. Se encontraron nueve placentas heterocigóticas euploides y tres con trisomía 18 y se sometieron a análisis de ARN-SNP digital. Para

- 35 cada muestra, se calcularon Pr y mr y la curva de SPRT para este valor de mr se utilizó para la clasificación de enfermedades. Como se muestra en la Fig. 16A, todas las muestras se clasificaron correctamente. Los valores de Pr de las placentas con trisomía 18 estuvieron por encima de la región inclasificable, si bien las placentas euploides cayeron por debajo de esta región.
- 40 Las muestras con curvas de SPRT basadas en m_r= 0,1, 0,2 y 0,3 se ilustran en la Fig. 16B. Estos datos sugieren que el método ARN-SNP digital es una herramienta de diagnóstico valiosa para gestaciones con trisomía 18. Las dos curvas representan los límites de la región inclasificable. Las muestras con puntos de datos por encima de la curva superior se clasificaron como aneuploides, si bien aquellas con puntos de datos por debajo de la curva inferior se clasificaron como euploides.
- 45

C. Análisis de RCD digital

Este ejemplo demuestra el rendimiento del análisis de RCD digital utilizando PCR digital basada en microfluidos. Una variante de este enfoque se ilustra aquí, a modo de ejemplo, aunque no de forma limitativa, utilizando un sistema 50 Fluidigm BioMark™. Este sistema puede realizar más de 9000 PCR digitales por ejecución.

Se obtuvieron muestras de tejido placentario y de sangre periférica materna de mujeres gestantes portadoras de fetos euploides o trisómicos 21 (T21). El ADN de la placenta de 10 casos de T21 y de 10 casos euploides se mezcló cada uno con una cantidad igual de ADN de células sanguíneas euploides maternas, produciendo por tanto veinte mezclas

- 55 de ADN al 50 %. Para asegurar una proporción fetal precisa en las muestras de mezcla, el ADN extraído se cuantificó primero mediante la medición de la densidad óptica (DO) a 260 nm. A continuación, se cuantificaron digitalmente mediante el sistema BioMark™ (Fluidigm) utilizando las matrices digitales 12.765 (Fluidigm). El ensayo para cuantificar las muestras fue el mismo que se describe a continuación, con la excepción de que solo se utilizó la sonda para el cromosoma de referencia.
- 60

65

La dosis de cromosomas en las mezclas de ADN al 50 % y las muestras de líquido amniótico se determinaron mediante análisis de PCR digital de un locus del cromosoma 21 no polimórfico relacionado con uno situado en el cromosoma 1. Un amplicón de 101 pb de un par de loci parálogos en el cromosoma 21 y 1 se coamplificó primero mediante el cebador directo 5'-GTTGTTCTGCAAAAAACCTTCGA-3' y el cebador inverso 5'-CTTGGCCAGAAATACTTCATTACCATAT-3'. Se diseñaron dos sondas TagMan específicas de cromosomas para distinguir a los parálogos del cromosoma 21 y 1

y sus secuencias fueron 5'-(FAM)TACCTCCAT AATGAGTAAA(MGBNFQ)-3' y 5'-

(VIC)CGTACCTCTGTAATGTGTAA(MGBNFQ)-3', respectivamente. Los loci parálogos se utilizaron aquí solo a modo de ejemplo. En otras palabras, los loci no parálogos también podrían utilizarse para tal análisis.

Con el fin de demostrar el uso del enfoque de RCD digital para detectar trisomía 18 (T18), se diseñó otro ensayo dirigido a secuencias parálogas en los cromosomas 21 y 18. Se coamplificó primero un amplicón de 128 pb de los loci parálogos en los cromosomas 21 y 18 mediante el cebador directo 5'-GTTGTTCTGCAAAAAACCTTCGA-3' y el cebador inverso 5'-CTTGGCCAGAAATACTTCATTACCATAT-3'. Se diseñaron dos sondas TaqMan específicas de cromosomas para distinguir a los parálogos del cromosoma 21 y 18 y sus secuencias fueron 5'-(FAM)TACCTCCAT AATGAGTAAA(MGBNFQ)-3' y 5'-(VIC)CGTACCTCTGTAATGTGTAA(MGBNFQ)-3', respectivamente. Los loci parálogos se utilizaron aquí solo a modo de ejemplo. En otras palabras, los loci no parálogos también podrían utilizarse para tal análisis.

Todos los experimentos se llevaron a cabo en el sistema BioMark ™ (Fluidigm) utilizando las matrices digitales 12.765 (Fluidigm). La reacción para un panel se estableció utilizando 2X TaqMan Universal PCR Master Mix en un volumen de reacción de 10 ml. Cada reacción contenía un 1X TaqMan Universal PCR Master Mix, 900 nM de cada cebador, 125 nM de cada sonda y 3,5 ml de una muestra de ADN de células de sangre materna/placentaria al 50 %. La mezcla de muestra/ensayo se cargó en la matriz digital (Digital Array) mediante un Controlador IFC de NanoFlex ™ (Fluidigm). La reacción se llevó a cabo en el sistema BioMark™ para la detección. La reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 40 ciclos de 95 °C durante 15 seg y 57 °C durante 1 min.

Las muestras de un 50 % de ADN de células sanguíneas placentarias/maternas de euploides y de T21 se analizaron en las matrices digitales en el ensayo de cr21/cr1 (cr, cromosoma). Para cada muestra, se contó el número de pocillos informativos, que comprenden los positivos para los marcadores de cr21 o cr1 (pero no ambos). Se determinó la proporción del marcador sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas proporción del marcador sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas proporción del marcador sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas proporción del marcador sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas proporción del marcador de proporción del marcador de SPRT adecuadas proporción del marcador de sobrerrepresentado entre todos los pocillos informativos (Pr). Las curvas de SPRT adecuadas proporción del marcador de sobrer de sobre de SPRT adecuadas proporción del marcador de sobre de sob

- para la concentración de molde de referencia promedio exacta por pocillo (m_r) para cualquiera de los paneles de PCR digital se aplicaron para determinar si el P_r obtenido experimentalmente indicaba una muestra euploide o T21. Los datos se agregaron a partir de paneles extra para muestras que permanecieron sin clasificar hasta que se pudiera tomar una decisión. Como se muestra en la Fig. 17, todas las muestras de un 50 % de ADN de células sanguíneas placentarias/maternas se clasificaron correctamente utilizando este enfoque con datos que varían de uno a cuatro paneles necesarios. También se representó una curva de SPRT para mostrar los límites de decisión para una
- 30 paneles necesarios. También se represento una curva de SPRT para mostrar los limites de decision para una clasificación correcta, tal como se muestra en la FIG. 18.

Los presentes inventores aplicamos adicionalmente el análisis RCD en muestras de líquido amniótico obtenidas de 23 mujeres que portan de fetos euploides y 6 mujeres que portan fetos T21. Cada muestra se analizó en un solo panel

- de reacción de 765 pocillos con el ensayo cr21/cr1. La Fig. 19 muestra el sumario de la clasificación de SPRT. Como se muestra en la Fig. 19, las 29 muestras se clasificaron correctamente. El método de RCD digital es por tanto un enfoque alternativo para la detección de trisomías utilizando microsatélites (Levett LJ, *et al.* A large-scale evaluation of amnio-PCR for the rapid prenatal diagnosis of fetal trisomy. Ultrasound Obstet Gynecol 2001; 17: 115-8) o de polimorfismos de un solo nucleótido (SNP) (Tsui NB, *et al.* Detection of trisomy 21 by quantitative mass spectrometric
- 40 analysis of single-nucleotide polymorphisms. Clin Chem 2005; 51: 2358-62) marcadores o PCR en tiempo real no digital (Zimmermann B, *et al.* Novel real-time quantitative PCR test for trisomy 21. Clin Chem 2002; 48: 362-3) en diversos tipos de muestra utilizadas para el diagnóstico prenatal, tal como biopsias de líquido amniótico y vellosidades coriónicas.
- 45 En un intento por detectar casos de T18, los presentes investigadores aplicamos el ensayo cr21/cr18 en 3 muestras de ADN placentario euploide y 5 de T18. Se calculó la proporción del marcador sobrerrepresentado entre todos los pocillos informativos (P_r). Todos se clasificaron correctamente, con la excepción de un caso de T18 que se clasificó erróneamente como euploide. Los resultados se resumen en la Fig. 20.

50 <u>V. UTILIZACIÓN DE ENSAYOS DE RCD DIGITAL MULTIPLEXADOS EN PLATAFORMA DE ESPECTROMÉTRICA</u> <u>DE MASAS</u>

El número de moléculas de ADN plasmático que están presentes por unidad de volumen de plasma materno es limitado (Lo, YMD. *et al.* 1998 Am J Hum Genet 62, 768-7758). Por ejemplo, en la gestación temprana, la concentración plasmática materna promedio de un locus autosómico, el gen *β-globina*, se ha demostrado que es de 986 copias/ml, con contribuciones tanto del feto como de la madre (Lo, YMD. *et al.* 1998 Am J Hum Genet 62, 768-7758). Para capturar 7.680 moléculas, se necesitaría ADN extraído de unos 8 ml de plasma materno. Este volumen de plasma, obtenible de ~15 ml de sangre materna, está en el límite de la práctica habitual. Sin embargo, los presentes investigadores prevén que se pueden combinar múltiples conjuntos diana de Cr21 y cromosomas de referencia para

- 60 el análisis digital de RCD. Para 5 pares de cr21 y cromosomas de referencia diana, solo se necesitarían 1,6 ml de plasma materno para proporcionar el número de moléculas molde necesarias para el análisis. Podría realizarse una PCR multiplexada de una sola molécula. La solidez de dicho análisis de una sola molécula multiplexado se ha demostrado previamente para el haplotipado de una sola molécula (Ding, C. y Cantor, CR. 2003 Proc Natl Acad Sci USA 100, 7449-7453).
- 65

En un ejemplo, se obtuvieron muestras de tejido placentario y de sangre periférica materna de mujeres gestantes que

portan fetos euploides o trisómicos 21 (T21). Se mezclaron 5 muestras de ADN placentario euploide y 5 de T21 cada una con proporciones iguales de ADN de células de sangre materna para producir 10 mezclas de ADN que imitan muestras de plasma con un 50 % de ADN fetal. Para asegurar una proporción fetal precisa en las muestras de mezcla, el ADN extraído se cuantificó primero mediante la medición de la densidad óptica (DO) a 260 nm. A continuación, se cuantificaron digitalmente mediante PCR en tiempo real en el formato de 384 pocillos. El ensayo para cuantificar las muestras fue el mismo que se ha descrito en el ejemplo previo de análisis de RCD digital.

La dosis de cromosomas en las mezclas al 50 % se determinó mediante análisis de PCR digital de un locus del cromosoma 21 no polimórfico relacionado con uno situado en el cromosoma 1. El método se denomina análisis de

- 10 dosis cromosómica relativa (RCD) digital. Un amplicón de 121 pb (incluido un 10-mer en cada cebador) de un par de loci parálogos en el cromosoma 21 y el 1 se coamplificó mediante el cebador directo 5'-GTTGTTCTGCAAAAAACCTTCGA-3' y el cebador inverso 5'-CTTGGCCAGAAATACTTCATTACCATAT-3'. Se diseñó un cebador de extensión que se dirige a las diferencias de bases entre el cromosoma 21 y el cromosoma 1 y su secuencia es 5'-CTCATCCTCACTTCGTACCTC-3'.
- 15

5

Con el fin de demostrar la utilidad de los ensayos de PCR digital multiplexadas para detectar casos de T21, se diseñó otro ensayo de RCD digital dirigido a secuencias parálogas en los cromosomas 21 y 18. Un amplicón de 148 pb (incluido un 10-mer en cada cebador) de los loci parálogos en los cromosomas 21 y 18 fue coamplificado por el cebador directo 5'-ACGTTGGATGGTACAGAAACCACAAACTGATCGG-3' y el cebador inverso 5'-

20 ACGTTGGATGGTCCAGGCTGTGGGCCT-3'. Se diseñó un cebador de extensión que se dirige a las diferencias de bases entre el cromosoma 21 y el cromosoma 18 y su secuencia es 5'-ACAAAAGGGGGAAGAGG-3.

El análisis RCD digital multiplexado se realizó utilizando el protocolo de prolongación del cebador. La reacción de PCR se estableció utilizando un kit de reactivos GeneAmp PCR Core Reagent Kit (Applied Biosystems) en un volumen de reacción de 5 ml. Cada reacción contuvo tampón II 1X, MgCl₂ 2 mM, mezcla de dNTP 200 mM, AmpliTaq Gold 0,2 U, 200 nM de cada uno de los 4 cebadores y la mezcla de ADN al 50 %. La mezcla de ensayo/muestra se dispensó en una placa de PCR de 384 pocillos y la reacción se inició a 50 °C durante 2 min, seguido de 95 °C durante 10 min y 40 ciclos de 95 °C durante 15 seg y 57 °C durante 1 min.

- 30 Los productos de PCR se sometieron a un tratamiento de fosfatasa alcalina de camarón (SAP; del inglés, shrimp alkaline phosphatase) para eliminar los dNTP no incorporados. La mezcla se incubó a 37 °C durante 40 min seguido de 85 °C durante 5 min. A continuación, se llevó a cabo la reacción de prolongación del cebador. En síntesis, se añadieron 771 nM del cebador de extensión del ensayo cr21/cr1, 1,54 mM de cebador de extensión del ensayo cr21/cr18, 0,67 U de Thermosequenase (Sequenom) y 64 mM de cada uno de ddCTP, ddGTP, dATP y dTTP en un
- 35 cóctel de extensión a los productos de PCR tratados con SAP. Las condiciones de reacción fueron 94 °C durante 2 min, seguido de 94 °C durante 5 min, 50 ° C durante 5 seg y 72 °C durante 5 seg durante 80 ciclos. Se agregaron 16 ml de agua y 3 mg de la resina limpia Clean Resin (Sequenom) a los productos de extensión para una limpieza final. Las mezclas se mezclaron en un rotador durante 20 a 30 min, seguido de una etapa de centrifugación a 361 g durante 5 min. Se dispensaron de quince a 25 nL de los productos finales en un SpectroCHIP (Sequenom) mediante un
- 40 nanodispensador MassARRAY Nanodispenser S (Sequenom). La adquisición de datos del SpectroCHIP se realizó en el espectrómetro de masas compacto MassARRAY Analyzer (Sequenom). Los datos de masas se importaron al software MassARRAY Typer (Sequenom) para su análisis.

Las muestras de un 50 % de ADN placentario/materno, cinco euploides y cinco T21, se analizaron con el ensayo dúplex de RCD. Para cada muestra, se contó el número de pocillos informativos del ensayo individual, que comprenden los positivos para los marcadores solo de cr21 o de cr1 o de cr18. Se calculó separadamente para cada ensayo de RCD, la proporción del marcador de cr21 entre todos los pocillos informativos (Pr). A continuación, se aplicó la prueba de la proporción de probabilidades secuencial (SPRT) para determinar si la Pr indicó una muestra euploide o T21. De este modo, se redujo el número de pocillos necesarios dado que cada placa se contó dos veces.

50

El ensayo cr21/cr1 normalmente se aplicó primero. Si la muestra permaneció sin clasificar, a continuación, los valores del ensayo cr21/cr18 se añadirían para cálculos adicionales. Se utilizaron paneles extra para muestras que permanecieron sin clasificar hasta que se pudiera tomar una decisión. Como se muestra en la Fig. 21, todas las muestras de mezcla de un 50 % de euploides se clasificaron correctamente utilizando una única placa de 384 pocillos.

- 55 Varios casos de T21 requirieron 2 o más placas para una clasificación correcta. Si solo se utilizara un ensayo, se necesitaría un mayor número de placas para lograr el número de pocillos informativos requeridos cuando se alcanzó la clasificación. Por ejemplo, los datos para el caso N0230 fueron inclasificables cuando se usó individualmente cualquiera de los ensayos RCD. Sin embargo, se logró una clasificación correcta cuando se combinaron los datos de los dos ensayos. Si no se utilizaran los ensayos dúplex de RCD, se necesitarían placas de análisis adicionales. Los
- 60 presentes inventores esperarían una reducción adicional del número de pocillos con un nivel más elevado de multiplexación de los ensayos.

En otro ejemplo, los presentes inventores desarrollaron un ensayo 4-plex dirigido a 4 amplicones diferentes en el cromosoma 21 y sus correspondientes parejas parálogas situadas en otros autosomas no del cromosoma 21. Este ensayo 4-plex se utilizó en el análisis de RCD digital, seguido de la clasificación de SPRT de muestras de gestaciones de euploides y de trisómicos 21. Se realizaron extracciones de ADN de muestras de placenta utilizando el kit de tejido

QIAamp (Qiagen, Hilden, Alemania).

Todas las muestras de ADN placentario y de capa leucocitaria materna utilizadas en este estudio se cuantificaron primero mediante el espectrofotómetro de NanoDrop (NanoDrop Technology, Wilmington, Delaware). La 5 concentración de ADN se convirtió en equivalentes de genoma (GE)/ml utilizando una conversión de 6,6 pg/célula. La cantidad de ADN correspondiente a aproximadamente un molde por pocillo se determinó diluyendo en serie las muestras de ADN. Bajo tal condición, los presentes investigadores esperaríamos que aproximadamente un 37 % de los pocillos mostraran amplificación negativa. En el análisis de RCD digital multiplexado, se seleccionaron 4 conjuntos de secuencias parálogas diana: los loci parálogos en el cromosoma 21 y 1 se coamplificaron por el cebador directo 5'-ACGTTGGATGTTGATGAAGTCTCATCTCTACTTCG cebador 10 -3' el inverso 5'-V ACGTTGGATGCAATAAGCTTGGCCAGAAATACT -3', dando como resultado un amplicón de 81 pb. Los loci 7 por parálogos en el cromosoma 21 coamplificaron el cebador directo 5'y se ACGTTGGATGGAATTTAAGCTAAATCAGCCTGAACTG-3' cebador 5'inverso У el ACGTTGGATGGTTTCTCATAGTTCATCGTAGGCTTAT-3', dando como resultado un amplicón de 82 pb. Los loci 15 parálogos cromosoma 21 2 se coamplificaron el cebador directo 5'en el v por 5'-ACGTTGGATGTCAGGCAGGGTTCTATGCAG -3' cebador inverso у el ACGTTGGATGAGGCGGCTTCCTGGCTCTTG -3', dando como resultado un amplicón de 101 pb. Los loci parálogos en el cromosoma 21 y 6 se coamplificaron por el cebador directo 5'-ACGTTGGATGGCTCGTCTCAGGCTCGTAGTT -3' y el cebador inverso 5'-ACGTTGGATGTTTCTTCGAGCCCTTCTTGG-3', dando como resultado un amplicón de 20 102 pb. Cada reacción contenía 10X tampón II (Applied Biosystems), MgCl₂ y 100 nM de cada cebador. El volumen total de reacción fue de 5 ml/pocillo. La reacción se inició a 95 °C durante 5 min, seguido de 45 ciclos a 95 °C durante 30 seg, 62 °C durante 30 seg y 72 °C durante 30 seg y una extensión final a 72 °C durante 7 min. Todas las amplificaciones de PCR convencionales se llevaron a cabo en un sistema GeneAmp PCR System 9700 (Applied Biosystems). Los nucleótidos no incorporados se desactivaron mediante tratamiento con fosfatasa alcalina de camarón 25 (SAP). Cada reacción contuvo tampón 10X SAP (Sequenom) y enzima SAP (Sequenom). Se agregaron 2 ml de mezcla SAP a cada PCR. La reacción con SAP se incubó a 37 °C durante 40 min y 85 °C durante 5 min. Tras el tratamiento de SAP, se llevó a cabo la reacción de prolongación del cebador en los productos de PCR utilizando el kit iPLEX Gold (Sequenom). Los desajustes de secuencia parálogos (PSM) en los loci parálogos en los cromosomas 21 y 1 se examinaron por el cebador de extensión 5'-GTCTCATCTCTACTTCGTACCTC-3'. Los PSM en los loci parálogos en 30 los cromosomas 21 y 7 se examinaron por el cebador de extensión 5'-TTTTACGCTGTCCCCATTT-3'. Los PSM en los loci parálogos en los cromosomas 21 y 2 se examinaron por el cebador de extensión 5'-GGTCTATGCAGGAGCCGAC-3'. Los PSM en los loci parálogos en los cromosomas 21 y 6 se examinaron por el cebador de extensión 5'-TGGGCGCGGGAGCGGACTTCGCTGG-3'. Cada reacción contuvo 10X tampón de reacción iPLEX (Sequenom), mezcla de terminación iPLEX (Sequenom), enzima iPLEX (Sequenom) y 343 nM de cada cebador de extensión, excepto para el cebador de extensión para PSM en los cromosomas 21 y 6, que se utilizaron en 1,03 35 mM. Se agregaron 2 ml de mezcla iPLEX a 5 ml de producto de la PCR. La reacción iPLEX se cicló de acuerdo con un programa de 200 ciclos cortos. Brevemente, las muestras se desnaturalizaron primero a 94 °C durante 35 seg, seguido de hibridación a 52 °C durante 5 seg y prolongación a 80 °C durante 5 seg. El ciclo de hibridación y prolongación se repitió cuatro veces más durante un total de cinco ciclos y a continuación, se volvió a un ciclo de 40 desnaturalización a 94 °C durante 5 seg, tras lo cual se volvió a realizar el ciclo cerrado de hibridación y prolongación de 5 ciclos. Los cinco ciclos de hibridación y prolongación con la única etapa de desnaturalización se repitieron 39 veces para un total de 40. Se realizó una prolongación final a 72 °C durante 3 min. Los productos de la reacción iPLEX se diluyeron con 16 ml de agua y se desalaron con 6 mg de resina para cada PCR. La placa de 384 pocillos se centrifugó a 1600 g durante 3 min antes de dispensarla en el SpectroCHIP (Sequenom) y el análisis de MS de espectrometría de masas (Sequenom) de desorción e ionización por láser asistida por matriz-tiempo de vuelo (MALDI-45

TÓF).

El número de pocillos que fueron positivos solo para el cromosoma 21 o solo para el cromosoma de referencia para cada uno de los cuatro ensayos se registró independientemente. Para cada ensayo, se calcularon los números de moléculas corregidos por Poisson para el cromosoma 21 y el cromosoma de referencia. La suma del número corregido por Poisson de moléculas para el cromosoma 21, así como la suma del número corregido por Poisson de cromosomas de referencia de los cuatro ensayos, se calculó y se consideró como los recuentos informativos para el ensayo de 4plex. El valor de la P_r fue el recuento del cromosoma 21 para el ensayo de 4-plex dividido por la suma del cromosoma 21 y los recuentos de cromosomas de referencia para el ensayo 4-plex. Los valores de P_r derivados experimentalmente

55 se sometieron a análisis de SPRT. Se analizarían una o más placas de 384 pocillos hasta que se pudiera clasificar la enfermedad mediante la SPRT. Se analizaron un total de dos mezclas de un 50 % de ADN genómico placentario euploide/50 % de ADN de capa leucocitaria materna y dos mezclas de un 50 % de ADN genómico placentario de trisomía 21/50 % de ADN de capa leucocitaria materna.

- 60 El valor de P_r derivado experimentalmente se compararía con el valor esperado de P_r para probar las hipótesis nula o alternativa. Como alternativa, ninguna de las hipótesis podría aceptarse si la P_r para el número dado de recuentos informativos no ha alcanzado el nivel requerido de confianza estadística para la clasificación de enfermedades. Estos casos se consideraron inclasificables hasta que se disponga de más casos.
- 65 Los resultados y la clasificación de SPRT de cada muestra están tabulados en las Figs. 22A y 22B. Las dos muestras euploides requirieron 2 y 5 análisis de RCD digital multiplexado de 384 pocillos antes de poder alcanzar la clasificación

de SPRT. Los datos de ninguno de los miembros individuales del ensayo 4-plex permitieron la clasificación de enfermedades mediante SPRT. Ambas muestras de trisomía 21 se clasificaron correctamente cada una con solo un análisis RCD digital multiplexado de 384 pocillos. De forma análoga, los datos de ninguno de los miembros individuales del ensayo 4-plex permitieron la clasificación de enfermedades mediante SPRT. Sin embargo, los recuentos

5 compuestos del ensayo 4-plex permitieron una clasificación de SPRT correcta. Estos datos ilustraron que mediante el uso de RCD digital multiplexado, el número efectivo de recuentos informativos aumentó sustancialmente para un número dado de análisis de PCR digital realizados, en comparación con la utilización de un ensayo de RCD digital de un solo plex.

10 VI. UTILIZACIÓN DE DOSIFICACIÓN CROMOSÓMICA RELATIVA EPIGENÉTICA DIGITAL

Los presentes inventores perfilan aquí un enfoque llamado dosificación cromosómica relativa epigenética digital (ERCD digital; del inglés, digital epigenetic relative chromosome dosage) en el que los marcadores epigenéticos muestran un patrón de metilación del ADN específico del feto u otros cambios epigenéticos, en un cromosoma implicado en una aneuploidía cromosómica (por ejemplo, el cromosoma 21 en la trisomía 21) y en un cromosoma de referencia, se someten a análisis de PCR digital. La proporción entre el número de pocillos positivos para el marcador epigenético del cromosoma de referencia en el ADN

plasmático extraído de mujeres gestantes que portan fetos normales nos dará el intervalo de referencia. Se espera que la proporción aumente si el feto tiene trisomía 21. Es obvio para los expertos en la materia que podría utilizarse
 en este análisis más de un marcador del cromosoma 21 y más de un marcador cromosómico de referencia.

Un ejemplo de un gen en el cromosoma 21 que presenta un patrón de metilación específico del feto (placenta) es el gen de la *Holocarboxilasa sintetasa (HLCS)*. La *HLCS* se hipermetila en la placenta, pero está hipometilado en las células sanguíneas maternas; y se cubre en la solicitud de patente de EE.UU. 11/784499. Un ejemplo de un gen en un cromosoma de referencia que muestra un patrón de metilación específico del feto (placenta) es el gen *RASSF1A* en el cromosoma 3 [10]. *RASSF1A* está hipermetilado en la placenta pero está hipometilado en las células sanguíneas de la madre, véase la solicitud de patente de EE.UU. 11/784501.

- En la aplicación de *HLCS* hipermetilado e *RASSF1A* hipermetilado para la detección por PCR digital de la trisomía 21
 en un feto utilizando plasma materno, primero se recoge sangre periférica materna. A continuación, la sangre se somete a centrifugación y se recoge el plasma. A continuación, se extrae el ADN del plasma utilizando técnicas bien conocidas por los expertos en la materia, tales como la utilización de un kit QIAamp Blood (Qiagen). A continuación, el ADN plasmático se somete a digestión utilizando una o más enzimas de restricción sensibles a la metilación, tales como *Hpal*I y *Bst*UI. Esta(s) enzima(s) de restricción sensible(s) a la metilación cortará(n) las versiones maternas no
- 35 metiladas de estos genes, si bien dejan intactas las secuencias hipermetiladas fetales. A continuación, la muestra de ADN de plasma digerida se diluye hasta un punto en que de promedio se detectarán aproximadamente de 0,2 a 1 molécula de las secuencias de HLCS o RASSF1A tratadas por enzimas de restricción pero intactas por pocillo de reacción. Se utilizarán dos sistemas de PCR en tiempo real para amplificar el ADN diluido, uno con dos cebadores y una sonda TaqMan específica para el gen HLCS, que abarca la región que se cortará por la(s) enzima(s) de restricción
- 40 si la secuencia no está metilada; y el otro hacia el gen RASSF1A, de manera similar con dos cebadores y una sonda TaqMan. Respecto al último conjunto cebador/sonda de RASSF1A, se ha descrito un ejemplo por Chan *et al.* 2006, Clin Chem 52, 2211-2218. Las sondas TaqMan hacia las dianas *HLCS* y *RASSF1A* tendrán distintos indicadores fluorescentes, tales como FAM y VIC, respectivamente. A continuación, se utiliza una placa de 384 pocillos para realizar el experimento de PCR digital. El número de pocillos puntuados positivos solo para *HLCS* y aquellos puntuados
- 45 positivos solo para *RASSF1A* se contará y se tomará una proporción de estos recuentos. La proporción *HLCS:RASSF1A* se espera que sea mayor para el plasma materno extraído de una mujer gestante portadora de un feto con trisomía 21, en comparación con una portadora de un feto euploide normal. El grado de sobrerrepresentación dependerá de la concentración promedio del molde de referencia por pocillo en la ejecución de la PCR digital.
- 50 Otros métodos para puntuar estos resultados serán posibles, por ejemplo, el recuento del número de pocillos positivos para *HLCS*, independientemente de la positividad concurrente para *RASSF1A*; y viceversa para *RASSF1A*, independientemente de la positividad concurrente para *HLCS*. Asimismo, en sustitución del cálculo de la proporción, el número total o la diferencia en los recuentos de *HLCS* y *RASSF1A*podría utilizarse para indicar el estado de trisomía 21 de un feto.

55

15

Aparte de realizar la PCR digital en placas, también será obvio para los expertos en la materia que se pueden utilizar otras variantes de PCR digital, por ejemplo, chips de microfluidos, sistemas de microplacas de PCR de nanolitros, PCR en emulsión, PCR de polonia y amplificación de círculo rodante, extensión del cebador y espectrometría de masas, etc. Estas variantes de PCR digital se nombran a modo de ejemplos y no como limitaciones.

60

Aparte de la PCR en tiempo real, también resultará obvio para los expertos en la materia que se pueden utilizar métodos tales como la espectrometría de masas para puntuar los resultados de la PCR digital.

Aparte de utilizar enzimas de restricción sensibles a la metilación para diferenciar las versiones fetal y materna de *HLCS* y *RASSF1A*, será obvio para los expertos en la materia que serían aplicables también otros métodos para determinar el estado de metilación, por ejemplo, la modificación con bisulfito, PCR específica de metilación, inmunoprecipitación utilizando un anticuerpo frente a la citosina metilada, espectrometría de masas, etc.

Será obvio también para los expertos en la materia que el enfoque ilustrado en este ejemplo y otros ejemplos en esta solicitud de patente se puede utilizar en los otros fluidos corporales en los que se puede encontrar ADN fetal,

5 incluyendo orina materna, líquido amniótico, lavados transcervicales, vellosidades coriónicas, saliva materna, etc.

SECUENCIACIÓN GENÓMICA PARALELA MASIVA UTILIZANDO PCR EN EMULSIÓN Y OTRAS VII **ESTRATEGIAS**

- Los presentes inventores describirán aquí otro ejemplo por el cual una lectura digital de moléculas de ácido nucleico 10 se puede utilizar para la detección de aneuploidías cromosómicas fetales, por ejemplo, trisomía 21, en el plasma materno. La aneuploidía cromosómica fetal es el resultado de (una) dosis anormal(es) de un cromosoma o región cromosómica. Es deseable que las pruebas no invasivas tengan una elevada sensibilidad y especificidad para minimizar los diagnósticos falsos. Sin embargo, el ADN fetal está presente en una concentración absoluta baja y
- 15 representa una porción menor de todas las secuencias de ADN en el plasma y suero maternos. Por tanto, el número de muestras de PCR digital dirigidas a loci de genes específicos no se puede aumentar infinitamente dentro del mismo espécimen biológico. Por tanto, el análisis de múltiples conjuntos de loci diana específicos se puede utilizar para aumentar la cantidad de datos que podrían obtenerse de un espécimen sin aumentar el número de muestreos de PCR digital realizados.
- 20

Por consiguiente, las realizaciones permiten la detección no invasiva de aneuploidía cromosómica fetal maximizando la cantidad de información genética que se podría inferir de la cantidad limitada de ácidos nucleicos fetales que existen como una población menor en una muestra biológica que contiene ácidos nucleicos maternos de fondo. En un aspecto, la cantidad de información genética obtenida es suficiente para un diagnóstico exacto, pero no demasiado excesiva

25 para contener los costes y el aporte de muestra biológica requerida.

La secuenciación paralela masiva, tal como la alcanzable en la plataforma 454 (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), analizador genómico Illumina Genome Analyzer (o plataforma Solexa) o el sistema SOLiD System (Applied Biosystems) o la tecnología de secuenciación de ADN de una sola molécula verdadera de Helicos

- 30 True Single Molecule DNA sequencing technology (Harris TD et al. 2008 Science, 320, 106-109), la molécula individual, la tecnología en tiempo real (SMRT[™]) de Pacific Biosciences y la secuenciación de nanoporos (Soni GV y Meller A. 2007 Clin Chem 53: 1996-2001), permiten la secuenciación de muchas moléculas de ácido nucleico aisladas de un espécimen en órdenes elevados de multiplexación de forma paralela (Dear Brief Funct Genomic Proteomic 2003; 1: 397-416). Cada una de estas plataformas secuencia moléculas individuales expandidas clonalmente o incluso 35 no amplificadas de fragmentos de ácido nucleico.

A medida que se genera un gran número de lecturas de secuenciación, del orden de cientos de miles a millones o incluso posiblemente cientos de millones o miles de millones, a partir de cada muestra en cada ejecución, las lecturas secuenciadas resultantes forman un perfil representativo de la mezcla de especies de ácidos nucleicos en el 40 espécimen original. Por ejemplo, los perfiles de haplotipo, trascriptoma y metilación de las lecturas secuenciadas se asemejan a los del espécimen original (Brenner et al. Nat Biotech 2000; 18: 630-634; Taylor et al. Cancer Res 2007; 67: 8511-8518). Debido a la gran cantidad de muestras de secuencias de cada espécimen, el número de secuencias idénticas, tal como las generadas a partir de la secuenciación de un conjunto de ácidos nucleicos en varios dobleces de cobertura o elevada redundancia, también es una buena representación cuantitativa del recuento de una

45 determinada especie de ácido nucleico o locus en la muestra original.

En una realización, la secuenciación aleatoria se realiza sobre fragmentos de ADN que están presentes en el plasma de una mujer gestante y se obtienen secuencias genómicas que originalmente habrían provenido del feto o de la madre. La secuenciación aleatoria implica muestrear (secuenciar) una porción aleatoria de las moléculas de ácido

- 50 nucleico presentes en la muestra biológica. Como la secuenciación es aleatoria, en cada análisis se puede secuenciar un subconjunto (fracción) diferente de las moléculas de ácido nucleico (y por tanto el genoma). Las realizaciones funcionarán incluso cuando este subconjunto varíe de una muestra a otra y de un análisis a otro, lo que puede ocurrir incluso utilizando la misma muestra. Los ejemplos de la fracción son aproximadamente un 0,1 %, 0,5 % o 1 % del genoma. En otras realizaciones, la fracción es al menos cualquiera de estos valores.
- 55

60

A continuación, puede utilizarse un procedimiento bioinformático para localizar cada una de estas secuencias de ADN en el genoma humano. Es posible que una proporción de tales secuencias se descarte del análisis posterior porque están presentes en las regiones repetidas del genoma humano o en regiones sujetas a variaciones interindividuales, por ejemplo, variación del número de copias. se puede determinar una cantidad del cromosoma de interés y de otro u otros cromosomas.

En una realización, un parámetro (por ejemplo, una representación fraccionada) de un cromosoma potencialmente implicado en una aneuploidía cromosómica, por ejemplo, el cromosoma 21 o el cromosoma 18 o el cromosoma 13, se puede calcular a partir de los resultados del procedimiento bioinformático. La representación fraccionaria se puede obtener basándose en una cantidad de todas las secuencias (por ejemplo, alguna medida de todos los cromosomas)

65 o un subconjunto particular de cromosomas (por ejemplo, solo un cromosoma respecto al que se está analizando) A continuación, esta representación fraccionaria se compara con un intervalo de referencia establecido en gestaciones que implican fetos normales (es decir, euploides). Es posible que en algunas variantes del procedimiento, el intervalo de referencia se ajustaría de acuerdo con la concentración fraccionaria de ADN fetal (f) en una muestra de plasma

- 5 materna particular. El valor de f puede determinarse a partir del conjunto de datos de secuenciación, por ejemplo, utilizando secuencias asignables al cromosoma Y si el feto es varón. El valor de f se puede determinar también en un análisis por separado, por ejemplo, utilizando marcadores epigenéticos fetales (Chan KCA et al. 2006 Clin Chem 52, 2211-8) o a partir del análisis de polimorfismos de un solo nucleótido.
- 10 En un aspecto, incluso cuando un grupo de ácidos nucleicos en un espécimen se secuencia con una cobertura genómica <100 % y entre la proporción de moléculas de ácido nucleico capturadas, la mayoría de cada especie de ácido nucleico solo se secuencia una vez, el desequilibrio de dosis de un locus de gen en particular o del cromosoma también se pueden determinar cuantitativamente. En otras palabras, el desequilibrio de dosis del locus génico o de cromosoma se infiere a partir de la representación porcentual de dicho locus entre todas las etiquetas secuenciadas 15
- cartografiables del espécimen.

20

En un aspecto para el enfoque de secuenciación genómica paralela masiva, se pueden generar datos representativos de todos los cromosomas al mismo tiempo. El origen de un fragmento en particular no se selecciona con anticipación. La secuenciación se realiza al azar y a continuación, se puede realizar una búsqueda de base de datos para ver de dónde proviene un fragmento en particular. Esto contrasta con las situaciones en las que se amplifica un fragmento específico del cromosoma 21 y otro del cromosoma 1.

En un ejemplo, una proporción de tales secuencias procedería del cromosoma implicado en una aneuploidía tal como el cromosoma 21 en este ejemplo ilustrativo. Otras secuencias de tal ejercicio de secuenciación todavía se derivarían 25 de los otros cromosomas. Teniendo en cuenta el tamaño relativo del cromosoma 21 en comparación con los otros cromosomas, se podría obtener una frecuencia normalizada, dentro de un intervalo de referencia, de secuencias específicas del cromosoma 21 a partir de tal ejercicio de secuenciación. Si el feto tiene trisomía 21, la frecuencia normalizada de secuencias derivadas del cromosoma 21 de dicho ejercicio de secuenciación aumentará, permitiendo por tanto la detección de trisomía 21. El grado de cambio en la frecuencia normalizada dependerá de la concentración fraccionaria de ácidos nucleicos fetales en la muestra analizada.

30

En una realización, los presentes investigadores utilizaron el analizador de genoma Illumina para la secuenciación de un solo extremo de ADN genómico humano y muestras de ADN de plasma humano. El analizador de genoma de Illumina secuencia las moléculas de ADN individuales expandidas clonalmente capturadas en una superficie sólida

- 35 denominada celda de flujo. Cada celda de flujo tiene 8 carriles para la secuenciación de 8 especímenes individuales o grupos de especímenes. Cada carril es capaz de generar ~200Mb de secuencia, que es solo una fracción de los 3 mil millones de pares de bases de secuencias en el genoma humano. Cada muestra de ADN genómico o de ADN plasmático se secuenció utilizando un carril de una celda de flujo. Las etiquetas de secuencia corta generadas se alinearon con el genoma humano de referencia y se anotó el origen cromosómico. Se tabuló el número total de
- 40 etiquetas secuenciadas individuales alineadas con cada cromosoma y se comparó con el tamaño relativo de cada cromosoma como se esperaba a partir del genoma humano de referencia o de los especímenes no representativos de la enfermedad. A continuación, se identificaron las ganancias o pérdidas de cromosomas.
- El enfoque descrito es sólo una ejemplificación de la estrategia de dosificación de genes/cromosomas actualmente 45 descrita. Como alternativa, se podría realizar una secuenciación de extremos emparejados. En lugar de comparar la longitud de los fragmentos secuenciados respecto a la esperada en el genoma de referencia como describen Campbell et al. (Nat Genet 2008; 40: 722-729), se contó y clasificó el número de etiquetas secuenciadas alineadas de acuerdo con la ubicación cromosómica. Las ganancias o pérdidas de regiones cromosómicas o cromosomas completos se determinaron comparando el recuento de etiquetas con el tamaño de cromosoma esperado en el genoma de referencia 50 o el de un espécimen no representativo de la enfermedad
- En otra realización, la fracción del conjunto de ácidos nucleicos que se secuencia en una ejecución se subselecciona adicionalmente antes de secuenciar. Por ejemplo, las técnicas basadas en hibridación, tal como la matriz de oligonucleótidos, se podrían utilizar para subseleccionar primero las secuencias de ácido nucleico de ciertos cromosomas, por ejemplo, un cromosoma potencialmente aneuploide y otro(s) cromosoma(s) no implicado(s) en la
- 55 aneuploidía analizada. Otro ejemplo es que se subselecciona o se enriquece antes de la secuenciación una determinada subpoblación de secuencias de ácido nucleico del conjunto de muestras. Por ejemplo, se ha informado de que las moléculas de ADN fetal en el plasma materno están compuestas por fragmentos más cortos que las moléculas de ADN de fondo materno (Chan et al. Clin Chem 2004; 50: 88-92). Por tanto, se pueden utilizar uno o más métodos conocidos por los expertos en la materia para fraccionar las secuencias de ácido nucleico en la muestra de
- acuerdo con el tamaño de la molécula, por ejemplo, por electroforesis en gel o por columnas de exclusión por tamaño 60 o mediante un enfoque basado en microfluidos. Sin embargo, como alternativa, en el ejemplo del análisis de ADN fetal libre de células en el plasma materno, la porción de ácido nucleico fetal se podría enriquecer mediante un método que suprima el fondo materno, como mediante la adición de formaldehído (Dhallan et al. JAMA 2004; 291: 1114-9).
- 65 Otras estrategias de secuenciación de una molécula individual tal como la de la plataforma Roche 454, la plataforma SOLID de Applied Biosystems, la tecnología de secuenciación de ADN Helicos True Single Molecule, la molécula

individual, la tecnología en tiempo real (SMRT™) de Pacific Biosciences y la secuenciación de nanoporos podría utilizarse de manera similar en esta aplicación.

La determinación de la concentración fraccionaria de ADN fetal en el plasma materno también se puede realizar por 5 separado de la ejecución de la secuenciación. Por ejemplo, la concentración de ADN del cromosoma Y podría predeterminarse utilizando PCR en tiempo real, PCR de microfluidos o espectrometría de masas. De hecho, la concentración de ADN fetal podría determinarse utilizando loci distintos del cromosoma Y y podría ser aplicable a fetos femeninos. Por ejemplo, Chan et al. demostraron que las secuencias de RASSF1A metiladas derivadas de origen fetal se detectarían en el plasma de mujeres gestantes en el fondo de secuencias de RASSF1A no metiladas derivadas

maternalmente (Chan et al., Clin Chem 2006;52:2211-8). La concentración de ADN fetal fraccionario se puede 10 determinar por tanto dividiendo la cantidad de secuencias de RASSF1A metiladas por la cantidad total de secuencias de RASSF1A (metiladas y no metiladas).

Se espera que se prefiera el plasma materno al suero materno para la práctica de la invención de los presentes 15 investigadores, porque el ADN se libera de las células sanguíneas de la madre durante la coagulación de la sangre. Por tanto, si se utiliza el suero, se espera que la concentración fraccionaria de ADN fetal sea menor en el plasma materno que en el suero materno. En otras palabras, si se utiliza suero materno, se espera que fuera necesario generar más secuencias para diagnosticar la aneuploidía cromosómica fetal, en comparación con una muestra de plasma obtenida de la misma mujer gestante al mismo tiempo.

20

Todavía otra forma alternativa de determinar la concentración fraccionaria de ADN fetal sería a través de la cuantificación de diferencias polimórficas entre las mujeres gestantes y el feto (Dhallan R, et al. 2007 Lancet, 369, 474-481). Un ejemplo de este método sería dirigirse a sitios polimórficos en los que la mujer gestante es homocigótica y el feto es heterocigótico. La cantidad de alelo específico del feto se puede comparar con la cantidad del alelo común para determinar la concentración fraccionaria de ADN fetal.

25

A diferencia de las técnicas existentes para detectar anomalías cromosómicas, incluida la hibridación genómica comparativa, hibridación genómica comparativa de micromatrices, la reacción en cadena de la polimerasa cuantitativa en tiempo real, que detectan y cuantifican una o más secuencias específicas, la secuenciación paralela masiva no

30 depende de la detección o análisis de un conjunto predeterminado o predefinido de secuencias de ADN. Se secuencia una fracción aleatoria representativa de moléculas de ADN del grupo de especímenes. El número de etiquetas de secuencia diferentes alineadas con varias regiones cromosómicas se compara entre muestras que contienen o no ADN tumoral. Las anomalías cromosómicas se revelarían por las diferencias en el número (o porcentaje) de secuencias alineadas con cualquier región cromosómica dada en los especímenes.

35

En otro ejemplo, la técnica de secuenciación en ADN libre de células de plasma puede utilizarse para detectar las anomalías cromosómicas en el ADN plasmático para la detección de un cáncer específico. Los diferentes cánceres tienen un conjunto de anomalías cromosómicas típicas. Pueden utilizarse cambios (amplificaciones y deleciones) en múltiples regiones cromosómicas. Por tanto, habría una proporción aumentada de secuencias alineadas respecto a

- 40 las regiones amplificadas y una proporción disminuida de secuencias alineadas respecto a las regiones disminuidas. La representación porcentual por cromosoma podría compararse con el tamaño de cada cromosoma correspondiente en un genoma de referencia expresado como el porcentaje de representación genómica de cualquier cromosoma dado con respecto al genoma completo. Se pueden utilizar también comparaciones directas o comparaciones con un cromosoma de referencia.
- 45

65

VIII. DETECCIÓN DE MUTACIONES

El ADN fetal en el plasma materno existe como una población menor, con un promedio de un 3 % a un 6 % del ADN del plasma materno aportado por el feto. Debido a esta razón, la mayor parte del trabajo previo en la materia se ha 50 centrado en la detección de dianas de ADN que el feto ha heredado del padre y que son distinguibles de la mayoría del ADN materno de fondo en el plasma materno. Entre los ejemplos de tales dianas detectadas previamente se incluyen el gen SRY en el cromosoma Y (Lo YMD et al. 1998 Am JHum Genet, 62, 768-775) y el gen RHD cuando la madre es RhD negativa (Lo YMD et al. 1998 N Engl J Med, 339, 1734-1738.

- 55 Para la detección de mutaciones fetales, las estrategias previas que utilizan plasma materno se limitan a condiciones autosómicas dominantes en las que el padre es un portador, la exclusión de enfermedades autosómicas recesivas mediante la detección de mutaciones directa cuando el padre y la madre portan mutaciones diferentes o mediante análisis de enlace (Ding C et al. 2004 Proc Natl Acad Sci USA 101, 10762-10767). Estas estrategias anteriores tienen limitaciones considerables. Por ejemplo, para una pareja en donde tanto el hombre como la mujer de la pareja portan
- la misma mutación, a continuación, sería imposible llevar a cabo un diagnóstico prenatal significativo mediante la 60 detección directa de la mutación en el plasma materno.

Tal escenario se ilustra en la Fig. 23. En este escenario, habrá tres genotipos fetales posibles, NN, NM y MM, donde N representa el alelo normal y M representa el alelo mutante. Entre los ejemplos de alelos mutantes se incluyen aquellos que causan fibrosis quística, beta-talasemia, alfa-talasemia, anemia de células falciformes, atrofia muscular espinal, hiperplasia suprarrenal congénita, etc. Se pueden encontrar otros ejemplos de estos trastornos en la herencia

mendeliana en el hombre en línea (OMIM; del inglés, Online Mendelian Inheritance in Man) www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM&itool=toolbar. En el plasma materno, la mayor parte del ADN vendrá de la madre y sería NM. Para cualquiera de los tres genotipos fetales, no habrá ningún alelo fetal único que permita su detección única en el plasma materno. Por tanto, la estrategia convencional no se puede aplicar aquí.

5

Las realizaciones descritas en el presente documento permiten manejar tales escenarios. En el escenario donde la madre y el feto son ambos NM, a continuación el alelo N y el alelo M estarán en equilibrio alélico. Sin embargo, si la madre es NM y el feto es NN, a continuación, habrá un desequilibrio alélico en el plasma materno, con el alelo N estando sobrerrepresentado. Por otro lado, si la madre es NM y el feto es MM, a continuación, habrá un desequilibrio alélico en el plasma materno, con el alelo N estando sobrerrepresentado. Por otro lado, si la madre es NM y el feto es MM, a continuación, habrá un desequilibrio en el plasma materno, con el alelo N estando sobrerrepresentado. Por otro lado, si la madre es concentrato per estando de mutaciones estando sobrerrepresentado.

- 10 alélico en el plasma materno, con el alelo M estando sobrerrepresentado. Por tanto, para la detección de mutaciones fetales, la hipótesis nula se refiere a la ausencia de desequilibrio alélico cuando el feto es del genotipo NM. La hipótesis alternativa se refiere a la presencia de desequilibrio alélico y el genotipo fetal podría ser NN o MM dependiendo de si el alelo N o M está sobrerrepresentado.
- 15 La presencia o ausencia de desequilibrio alélico se puede determinar mediante PCR digital utilizando las realizaciones descritas en el presente documento. En un primer escenario, un volumen particular de plasma materno contiene el ADN liberado de 100 células, de las cuales 50 son de la madre y 50 son del feto. Por tanto, la concentración fraccionaria de ADN fetal en este volumen de plasma es de un 50 %. Cuando la madre es del genotipo NM, a continuación, habrá 50 alelos N y 50 alelos M aportados por la madre. Si el feto es del genotipo NM, a continuación, habrá 50 alelos N y
- 50 alelos M aportados por el feto. Por tanto, no habrá desequilibrio alélico entre el alelo N y el alelo M, un total de 100 copias cada uno. Por otro lado, Si el feto es del genotipo NN, habrá 100 alelos N derivados del feto en este volumen de plasma. Por tanto, habrá un total de 150 alelos N por 50 alelos M. En otras palabras, habrá un desequilibrio alélico entre N y M, con N estando sobrerrepresentado en una proporción de 3:1 respecto a M.
- En la situación inversa, si el feto es del genotipo MM, a continuación, habrá 100 alelos M derivados del feto en este volumen de plasma. Por tanto, habrá un total de 150 alelos M por 50 alelos N. En otras palabras, habrá un desequilibrio alélico entre N y M, estando M sobrerrepresentado en una proporción de 3:1 respecto a N. Tal desequilibrio alélico puede medirse mediante PCR digital. El alelo con el número menor de pocillos positivos se considera como el molde de referencia. Igual que los análisis de ARN-SNP digital y RCD digital, la distribución real de los alelos en el
- 30 experimento de PCR digital estaría gobernada por la función de densidad de probabilidad de Poisson. Por tanto, si bien el grado teórico de desequilibrio alélico en el escenario presente es 3:1, el grado esperado de desequilibrio alélico dependería de la concentración molde promedio por pocillo durante el análisis de PCR digital. Por tanto, los límites de interpretación, tal como para el análisis de SPRT, adecuados para la concentración del molde de referencia promedio por pocillo (m_r) deberían utilizarse para la clasificación de casos.
- 35

55

Asimismo, el grado de desequilibrio alélico que necesita medirse depende de la concentración de ADN fetal fraccionaria. En contraste con el ejemplo anterior, se puede considerar un volumen particular de plasma materno que contiene el ADN liberado de 100 células, de las cuales 90 son de la madre y 10 son del feto. Por tanto, la concentración fraccionaria de ADN fetal en este volumen de plasma es de un 10 %. Cuando la madre es del genotipo NM, a

- 40 continuación, habrá 90 alelos N y 90 alelos M aportados por la madre. Si el feto es del genotipo NM, a continuación, habrá 10 alelos N y 10 alelos M aportados por el feto. Por tanto, no habrá desequilibrio alélico entre el alelo N y el alelo M, un total de 100 copias cada uno. Por otro lado, Si el feto es del genotipo NN, habrá 20 alelos N derivados del feto en este volumen de plasma. Por tanto, habrá un total de 110 alelos N por 90 alelos M.
- En otras palabras, habrá un desequilibrio alélico entre N y M, con N estando sobrerrepresentado. En la situación inversa, si el feto es del genotipo MM, a continuación, habrá 20 alelos M derivados del feto en este volumen de plasma. Por tanto, habrá 110 alelos M por 90 alelos N. En otras palabras, habrá un desequilibrio alélico entre N y M, con M estando sobrerrepresentado. El grado teórico de desequilibrio alélico cuando la concentración fraccionaria de ADN fetal es de un 10 % sería de 110:90, que es diferente a la proporción 3:1 cuando hay un 50 % de ADN fetal como se muestra en el ejemplo anterior. Por tanto, los límites de interpretación, tal como para el análisis de SPRT, adecuados
- 50 muestra en el ejemplo anterior. Por tanto, los límites de interpretación, tal como para el analisis de SPRT, adecuados para la concentración de ADN fetal fraccionaria deberían utilizarse para la clasificación de casos.

Por tanto, se extraerá el ADN plasmático. La cantidad de ADN materno y fetal en la muestra de plasma se cuantificará, por ejemplo, mediante los ensayos de PCR en tiempo real previamente establecidos (Lo, *et al.* 1998 Am J Hum Genet 62, 768-775) u otros tipos de cuantificadores bien conocidos por los expertos en la materia, por ejemplo, marcadores SNP (Dhallan R *et al.* 2007 Lancet, 369, 474-481) y marcadores epigenéticos fetales (Chan KCA *et al.* 2006 Clin Chem,

- 52, 2211-2218). Se calculará el porcentaje de ADN fetal. A continuación, la muestra de ADN plasmática cuantificada se prepara (por ejemplo, diluida o concentrada) de manera que durante el análisis de PCR digital, cada pocillo de reacción contendrá un promedio de una molécula molde (puede ser el alelo N o M). El análisis de PCR digital se llevará a cabo utilizando un par de cebadores, más dos sondas TaqMan, una específica para el alelo N, si bien la otra es
- 60 a cabo utilizando un par de cebadores, más dos sondas TaqMan, una específica para el alelo N, si bien la otra es específica para el alelo M. Se contará el número de pocillos que son positivos solo para M y el número de pocillos que son positivos solo para N. La proporción de estos pocillos se utilizará para determinar si hay evidencia de desequilibrio alélico. La evidencia estadística del desequilibrio alélico puede buscarse mediante métodos bien conocidos por los expertos en la materia, tales como el uso de SPRT. En una variante de este análisis, también es posible contar el
- 65 número de pocillos que son positivos para M solamente o para M y N; así como contar el número de pocillos que son positivos solo para N o para M y N; y derivar una proporción de estos recuentos. Una vez más, la evidencia estadística

del desequilibrio alélico puede buscarse mediante métodos bien conocidos por los expertos en la materia, tales como el uso de SPRT.

- La determinación de la dosis de la mutación genética fetal, denominada dosis de mutante relativo (RMD; del inglés, relative mutant dosage) digital, se validó utilizando mezclas de ADN femenino/masculino (XX/XY). El ADN de células sanguíneas de un hombre y una mujer se mezcló cada uno con ADN masculino, produciendo muestras con genotipos XX o XY en un fondo de XY a concentraciones fraccionarias de un 25 % y un 50 %, respectivamente, como se muestra en la Fig. 24A.
- 10 Además, también se obtuvieron muestras de células sanguíneas de 12 hombres y 12 mujeres. El ADN de células sanguíneas femeninas (genotipo XX) se mezcló cada uno con un exceso de 3 veces el ADN de células sanguíneas masculinas (genotipo XY), por tanto, produciendo 12 mezclas de ADN con un 25 % de ADN con el genotipo XX en un fondo de un 75 % de ADN con genotipo XY, con los resultados mostrados en la Fig. 24B.
- Un objetivo del análisis SPRT fue determinar el genotipo menor presente en el ADN de fondo. En mezclas de ADN con un 25 % de ADN XX en un fondo de un 75 % de ADN XY, el alelo menor sería el Y derivado del 75 % de ADN. Dado que el 25 % del ADN en la muestra era de genotipo XX, si hubiera un total de 200 moléculas de ADN en la muestra, a continuación, 150 moléculas se habrían originado a partir del individuo XY. Por tanto, se esperaría que el número de alelos Y fuera 75. El número de alelos X aportados por la proporción masculina de ADN (genotipo XY)
- 20 también es 75. El número de alelos X aportados por la hembra (genotipo XX) es 50 (2 veces 25). Por tanto, la proporción de X respecto a Y es 125/75 = (1 +25 %)/(1-25 %) = 5/3.

Para la segunda parte de este estudio, se obtuvieron muestras de células sanguíneas de sujetos masculinos y femeninos que portaban mutaciones HbE (G → A) y CD41/42 (CTTT/-) en el gen *beta-globina*, es decir, el gen *hemoglobina beta (HBB)*. Para imitar las muestras de plasma materno obtenidas de madres heterocigóticas (MN, donde M = mutante y N = tipo salvaje) que portan fetos masculinos con todos los genotipos posibles (MM, MN o NN), el ADN de células sanguíneas de hombres que eran homocigóticos para los alelos de tipo silvestre (NN) o heterocigótico (MN) para una de las dos mutaciones, se mezcló cada uno con una muestra de ADN de células sanguíneas obtenida de hembras heterocigóticas para la misma mutación (MN). Por tanto, se produjeron mezclas de ADN a diversas concentraciones fraccionarias de ADN masculino/mutante. También se utilizó una muestra de ADN

- de células sanguíneas de un homocigótico femenino para la deleción CD41/42 (MM) para preparar las mezclas de ADN. Para asegurar una proporción masculina exacta para la clasificación de SPRT, la concentración fraccionaria de ADN masculino de cada mezcla de ADN se determinó utilizando el ensayo ZFY/X.
- 35 El ensayo ZFY/X digital se utilizó para validar el SPRT, así como para determinar la concentración fraccionaria de ADN masculino en las mezclas de ADN. La dosis de secuencias de proteínas de Zinc Finger en el cromosoma X (ZFX) y Y (ZFY) se determinó mediante análisis de PCR digital. Un amplicón de 87 pb de los loci ZFX y ZFY se coamplificó primero mediante el cebador directo 5'-CAAGTGCTGGACTCAGATGTAACTG-3' y el cebador inverso 5'-TGAAGTAATGTCAGAAGCTAAAACATCA-3'. Se diseñaron dos sondas TaqMan específicas de cromosomas para distinguir los parálogos del cromosoma X e Y y sus secuencias fueron 5'-(VIC)TCTTTAGCACATTGCA(MGBNFQ)-3'
- y 5'-(FAM)TCTTTACCACACTGCAC(MGBNFQ)-3', respectivamente.

La dosis de mutante en las mezclas de ADN se determinó mediante análisis de PCR digital del alelo normal respecto al alelo mutante. Para la mutación HbE, un amplicón de 87 pb de los alelos normal y mutante se coamplificó primero 45 5'-GGGCAAGGTGAACGTGGAT cebador directo -3' cebador 5'el el inverso con У CTATTGGTCTCCTTAAACCTGTCTTGTAA -3'. Se diseñaron dos sondas TagMan específicas de alelo para distinguir entre los alelos normal (G) y mutante (A) y sus secuencias fueron 5 '- (VIC)TTGGTGGTGAGGCC(MGBNFQ)-3' y 5'-(FAM)TTGGTGGTAAGGCC (MGBNFQ)-3', respectivamente. Los resultados de la mutación de HbE se muestran en

50

55

la Fig. 25.

Para la mutación por deleción CD41/42, un amplicón de 87 y 83 pb de los alelos normal y mutante se coamplificó primero con el cebador directo 5'-TTTTCCCACCCTTAGGCTGC-3' y el cebador inverso 5'-ACAGCATCAGGAGTGGACAGATC-3', respectivamente. Se diseñaron dos sondas TaqMan específicas de alelo para distinguir entre los alelos normal (sin deleción) y mutante (con deleción) y sus secuencias fueron 5 '-(VIC) CAGAGGTTCTTTGAGTCCT(MGBNFQ)-3' y 5'-(FAM) AGAGGTTGAGTCCTT(MGBNFQ)-3', respectivamente. Los resultados de la mutación de HbE se muestran en las Figs. 26A y 26B.

Estos experimentos se llevaron a cabo en un sistema BioMark™ (Fluidigm) utilizando las matrices digitales 12.765 (Fluidigm). La reacción para un panel se estableció utilizando 2X TaqMan Universal PCR Master Mix en un volumen de reacción de 10 ml. Para los ensayos CD41/42 y ZFY/X, cada reacción contenía un 1X TaqMan Universal PCR Master Mix, 900 nM de cada cebador, 125 nM de cada sonda y 3,5 ml de mezcla de ADN a 1 ng/ml. Para el ensayo de HbE, se agregaron 250 nM y 125 nM de sondas dirigidas a los alelos normal (G) y mutante (A), respectivamente. La mezcla de muestra/ensayo se cargó en la matriz digital mediante un Controlador IFC de NanoFlex ™ (Fluidigm). La reacción se llevó a cabo en el sistema BioMark™ para la detección de señales. La reacción se inició a 50 °C durante

65 2 min, seguido de 95 °C durante 10 min y 50 ciclos de 95 °C durante 15 seg y 57 °C (para ZFY/X y CD41/42) o 56 °C (para HbE) durante 1 min. Se utilizó al menos un panel de reacción para cada caso y los datos se añadieron de paneles

adicionales para las muestras que permanecieron sin clasificar hasta que se pudo tomar una decisión.

También será obvio para los expertos en la materia que la PCR digital se puede realizar utilizando métodos bien conocidos por los expertos en la materia, por ejemplo, chips de microfluidos, sistemas de microplacas de PCR de nanolitros, PCR en emulsión, PCR de polonia, amplificación de círculo rodante, extensión del cebador y espectrometría de masas.

IX. EJEMPLO CON CÁNCER

5

65

- 10 En una forma de realización, la presente invención se puede realizar para clasificar una muestra según la cual la proporción alélica esté sesgada o no, como puede ocurrir en un tumor canceroso. En un aspecto, para cada caso, el número de pocillos con señal positiva solo para el alelo A, solo para el alelo G y ambos alelos se determinó mediante PCR digital. El alelo de referencia se definió como el alelo con el menor número de pocillos positivos. (En el improbable escenario de que ambos alelos tengan el mismo número de pocillos positivos, entonces cualquiera puede usarse como
- 15 alelo de referencia). La concentración media inferida del alelo de referencia por pocillo (mr) se calculó utilizando el número total de pocillos negativos para el alelo de referencia, independientemente de si el otro alelo fue positivo, de acuerdo con la función de densidad de probabilidad de Poisson. Los presentes inventores usaron un ejemplo hipotético para ilustrar el cálculo.
- 20 En una reacción de 96 pocillos, 20 pocillos son positivos para el alelo A, 24 pocillos son positivos para el alelo G y 28 pocillos son positivos para ambos alelos. El alelo A se consideraría como el alelo de referencia porque hay menos pocillos positivos para este alelo. El número de pocillos negativos para el alelo de referencia sería 96 - 20 - 28 = 48. Por lo tanto, mr se puede calcular utilizando la distribución de Poisson y sería -ln (48/96) = 0,693.
- 25 En el contexto de la detección de LOH, la hipótesis nula se refiere a una muestra que se supone que carece de sesgo de proporción alélica causado por la presencia de una deleción de un alelo. Bajo este supuesto, la proporción esperada del número de pocillos positivos para los dos alelos sería 1:1 y, por lo tanto, la proporción esperada de pocillos informativos (pocillos positivos para un solo alelo) que contienen el alelo potencialmente sobrerrepresentado sería 0,5.
- 30 En el contexto de la detección de LOH, la hipótesis alternativa se refiere a una muestra que se supone que tiene una desviación de la proporción alélica causada por la presencia de una deleción de un alelo en el 50% de las células de la muestra. Como la proporción alélica entre el alelo sobrerrepresentado y el alelo de referencia es 2:1, la concentración media del alelo sobrerrepresentado por pocillo se duplicaría que la del alelo de referencia. Sin embargo, el número de pocillos positivos para el alelo sobrerrepresentado no sería simplemente dos veces mayor que el del 35
- alelo de referencia, sino que seguiría la distribución de Poisson.

Un pocillo informativo se define como un pocillo positivo para el alelo A o G, pero no para ambos alelos. El cálculo de la proporción esperada del número de pocillos que contienen los alelos sobrerrepresentados para muestras con desviación de la proporción alélica es el mismo que se muestra en la Tabla 600. En el ejemplo anterior, si la LOH está presente en el 50 % de las células tumorales, la concentración promedio del alelo G por pocillo sería 2 veces 0,693 =

- 40 1,386. Si la LOH está presente en más del 50 % de las células tumorales, entonces la concentración promedio del alelo G por pocillo sería de acuerdo con la fórmula: 1 / [1- (proporción con LOH)] x mr.
- La proporción esperada de pocillos positivos para el alelo G sería 1 e^{-1,386} = 0,75 (es decir, el 75 % o 72 pocillos). 45 Suponiendo que la positividad de un pocillo para el alelo A o G es independiente, 0,5 x 0,75 = 0,375 de los pocillos serían positivos para los alelos A y G. Por lo tanto, 0,5 - 0,375 = 0,125 de los pocillos serían positivos solo para el alelo A y 0,75 - 0,375 = 0,375 de los pocillos serían positivos solo para el alelo G. Por lo tanto, la proporción de pocillos informativos sería 0,125 + 0,375 = 0,5. La proporción esperada de pocillos informativos que portan el alelo G sería 0,375 / 0,5 = 0,75. Este valor esperado para Pr luego se puede utilizar para la construcción de curvas SPRT apropiadas 50 para determinar si en la muestra está presente un sesgo de la relación alélica (es decir, LOH en este contexto).

La proporción real de pocillos informativos que llevan el alelo no de referencia determinado experimentalmente por el análisis de PCR digital (Pr) se utilizó luego para determinar si se aceptaría la hipótesis nula o alternativa, o si sería necesario un análisis adicional con más pocillos. Los límites de decisión para que Pr acepte la hipótesis nula o

- 55 alternativa se calcularon en función de una razón de probabilidad de umbral de 8, ya que se había demostrado que este valor proporcionaba un rendimiento satisfactorio para discriminar muestras con y sin desequilibrio alélico en el contexto de la detección del cáncer (Zhou, W, et al. (2001) Nat Biotechnol 19, 78-81; Zhou et al 2002, citado anteriormente). En el ejemplo anterior, el número de pocillos informativos sería 20 +24 = 44 y el Pr obtenido experimentalmente sería 24/44 = 0,5455. Los límites de decisión serían <0,5879 para aceptar la hipótesis nula y >
- 60 0,6739 para aceptar la hipótesis alternativa. Por lo tanto, la muestra de este ejemplo se clasificaría como NO con sesgo de proporción alélica.

En conclusión, los presentes inventores perfilan un enfoque para detectar el desequilibrio de secuencias en una muestra. En una realización, esta invención puede utilizarse para la detección no invasiva de aneuploidía cromosómica fetal, tal como la trisomía 21, mediante análisis de ácidos nucleicos fetales en plasma materno. Este enfoque también se puede aplicar a otros materiales biológicos que contienen ácidos nucleicos fetales, incluyendo líquido amniótico,

muestras de vellosidades coriónicas, orina materna, muestras endocervicales, saliva materna, etc. Primero, los presentes investigadores demostraron la utilización de esta invención para determinar el desequilibrio alélico de un SNP en ARNm de *PLAC4*, un transcrito expresado por la placenta en el cromosoma 21, en el plasma materno de mujeres portadoras de fetos con trisomía 21. Segundo, los presentes investigadores demostraron que esta invención

- 5 se puede utilizar como un método no basado en polimorfismo, a través del análisis de dosis cromosómica relativa (RCD), para la detección prenatal no invasiva de trisomía 21. Tal enfoque basado en RCD digital implica la evaluación directa de si el número total de copias del cromosoma 21 en una muestra que contiene ADN fetal está sobrerrepresentado con respecto a un cromosoma de referencia. Incluso sin una instrumentación elaborada, el RCD digital permite la detección de trisomía 21 en muestras que contienen un 25 % de ADN fetal. Aplicamos la prueba de
- 10 prueba de la proporción de probabilidades secuencial (SPRT) para interpretar los datos de la PCR digital. Los análisis de simulación por ordenador confirmaron la elevada exactitud del algoritmo de clasificación de enfermedades.

Los presentes inventores perfilaron adicionalmente que el enfoque se puede aplicar a la determinación de otras formas de desequilibrios de secuencias de ácido nucleico más allá de la aneuploidía cromosómica, tal como la detección de mutaciones fetales o la detección de polimorfismos en el plasma materno y ganancias y pérdidas regionales en los genomas de células malignas mediante el análisis de ácidos nucleicos derivados de tumores en plasma.

Cualquiera de los componentes de software o funciones descritos en esta aplicación, se puede implementar como código de software para ejecutarse por un procesador utilizando cualquier lenguaje de ordenador adecuado tal como,
 por ejemplo, Java, C++ o Perl utilizando, por ejemplo, técnicas convencionales u orientadas por objetivos. El código de software puede almacenarse como una serie de instrucciones o comandos en un medio legible por ordenador para almacenamiento y/o transmisión, los medios adecuados incluyen la memoria de acceso aleatorio (RAM), una memoria de solo lectura (ROM), un medio magnético como un disco duro o disquete o un medio óptico tal como un disco

compacto (CD) o un DVD (disco digital versátil), memoria flash y similares. El medio legible por ordenador puede ser cualquier combinación de tales dispositivos de almacenamiento o transmisión.

Tales programas también pueden codificarse y transmitirse utilizando señales portadoras adaptadas para la transmisión a través de redes cableadas, ópticas y/o inalámbricas que se ajusten a una variedad de protocolos, incluyendo Internet. Como tal, se puede crear un medio legible por ordenador según una realización de la presente invención utilizando una señal de datos codificada con tales programas. Los medios legibles por ordenador codificados con el código del programa pueden empaquetarse con un dispositivo compatible o proporcionarse por separado de otros dispositivos (por ejemplo, a través de descarga de Internet). Cualquier medio legible por ordenador puede residir en o dentro de un solo producto de programa de ordenador (por ejemplo, un disco duro o un sistema informático completo) y puede estar presente en o dentro de diferentes productos de programa de ordenador dentro de un sistema
o red. Un sistema informático puede incluir un monitor, una impresora u otra pantalla adecuada para proporcionar a

35 o red. Un sistema informático puede incluir un monitor, una impresora u otra pantalla adecuada para proporcionar un usuario cualquiera de los resultados mencionados en el presente documento.

Un ejemplo de un sistema informático se muestra en la Figura 27. Los subsistemas mostrados en la Fig. 27 están interconectados a través de un bus de sistema 2775. Se muestran subsistemas adicionales tales como una impresora
2774, teclado 2778, disco fijo 2779, monitor 2776, que está acoplado al adaptador de pantalla 2782 y otros. Los dispositivos periféricos y de entrada/salida (E/S), que se acoplan al controlador de I/O 2771, se pueden conectar al sistema informático mediante cualquier número de medios conocidos en la técnica, tal como el puerto serie 2777. Por ejemplo, el puerto serie 2777 o la interfaz externa 2781 se pueden utilizar para conectar el aparato informático a una red de área amplia, tal como Internet, un dispositivo de entrada de ratón o un escáner. La interconexión a través del bus del sistema permite que el procesador central 2773 se comunique con cada subsistema y controle la ejecución de instrucciones desde la memoria del sistema 2772 o el disco fijo 2779, así como el intercambio de información entre

- subsistemas. La memoria del sistema 2772 y/o el disco fijo 2779, así como el intercambio de información entre subsistemas. La memoria del sistema 2772 y/o el disco fijo 2779 pueden incorporar un medio legible por ordenador.
- La descripción anterior de las realizaciones ejemplares de la invención se ha presentado con fines ilustrativos y 50 descriptivos. No pretenden ser exhaustivos ni limitar la invención a la forma precisa descrita y son posibles muchas modificaciones y variaciones a la luz de las enseñanzas anteriores. Las realizaciones se han elegido y descrito para explicar los principios de la invención y sus aplicaciones prácticas para permitir a otros expertos en la materia utilizar la invención en diversas realizaciones y con diversas modificaciones adecuadas para el uso particular contemplado.
- 55 También se divulga lo siguiente:

15

1. Un método para determinar si existe un desequilibrio en la secuencia de ácidos nucleicos dentro de una muestra biológica, comprendiendo el método:

60 recibir datos de una pluralidad de reacciones, donde los datos incluyen:

(1) un primer conjunto de datos cuantitativos que indica una primera cantidad de una secuencia de ácido nucleico clínicamente relevante; y

(2) un segundo conjunto de datos cuantitativos que indica una segunda cantidad de una secuencia de ácido
 nucleico de fondo diferente de la secuencia de ácido nucleico clínicamente relevante; determinar un parámetro de los dos conjuntos de datos;

derivar un primer valor de corte a partir de una concentración promedio de una secuencia de ácido nucleico de referencia en cada una de la pluralidad de reacciones, en donde la secuencia de ácido nucleico de referencia es la secuencia de ácido nucleico clínicamente relevante o la secuencia de ácido nucleico de fondo; comparar el parámetro con el primer valor de corte; y

basándose en la comparación, determinar una clasificación de si existe un desequilibrio en la secuencia de ácidos nucleicos.

2. El método del párrafo 1 en el que el primer conjunto de datos se obtiene de uno o más primeros marcadores que detectan cada uno la presencia de una parte de la secuencia de ácido nucleico clínicamente relevante en una reacción, y en el que el segundo conjunto de datos se obtiene de uno o más segundos marcadores, cada uno de los cuales detecta la presencia de una parte de la secuencia de ácido nucleico de fondo en una reacción.

- 3. El método del párrafo 1, que comprende además determinar la concentración promedio de la secuencia de ácido nucleico de referencia en cada una de la pluralidad de reacciones usando una distribución de probabilidad inversa que tiene una entrada de un valor derivado de los datos para la secuencia de ácido nucleico de referencia.
- 15 4. El método del párrafo 1 en el que la secuencia de ácido nucleico clínicamente relevante es del cromosoma 21 y la secuencia de ácido nucleico de fondo es de un cromosoma distinto del cromosoma 21. 5. El método del párrafo 1 en el que la secuencia de ácido nucleico clínicamente relevante es del cromosoma 18
 - o 13 y la secuencia de ácido nucleico de fondo es de un cromosoma distinto del cromosoma 18 o 13 respectivamente.
- 20 6. El método del párrafo 1 en el que la secuencia de ácido nucleico clínicamente relevante es un alelo de un polimorfismo genético y la secuencia de ácido nucleico de fondo es otro alelo del polimorfismo genético. 7. El método del párrafo 1 en el que la secuencia de ácido nucleico clínicamente relevante es una copia mutada
 - del gen regulador de la conductancia transmembrana de la fibrosis quística (CFTR), el gen de la beta-globina o el gen de la alfa-globina, y la secuencia de ácido nucleico de fondo es de la copia de tipo silvestre del gen correspondiente.

25

5

10

- 8. El método del párrafo 1 en el que la muestra biológica es plasma o suero de una mujer embarazada.
- 9. El método del párrafo 1 en el que una reacción es una reacción de amplificación.
- 10. El método del párrafo 9 en el que una reacción es parte de un proceso de PCR digital.
- 11. El método del párrafo 1 en el que una reacción es una reacción de secuenciación.
- 30 12. El método del párrafo 1 en el que las primeras porciones de la secuencia de ácido nucleico clínicamente relevante y la secuencia de ácido nucleico de fondo son de un primer individuo y las segundas porciones de la secuencia de ácido nucleico clínicamente relevante y la secuencia de ácido nucleico de fondo son de un segundo individuo.
 - 13. El método del párrafo 12 en el que el valor de corte se basa en la medición de una de las primeras porciones o en la medición de una de las segundas porciones.
 - 14. El método del párrafo 1, que comprende además comparar el parámetro con un segundo valor de corte.
 - 15. El método del párrafo 14 en el que las clasificaciones incluyen estado patológico, estado no patológico y no clasificable.
 - 16. El método del párrafo 14 en el que las clasificaciones incluyen homocigotos, heterocigotos y no clasificables.
- 40 17. El método del párrafo 14 en el que el segundo valor de corte se basa en una proporción de la primera cantidad de la secuencia de ácido nucleico clínicamente relevante con respecto a la segunda cantidad de la secuencia de ácido nucleico de fondo en un estado no enfermo.
 - 18. El método del párrafo 1 en el que el parámetro es una proporción de la primera cantidad de la secuencia de ácido nucleico clínicamente relevante con respecto a la segunda cantidad de la secuencia de ácido nucleico de fondo.

19. El método del párrafo 1 en el que el cálculo del primer valor de corte incluye el uso de al menos uno de: prueba secuencial de razón de probabilidad, tasas de falsos descubrimientos, intervalos de confianza y curvas características de operación del receptor.

- 20. El método del párrafo 1 en el que derivar el primer valor de corte incluye:
- 50

60

45

35

determinar una proporción P1 de reacciones informativas que contienen una secuencia de ácido nucleico sobrerrepresentada, que es la secuencia de ácido nucleico de referencia o no de referencia; y calcular el primer valor de corte a partir de la primera proporción P1.

55 21. El método del párrafo 20 en el que la determinación de la proporción P1 comprende:

> determinar una primera probabilidad de una reacción que contenga al menos una de las secuencias de ácido nucleico sobrerrepresentadas;

calcular una segunda probabilidad de que una reacción sea informativa; y

calcular la proporción P1 usando la primera probabilidad y la segunda probabilidad.

22. El método del párrafo 21 en el que la primera probabilidad se determina multiplicando la concentración media de la secuencia de ácido nucleico de referencia por una proporción esperada con respecto a la secuencia de ácido nucleico que no es de referencia.

23. El método del párrafo 21 en el que la primera probabilidad se determina usando la distribución de Poisson que 65 tiene la concentración promedio de la secuencia de ácido nucleico sobrerrepresentada en cada una de la pluralidad
de reacciones como entrada. 24. El método del párrafo 21, que comprende además determinar una tercera probabilidad de una reacción que contiene al menos una de las secuencias de ácido nucleico subrepresentadas, en el que calcular la segunda probabilidad de que la reacción sea informativa incluye asumir que la primera probabilidad y la segunda 5 probabilidad son independientes. 25. Un método para determinar si existe un desequilibrio en la secuencia de ácidos nucleicos dentro de una muestra biológica, comprendiendo el método: recibir datos de una pluralidad de reacciones, donde los datos incluyen: 10 (1) un primer conjunto de datos cuantitativos que indica una primera cantidad de una secuencia de ácido nucleico clínicamente relevante; y (2) un segundo conjunto de datos cuantitativos que indica una segunda cantidad de una secuencia de ácido nucleico de fondo diferente de la secuencia de ácido nucleico clínicamente relevante, donde la secuencia 15 de ácido nucleico clínicamente relevante y la secuencia de ácido nucleico de fondo provienen de un primer tipo de células y de uno o más segundos tipos de células; determinar un parámetro de los dos conjuntos de datos; derivar un primer valor de corte a partir de un primer porcentaje resultante de la medición de una cantidad de 20 una secuencia de ácido nucleico del primer tipo de células en la muestra biológica; comparar el parámetro con el primer valor de corte; y basándose en la comparación, determinar una clasificación de si existe un desequilibrio en la secuencia de ácidos nucleicos. 25 26. El método del párrafo 25 en el que el primer tipo de células es de un primer organismo y los segundos tipos de células son de un segundo organismo. 27. El método del párrafo 25 en el que derivar el primer valor de corte incluye: determinar una primera concentración promedio de una secuencia de ácido nucleico de referencia por reacción, 30 en la que la secuencia de ácido nucleico de referencia es la secuencia de ácido nucleico clínicamente relevante o la secuencia de ácido nucleico de fondo que está subrepresentada; y multiplicar la primera concentración promedio por un factor derivado del primer porcentaje para obtener una segunda concentración promedio de la secuencia de ácido nucleico que no es la secuencia de ácido nucleico de referencia. 35 28. El método del párrafo 27, que comprende además determinar la concentración promedio de la secuencia de ácido nucleico de referencia en cada una de la pluralidad de reacciones usando una distribución de probabilidad inversa que tiene una entrada de un valor derivado de los datos para la secuencia de ácido nucleico de referencia. 29. El método del párrafo 28 en el que la distribución de probabilidad es la distribución de Poisson. 40 30. El método del párrafo 25 en el que el porcentaje se mide determinando una cantidad de un marcador específico fetal mediante PCR cuantitativa en tiempo real, PCR digital, PCR competitiva semicuantitativa, PCR competitiva real o espectrometría de masas. 31. Un producto de programa informático que comprende un medio legible por ordenador codificado con una pluralidad de instrucciones para controlar un sistema informático para realizar una operación para determinar si 45 existe un desequilibrio de secuencia de ácido nucleico dentro de una muestra biológica, comprendiendo la operación las etapas de: recibir datos de una pluralidad de reacciones, donde los datos incluyen: 50 (1) un primer conjunto de datos cuantitativos que indica una primera cantidad de una secuencia de ácido nucleico clínicamente relevante; y (2) un segundo conjunto de datos cuantitativos que indica una segunda cantidad de una secuencia de ácido nucleico de fondo diferente de la secuencia de ácido nucleico clínicamente relevante; 55 determinar un parámetro de los dos conjuntos de datos: derivar un primer valor de corte a partir de una concentración promedio de una secuencia de ácido nucleico de referencia en cada una de la pluralidad de reacciones, en donde la secuencia de ácido nucleico de referencia es la secuencia de ácido nucleico clínicamente relevante o la secuencia de ácido nucleico de fondo; comparar el parámetro con el primer valor de corte; y basándose en la comparación, determinar una clasificación de si existe un desequilibrio en la secuencia de 60 ácidos nucleicos.

LISTADO DE SECUENCIAS

<110> The Chinese university of Hong Kong

5 <120> Determinación de un desequilibrio de la secuencia de ácido nucleico

<130> SPH/FP6844633
<140> EP12180138.5
<141> 23-07-2008
<150> EP08776038.5
<151> 2008-07-23
<150> PCT/GB2008/002524
<151> 23-07-2008
<150> US60/951,438
<151> 23-07-2007
<160> 58
<170> FastSEQ para Windows versión 4.0

- 25 <210> 1 <211> 27 <212> ADN <213> Secuencia artificial
- 30 <220>

<223> cebador de transcripción inversa específica del gen PLAC4 del análisis de PCR sintética en tiempo real y de ARN-SNP digital

<400> 1

35 27 agtatataga accatgttta ggccaga <210> 2 <211> 21 <212> ADN 40 <213> Secuencia artificial <220> <223> cebador de PLAC4 de PCR sintética en tiempo real 45 <400> 2 ccgctagggt gtcttttaag c 21 <210> 3 <211> 25 50 <212> ADN <213> Secuencia artificial <220> <223> cebador de PLAC4 de PCR sintética en tiempo 55 <400> 3 gtgttgcaat acaaaatgag tttct 25 <210> 4 60 <211> 14 <212> ADN <213> Secuencia artificial <220>

65 <223> sonda fluorescente de PLAC4 de PCR sintética en tiempo real

<220> <221> modified base <222> (1)...(1) <223> a modificada por 6-carboxifluoresceína (FAM) 5 <220> <221> modified base <222> (14)...(14) <223> c modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) 10 <400> 4 14 attggagcaa attc <210> 5 15 <211> 104 <212> ADN <213> Secuencia artificial <220> 20 <223> amplicón de oligonucleótido de ADN sintético monocatenario <400> 5 cgccgctagg gtgtctttta agctattgga gcaaattcaa atttggctta aagaaaaaga 60 aactcatttt gtattgcaac accaggagta tcccaaggga ctcg 104 104 25 <210> 6 <211> 22 <212> ADN <213> Secuencia artificial 30 <220> <223> cebador directo que no abarca intrones del análisis de ARN-SNP digital sintético <400> 6 35 tttgtattgc aacaccattt gg 22 <210> 7 <211> 15 <212> ADN 40 <213> Secuencia artificial <220> <223> sonda TaqMan específica del alelo G sintético dirigida al SNP rs8130833 de PLAC4 45 <220> <221> modified base <222> (1)...(1) <223> t modificada por 6-carboxifluoresceína (FAM) 50 <220> <221> modified base <222> (15)...(15) <223> g modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) 55 <400> 7 tcgtcgtcta acttg 15 <210> 8 <211> 17 60 <212> ADN <213> Secuencia artificial <220> <223> sonda TaqMan específica del alelo A sintético dirigida al SNP rs8130833 de PLAC4

_	<220> <221> modified_base <222> (1)(1)	
5	<223> a modificada por reportero fluorescente VIC	
10	<220> <221> modified_base <222> (17)(17) <223> g modificada por inactivador no fluorescente unido al surco m	enor (MGBNFQ)
	<400> 8	
	attcgtcatc taacttg	17
15	<210> 9 <211> 23 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador directo de coamplificación de análisis digital RCD pa	ra loci parálogos en los cromosomas 21 y 1
	<400> 9	
25	gttgttctgc aaaaaacctt cga	23
20	<210> 10 <211> 28 <212> ADN <213> Secuencia artificial	
30		
	<220> <223> cebador inverso de coamplificación de análisis digital RCD pa	ara loci parálogos en los cromosomas 21 y 1
	<400> 10	
35	cttggccaga aatacttcat taccatat	28
40	<210> 11 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> sonda TaqMan específica del cromosoma sintético diseñada	para dirigirse al parálogo del cromosoma 21
45	<220> <221> modified_base <222> (1)(1) <223> t modificada por 6-carboxifluoresceína (FAM)	
50	<220> <221> modified_base <222> (19)(19) <223> a modificada por inactivador no fluorescente unido al surco m	enor (MGBNFQ)
55	<400> 11 tacctccata atgagtaaa	19
60	<210> 12 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> sonda TaqMan específica del cromosoma sintético diseñada	para dirigirse al parálogo del cromosoma 21

	<221> modified_base <222> (1)(1) <223> c modificada por reportero fluorescente VIC	
5	<220> <221> modified_base <222> (20)(20) <223> a modificada por inactivador no fluorescente unido al surco m	enor (MGBNFQ)
10	<400> 12 cgtacctctg taatgtgtaa	20
15	<210> 13 <211> 27 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador de transcripción inversa específico del gen PLAC4 d	e PCR digital sintética
	<400> 13 agtatataga accatgttta ggccaga	27
25	<210> 14 <211> 22 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador directo de amplificación de PCR digital sintética para	la región de SNP rs8130833 del gen PLAC4
	<400> 14 tttgtattgc aacaccattt gg	22
35	<210> 15 <211> 15 <212> ADN <213> Secuencia artificial	
40	<220> <223> sonda TaqMan específica del alelo G sintético dirigida al SNF	P rs8130833 de PLAC4
45	<220> <221> modified_base <222> (1)(1) <223> t modificada por 6-carboxifluoresceína (FAM)	
50	<220> <221> modified_base <222> (15)(15) <223> g modificada por inactivador no fluorescente unido al surco m	enor (MGBNFQ)
55	<400> 15 tcgtcgtcta acttg	15
	<210> 16 <211> 17 <212> ADN <213> Secuencia artificial	
60	<220> <223> sonda TaqMan específica del alelo A sintético dirigida al SNP	rs8130833 de PLAC4
65	<220> <221> modified_base <222> (1)(1)	

<223> a modificada por reportero fluorescente VIC <220> <221> modified base 5 <222> (17)...(17) <223> g modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) <400> 16 17 attcgtcatc taacttg 10 <210> 17 <211> 20 <212> ADN <213> Secuencia artificial 15 <220> <223> cebador de transcripción inversa específico del gen del inhibidor de serpina peptidasa clado B (ovoalbúmina) miembro 2 (SERPINB2) de amplificación por PCR digital sintética 20 <400> 17 cgcagacttc tcaccaaaca 20 <210> 18 <211> 20 25 <212> ADN <213> Secuencia artificial <220> <223> cebador directo del inhibidor de serpina peptidasa clado B (ovoalbúmina) miembro 2 (SERPINB2) de 30 amplificación por PCR digital sintética <400> 18 ctcagctctg caatcaatgc 20 35 <210> 19 <211> 16 <212> ADN <213> Secuencia artificial 40 <220> <223> sonda TaqMan específica del alelo A sintético que se dirige al SNP rs6098 del inhibidor de serpina peptidasa clado B (ovoalbúmina) miembro 2 (SERPINB2) <220> 45 <221> modified_base <222> (1)...(1) <223> c modificada por 6-carboxifluoresceína (FAM) <220> 50 <221> modified base <222> (16)...(16) <223> t modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) <400> 19 55 ccacagggaa ttattt 16 <210> 20 <211> 16 <212> ADN 60 <213> Secuencia artificial <220> <223> sonda TaqMan específica del alelo G sintético que se dirige al SNP rs6098 del inhibidor de serpina peptidasa clado B (ovoalbúmina) miembro 2

	<221> modified_base <222> (1)(1) <223> c modificada por 6-carboxifluoresceína (FAM)	
5	<220> <221> modified_base <222> (16)(16) <223> t modificada por inactivador no fluorescente unido	al surco menor (MGBNFQ)
10	<400> 20 ccacagggga ttattt	16
15	<210> 21 <211> 23 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador directo de coamplificación de análisis de F parálogos en los cromosomas 21 y 1	PCR digital sintética para el amplicón de 101 pb para los loci
	<400> 21 gttgttctgc aaaaaacctt cga	23
25	<210> 22 <211> 28 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador inverso de coamplificación de análisis de l parálogos en los cromosomas 21 y 1	PCR digital sintética para el amplicón de 101 pb para los loci
35	<400> 22 cttggccaga aatacttcat taccatat	28
40	<210> 23 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> sonda TaqMan específica del cromosoma sintético	diseñada para dirigirse al parálogo del cromosoma 21
45	<220> <221> modified_base <222> (1)(1) <223> t modificada por 6-carboxifluoresceína (FAM)	
50	<220> <221> modified_base <222> (19)(19) <223> a modificada por inactivador no fluorescente unido	al surco menor (MGBNFQ)
55	<400> 23 tacctccata atgagtaaa	19
60	<210> 24 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> sonda TaqMan específica del cromosoma sintético	diseñada para dirigirse al parálogo del cromosoma 21
	<220>	

	<221> modified_base <222> (1)(1) <223> c modificada por reportero fluorescente VIC	
5	<220> <221> modified_base <222> (20)(20) <223> a modificada por inactivador no fluorescente unido al surco men	nor (MGBNFQ)
10	<400> 24 cgtacctctg taatgtgtaa	20
15	<210> 25 <211> 24 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador directo de coamplificación de análisis de RCD digital si parálogos en los cromosomas 21 y 18	ntética para el amplicón de 128 pb para los loci
	<400> 25 gtacagaaac cacaaactga tcgg	24
25	<210> 26 <211> 17 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador inverso de coamplificación de análisis de RCD digital si parálogos en los cromosomas 21 y 18	ntética para el amplicón de 128 pb para los loci
35	<400> 26 gtccaggctg tgggcct	17
40	<210> 27 <211> 14 <212> ADN <213> Secuencia artificial	
	<220> <223> sonda TaqMan específica del cromosoma sintético diseñada pa	ra dirigirse al parálogo del cromosoma 21
45	<220> <221> modified_base <222> (1)(1) <223> a modificada por 6-carboxifluoresceína (FAM)	
50	<220> <221> modified_base <222> (14)(14) <223> a modificada por inactivador no fluorescente unido al surco men	nor (MGBNFQ)
55	<400> 27 aagaggcgag gcaa	14
60	<210> 28 <211> 15 <212> ADN <213> Secuencia artificial	
65	<220> <223> sonda TaqMan específica del cromosoma sintético diseñada pa	ra dirigirse al parálogo del cromosoma 18

<220>

	<221> modified_base <222> (1)(1) <223> a modificada por reportero fluorescente VIC	
5	<220> <221> modified_base <222> (15)(15) <223> c modificada por inactivador no fluorescente unido al surco me	enor (MGBNFQ)
10	<400> 28 aagaggacag gcaac	15
15	<210> 29 <211> 33 <212> ADN <213> Secuencia artificial	
20	<220> <223> cebador directo de coamplificación de análisis de PCR digital s parálogos en los cromosomas 21 y 1	sintética para el amplicón de 121 pb para los loci
	<400> 29 acgttggatg gttgttctgc aaaaaacctt cga	33
25	<210> 30 <211> 38 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador inverso de coamplificación de análisis de PCR digital s parálogos en los cromosomas 21 y 1	sintética para el amplicón de 121 pb para los loci
35	<400> 30 acgttggatg cttggccaga aatacttcat taccatat	38
40	<210> 31 <211> 21 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador de extensión de coamplificación de análisis de PCR los loci parálogos en los cromosomas 21 y 1	digital sintética para el amplicón de 121 pb para
40	<400> 31 ctcatcctca cttcgtacct c	21
50	<210> 32 <211> 34 <212> ADN <213> Secuencia artificial	
55	<220> <223> cebador inverso de coamplificación de análisis de RCD digital parálogos en los cromosomas 21 y 18	sintética para el amplicón de 148 pb para los loci
60	<400> 32 acgttggatg gtacagaaac cacaaactga tcgg	34
00	<210> 33 <211> 27 <212> ADN <213> Secuencia artificial	
65	<220>	

<223> cebador inverso de coamplificación de análisis de RCD digital sintética para el amplicón de 148 pb para los loci

parálogos en los cromosomas 21 y 18 <400> 33 acgttggatg gtccaggctg tgggcct 5 27 <210> 34 <211> 17 <212> ADN 10 <213> Secuencia artificial <220> <223> cebador de extensión de coamplificación de análisis de RCD digital sintética para el amplicón de 148 pb para los loci parálogos en los cromosomas 21 y 18 15 <400> 34 17 acaaaagggg gaagagg <210> 35 20 <211> 35 <212> ADN <213> Secuencia artificial <220> 25 <223> cebador directo de coamplificación de análisis de RCD digital sintética para el amplicón de 81 pb para los loci parálogos en los cromosomas 21 y 1 <400> 35 acgttggatg ttgatgaagt ctcatctcta cttcg 35 30 <210> 36 <211> 33 <212> ADN <213> Secuencia artificial 35 <220> <223> cebador inverso de coamplificación de análisis de RCD digital sintética para el amplicón de 81 pb para los loci parálogos en los cromosomas 21 y 1 40 <400> 36 33 acgttggatg caataagctt ggccagaaat act <210> 37 <211> 37 <212> ADN 45 <213> Secuencia artificial <220> <223> cebador directo de coamplificación de análisis de RCD digital sintética para el amplicón de 82 pb para los loci 50 parálogos en los cromosomas 21 y 7 <400> 37 acgttggatg gaatttaagc taaatcagcc tgaactg 37 55 <210> 38 <211> 37 <212> ADN <213> Secuencia artificial 60 <220> <223> cebador inverso de coamplificación de análisis de RCD digital sintética para el amplicón de 82 pb para los loci parálogos en los cromosomas 21 y 7 <400> 38 acgttggatg gtttctcata gttcatcgta ggcttat 65 37

<210> 39 <211> 30 <212> ADN <213> Secuencia artificial 5 <220> <223> cebador directo de coamplificación de análisis de RCD digital sintética para el amplicón de 101 pb para los loci parálogos en los cromosomas 21 y 2 10 <400> 39 acgttggatg tcaggcaggg ttctatgcag 30 <210> 40 <211> 30 15 <212> ADN <213> Secuencia artificial <220> <223> cebador inverso de coamplificación de análisis de RCD digital sintética para el amplicón de 101 pb para los loci 20 parálogos en los cromosomas 21 y 2 <400> 40 acgttggatg aggcggcttc ctggctcttg 30 25 <210> 41 <211> 31 <212> ADN <213> Secuencia artificial 30 <220> <223> cebador directo de coamplificación de análisis de RCD digital sintética para el amplicón de 102 pb para los loci parálogos en los cromosomas 21 y 6 <400> 41 35 acgttggatg gctcgtctca ggctcgtagt t 31 <210> 42 <211> 30 <212> ADN 40 <213> Secuencia artificial <220> <223> cebador inverso de coamplificación de análisis de RCD digital sintética para el amplicón de 102 pb para los loci parálogos en los cromosomas 21 y 6 45 <400> 42 acgttggatg tttcttcgag cccttcttgg 30 <210> 43 50 <211>23 <212> ADN <213> Secuencia artificial <220> 55 <223> cebador de extensión sintético para desajustes de secuencia parálogos (PSM) en loci parálogos en los cromosomas 21 y 1 <400> 43 gtctcatctc tacttcgtac ctc 23 60 <210> 44 <211> 19 <212> ADN <213> Secuencia artificial 65 <220>

<223> cebador de extensión sintético para desajustes de secuencia parálogos (PSM) en loci parálogos en los cromosomas 21 y 7

<400>44

5 ttttacgctg tccccattt 19

19

25

25

- <210>45 <211> 19 <212> ADN
- 10 <213> Secuencia artificial
 - <220>

<223> cebador de extensión sintético para desajustes de secuencia parálogos (PSM) en loci parálogos en los cromosomas 21 y 2

15

<400>45 ggtctatgca ggagccgac

<210> 46

20 <211> 25 <212> ADN

<213> Secuencia artificial

<220>

25 <223> cebador de extensión sintético para desajustes de secuencia parálogos (PSM) en loci parálogos en los cromosomas 21 y 6

<400>46

tgggcgcggg agcggacttc gctgg

30

<210> 47 <211> 25

<212> ADN <213> Secuencia artificial

35

<220>

<223> cebador directo de coamplificación de análisis de PCR digital sintética para el amplicón de 87 pb para las secuencias de dedos de zinc en el cromosoma X (ZFX) e Y (ZFY)

40 <400> 47

caagtgctgg actcagatgt aactg

<210>48 <211> 28

<212> ADN

45 <213> Secuencia artificial

<220>

<223> cebador inverso de coamplificación de análisis de PCR digital sintética para el amplicón de 87 pb para las 50 secuencias de dedos de zinc en el cromosoma X (ZFX) e Y (ZFY)

<400> 48 tgaagtaatg tcagaagcta aaacatca 28

55 <210> 49

<211> 16 <212> ADN <213> Secuencia artificial

60 <220>

<223> sonda TaqMan específica del cromosoma sintético diseñada para dirigirse al parálogo del cromosoma X

<220>

<221> modified_base

65 <222> (1)...(1)

<223> t modificada por reportero fluorescente VIC

<220> <221> modified_base <222> (16)...(16) 5 <223> a modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) <400>49 tctttagcac attgca 16 10 <210> 50 <211> 17 <212> ADN <213> Secuencia artificial 15 <220> <223> sonda TaqMan específica del cromosoma sintético diseñada para dirigirse al parálogo del cromosoma Y <220> <221> modified base <222> (1)...(1) 20 <223> t modificada por 6-carboxifluoresceína (FAM) <220> <221> modified base 25 <222> (17)...(17) <223> c modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) <400> 50 17 tctttaccac actgcac 30 <210> 51 <211> 19 <212> ADN <213> Secuencia artificial 35 <220> <223> cebador directo de coamplificación de PCR digital sintética para el amplicón de 87 pb del cebador directo de mutación de beta globina (hemoglobina beta (HBB)) HbE 40 <400> 51 19 gggcaaggtg aacgtggat <210> 52 <211>29 45 <212> ADN <213> Secuencia artificial <220> <223> cebador directo de coamplificación de PCR digital sintética para el amplicón de 87 pb del cebador inverso de 50 mutación de beta globina (hemoglobina beta (HBB)) HbE <400> 52 ctattggtct ccttaaacct gtcttgtaa 29 <210> 53 55 <211> 14 <212> ADN <213> Secuencia artificial 60 <220> <223> sonda TaqMan específica del alelo G sintético que se dirige al alelo normal de la mutación de la beta globina (hemoglobina beta (HBB) HbE <220> <221> modified base 65

49

<222> (1)...(1)

<223> t modificada por reportero fluorescente VIC <220> <221> modified base 5 <222> (14)...(14) <223> c modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) <400> 53 14 ttggtggtga ggcc 10 <210> 54 <211> 14 <212> ADN <213> Secuencia artificial 15 <220> <223> sonda TaqMan específica del alelo G sintético que se dirige al alelo mutante de la mutación de la beta globina (hemoglobina beta (HBB) HbE <220> 20 <221> modified base <222> (1)...(1) <223> t modificada por 6-carboxifluoresceína (FAM) 25 <220> <221> modified_base <222> (14)...(14) <223> c modificada por inactivador no fluorescente unido al surco menor (MGBNFQ) 30 <400> 54 14 ttggtggtaa ggcc <210> 55 <211> 20 35 <212> ADN <213> Secuencia artificial <220> <223> cebador directo de coamplificación de PCR digital sintética para el amplicón de 87 pb y 83 pb del alelo normal 40 y mutante de deleción CD41/42 <400> 55 ttttcccacc cttaggctgc 20 45 <210> 56 <211>23 <212> ADN <213> Secuencia artificial 50 <220> <223> cebador inverso de coamplificación de PCR digital sintética para el amplicón de 87 pb y 83 pb del alelo normal y mutante de deleción CD41/42 <400> 56 55 acagcatcag gagtggacag atc 23 <210> 57 <211> 19 <212> ADN 60 <213> Secuencia artificial <220> <223> sonda TaqMan específica del alelo sintético que se dirige al alelo normal de la mutación de deleción CD41/42 (sin deleción) 65 <220>

	<221> modified_base <222> (1)(1) <223> c modificada por reportero fluores	ente VIC	
5	<220> <221> modified_base <222> (19)(19) <223> t modificada por inactivador no flu	rescente unido al surco menor (MGBNFQ)	
10	<400> 57 cagaggttct ttgagtcct	19	
15	<210> 58 <211> 15 <212> ADN <213> Secuencia artificial		
20	<220> <223> sonda TaqMan específica del alela (con deleción)	sintético que se dirige al alelo mutante de la mutación de deleción CD4	1/42
25	<220> <221> modified_base <222> (1)(1) <223> a modificada por 6-carboxifluorese	eína (FAM)	
30	<220> <221> modified_base <222> (15)(15) <223> t modificada por inactivador no flu	rescente unido al surco menor (MGBNFQ)	
	<400> 58 agaggttgag tcctt	15	

REIVINDICACIONES

1. Un método para determinar una concentración fraccional de ADN fetal en una muestra biológica de una mujer embarazada de un feto, incluyendo la muestra biológica moléculas de ácido nucleico de la mujer y del feto, y en el que la mujer es homocigótica en el primer locus para un primer alelo y el feto es heterocigoto en el primer locus para el primer alelo y un segundo alelo diferente del primer alelo, comprendiendo el método:

recibir los primeros datos de una primera pluralidad de reacciones que involucran moléculas de ácido nucleico de la muestra biológica, en la que las reacciones son indicativas de la presencia o ausencia de dos secuencias de polinucleótidos de interés, siendo las dos secuencias de polinucleótidos de interés el primer alelo y el segundo alelo en el primer locus, en el que la primera pluralidad de reacciones son reacciones en cadena de la polimerasa digital, y en el que los primeros datos incluyen:

- (1) un primer conjunto de datos cuantitativos que indica un primer número de reacciones positivas para la presencia del primer alelo; γ
- (2) un segundo conjunto de datos cuantitativos que indica un segundo número de reacciones positivas para la presencia del segundo alelo; y

calcular una fracción del primer número al segundo número para determinar la concentración fraccional de ADN fetal.

2. El método de la reivindicación 1, en el que la concentración fraccional de ADN fetal se determina como un porcentaje usando el primer número y el segundo número.

25 3. El método de la reivindicación 1, que además comprende:

recibir segundos datos de una segunda pluralidad de reacciones que involucran moléculas de ácido nucleico de la muestra biológica, en la que los segundos datos incluyen:

30 (1) un tercer conjunto de datos cuantitativos que indica una tercera cantidad de una secuencia de ácido nucleico clínicamente relevante; y

(2) un cuarto conjunto de datos cuantitativos que indica una cuarta cantidad de una secuencia de ácido nucleico de fondo diferente de la secuencia de ácido nucleico clínicamente relevante, teniendo la secuencia de ácido nucleico de fondo una proporción normal a la secuencia de ácido nucleico clínicamente relevante que se conoce, en la que la secuencia de ácido nucleico clínicamente relevante y la secuencia de ácido nucleico de fondo proviene de un primer tipo de células del feto y de uno o más segundos tipos de células de la mujer embarazada;

determinar un parámetro a partir del tercer conjunto de datos cuantitativos y el cuarto conjunto de datos cuantitativos, en el que el parámetro incluye una proporción entre la tercera cantidad y la cuarta cantidad; deriver un primer valor de corte a partir de la concentración fraccional de ADN fetal: comparar el parámetro con el

derivar un primer valor de corte a partir de la concentración fraccional de ADN fetal; comparar el parámetro con el primer valor de corte; y

basándose en la comparación, determinar una clasificación de si existe un desequilibrio de secuencia de ácido nucleico para la secuencia de ácido nucleico clínicamente relevante.

45

35

40

5

10

15

20

4. El método de la reivindicación 3, en el que el tercer conjunto de datos cuantitativos se obtiene a partir de uno o más primeros marcadores de una parte de la secuencia de ácido nucleico clínicamente relevante y en el que el cuarto conjunto de datos cuantitativos se obtiene de uno o más segundos marcadores de una parte de la secuencia de ácido nucleico de fondo.

50

5. El método de la reivindicación 3, en el que el desequilibrio de la secuencia de ácido nucleico es una aneuploidía cromosómica.

6. El método de la reivindicación 3, en el que la secuencia de ácido nucleico clínicamente relevante es un alelo de un polimorfismo genético, y la secuencia de ácido nucleico de fondo es otro alelo del polimorfismo genético.

7. El método de la reivindicación 3, en el que la concentración fraccional de ADN fetal se determina antes de que se determine el parámetro.

60 8. El método de cualquiera de las reivindicaciones precedentes, en el que la muestra biológica es plasma o suero.

9. Un programa informático capaz de ejecutarse mediante un sistema informático y que comprende una pluralidad de instrucciones que, al ejecutarse, son capaces de controlar el sistema informático para realizar un método según cualquiera de las reivindicaciones anteriores.

65

10. Un producto de programa informático que comprende un medio legible por ordenador codificado con un programa

informático según la reivindicación 9.

FIG. 2A

	Anomalías cromo	sómicas comunes
Cancer	Ganancia	Pérdida
Cáncer de vejiga	7	9p; 11q; 17p
Cáncer de mama	1q; 8q; 17q; 20q	8p; 13q; 16q; 18q
Cáncer colorrectal	7; 8q; 13q; 20q	1p; 5q; 8p; 15q; 17p; 18q
Carcinoma hepatocelular	1q; 8q; 20q	4q; 8p; 13q; 16q; 17p
Carcinoma de pulmón de células	1q; 3q; 5p; 8q	3p; 8p; 9p; 13q; 17p
no pequeñas		
Carcinoma de pulmón de células pequeñas	3q; 5p; 8q; 19q	3p; 4q; 5q; 10q; 13q; 16q
Carcinoma nasofaríngeo	1q; 3q; 8; 12; 19	1p; 3p; 9; 11q; 13q; 14q;
		16q
Cáncer de próstata	7; 8q; Xq	8p; 13q; 16q

${}^{\square}$	
\sim	
U	
EXCLUSION	

FIG. 5

600	Ъ,	0,68	0,69	0,7	0,71	0,73	0,74	0,75	0,76	0,78	0,79	0,8	0,81	0,82	0,83	0,84	0,85	0,86	0,87	0,88	0,89
	Proporción de pocillos informativos	0,2419	0,3914	0,4765	0,5173	0,5282	0,5194	0,4983	0,4698	0,4375	0,4036	0,3699	0,3373	0,3063	0,2774	0,2507	0,2262	0,2039	0,1836	0,1652	0,1487
	Proporción alélica de ARN-SNP digital	2,11	2,22	2,35	2,49	2,65	2,82	3,01	3,23	3,46	3,72	4	4,32	4,67	5,06	5,48	5,95	6,47	7,05	7,69	8,39
	Proporción de pocillos positivos para el alelo sobrerrepresentado SOL O	0,164	0,2699	0,3342	0,3691	0,3834	0,3835	0,3741	0,3586	0,3394	0,3181	0,296	0,2739	0,2523	0,2316	0,212	0,1937	0,1766	0,1608	0,1462	0,1329
	Proporción de pocillos positivos para el alelo de referencia SOLO	0,0779	0,1215	0,1422	0,1481	0,1448	0,1359	0,1241	0,1112	0,0981	0,0855	0,0739	0,0634	0,054	0,0458	0,0387	0,0325	0,0273	0,0228	0,019	0,0158
	Proporción de pocillos positivos para ambos alelos	0,0173	0,0598	0,1169	0,1815	0,2487	0,3153	0,3793	0,4395	0,4953	0,5466	0,5932	0,6354	0,6734	0,7076	0,7382	0,7656	0,79	0,8119	0,8314	0,8488
	Proporción de pocillos positivos para el alelo sobrerrepresentado	0,1813	0,3297	0,4512	0,5507	0,6321	0,6988	0,7534	0,7981	0,8347	0,8647	0,8892	0,9093	0,9257	0,9392	0,9502	0,9592	0,9666	0,9727	0,9776	0,9817
	Proporción de pocillos positivos para el alelo de referencia	0,0952	0,1813	0,2592	0,3297	0,3935	0,4512	0,5034	0,5507	0,5934	0,6321	0,6671	0,6988	0,7275	0,7534	0,7769	0,7981	0,8173	0,8347	0,8504	0,8647
	ш ^г	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	-	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2

FIG. 6

·----

	1																						
•		٩,	0,61	0,61	0,62	0,63	0,63	0,64	0,65	0,65	0,66	0,67	0,68	0,69	0,69	0,7	0,71	0,72	0,73	0,73	0,74	0,75	
	100%	Porcentaje de pocillos informativos	21%	35%	43%	48%	51%	51%	50%	48%	46%	43%	40%	37%	34%	31%	28%	26%	23%	21%	19%	17%	
tra		٩	0,56	0,56	0,57	0,57	0,57	0,58	0,58	0,58	0,59	0,59	0,6	0,6	0,6	0,61	0,61	0,62	0,62	0,63	0,63	0,64	
etal en la muest	20%	Porcentaje de pocillos informativos	19%	32%	41%	46%	49%	50%	50%	49%	47%	44%	42%	39%	36%	33%	31%	28%	26%	24%	21%	20%	
de ADN fe		٩	0,53	0,53	0,53	0,54	0,54	0,54	0,54	0,54	0,55	0,55	0,55	0,55	0,55	0,56	0,56	0,56	0,56	0,57	0,57	0,57	
Porcentaje	25%	Porcentaje de pocillos informativos	18%	31%	40%	45%	49%	50%	50%	49%	47%	45%	43%	40%	38%	35%	33%	30%	28%	25%	23%	21%	
		ڡ	0,51	0,51	0,51	0,51	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,53	0,53	0,53	0,53	
	10%	Porcentaje de pocillos informativos	18%	30%	39%	45%	48%	50%	50%	49%	48%	46%	44%	41%	39%	36%	34%	31%	29%	27%	24%	22%	
	<u>۔</u>		0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	-	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	

FIG. 7

ES 2 869 347 T3

								o linevo	AIguIIII		
sificación	Euploide	Trisomía 21	Euploide	Trisomía 21	m	Clasificación	Euploide	Trisomía 21	Euploide	Trisomía 21	906 1
Correcta	0%	37%	0%	35%		Correcta	89%	92%	14%	35%	
Icorrecta	3%	2%	3%	1%		Incorrecta	1%	0%	4%	0%	
clasificar	97%	61%	97%	63%	1,1	Sin clasificar	10%	7%	81%	65%	
Correcta	6%	64%	%0	40%		Correcta	90%	92%	11%	35%	
ncorrecta	4%	2%	4%	0%		Incorrecta	1%	0%	4%	0%	
ı clasificar	80%	34%	96%	60%	1,2	Sin clasificar	9%	8%	84%	64%	
Correcta	34%	75%	6%	39%		Correcta	91%	92%	7%	34%	
ncorrecta	4%	2%	4%	0%		Incorrecta	1%	1%	4%	0%	
ı clasificar	62%	24%	90%	61%	1,3	Sin clasificar	8%	7%	89%	66%	
Correcta	54%	81%	14%	39%		Correcta	92%	91%	5%	34%	
ncorrecta	3%	1%	4%	0%		Incorrecta	1%	1%	4%	0%	
ı clasificar	43%	19%	82%	61%	1,4	Sin clasificar	8%	7%	89%	66%	
Correcta	64%	85%	20%	38%		Correcta	92%	80%	2%	32%	
ncorrecta	3%	1%	4%	0%		Incorrecta	1%	1%	4%	0%	
ı clasificar	33%	14%	76%	62%	1,5	Sin clasificar	8%	9%	93%	68%	
Correcta	74%	88%	23%	38%		Correcta	92%	89%	1%	31%	
ncorrecta	2%	1%	4%	0%		Incorrecta	1%	1%	4%	0%	
ı clasificar	24%	11%	72%	62%	1,6	Sin clasificar	8%	10%	94%	69%	
Correcta	80%	89%	25%	37%		Correcta	92%	89%	1%	30%	
ncorrecta	2%	1%	4%	0%		Incorrecta	1%	1%	4%	0%	
ı clasificar	18%	10%	71%	63%	1,7	Sin clasificar	7%	10%	96%	70%	
Correcta	83%	91%	23%	37%		Correcta	92%	88%	0%0	28%	
ncorrecta	2%	1%	4%	0%		Incorrecta	1%	1%	4%	0%	
n clasificar	15%	9%	73%	63%	1.8	Sin clasificar	7%	11%	96%	72%	
Correcta	86%	91%	21%	36%		Correcta	92%	87%	0%	26%	
ncorrecta	1%	1%	4%	0%		Incorrecta	1%	1%	3%	0%	
n clasificar	12%	8%	75%	64%	1,9	Sin clasificar	8%	12%	97%	74%	
Correcta	88%	92%	19%	36%		Correcta	91%	86%	0%	24%	
ncorrecta	1%	0%	4%	0%		Incorrecta	1%	1%	4%	0%	
n clasificar	11%	8%	77%	64%	2	Sin clasificar	%6	13%	96%	76%	

FIG. 9A

ES 2 869 347 T3

		Algoritm	io nuevo	Algorith	no viejo			Algoritm	io nuevo	Algorith	no viejo	
m_	Clasificación	Euploide	Trisomía 21	Euploide	Trisomía 21	۳	Clasificación	Euploide	Trisomía 21	Euploide	Trisomía 21	J950
	Correcta	57%	88%	48%	89%		Correcta	100%	100%	92%	80%	
	Incorrecta	3%	1%	3%	1%		Incorrecta	%0	%0	1%	0%	
0,1	Sin clasificar	40%	11%	49%	10%	1,1	Sin clasificar	0%	%0	7%	10%	
	Correcta	89%	98%	79%	%06		Correcta	100%	100%	80%	90%	
	Incorrecta	1%	%0	2%	%0		Incorrecta	0%	%0	1%	0%	
0,2	Sin clasificar	10%	2%	19%	10%	1,2	Sin clasificar	0%	0%	9%	10%	
	Correcta	96%	66%	88%	%06		Correcta	100%	100%	89%	80%	
	Incorrecta	%0	%0	1%	%0	to Localization	Incorrecta	%0	%0	10%	10%	
0,3	Sin clasificar	4%	1%	11%	10%	1,3	Sin clasificar	%0	%0	10%	10%	
	Correcta	66%	100%	92%	%06		Correcta	100%	100%	87%	%06	
	Incorrecta	%0	%0	1%	%0		Incorrecta	0%	%0	1%	10%	
0,4	Sin clasificar	1%	%0	7%	10%	1,4	Sin clasificar	0%	%0	12%	10%	
	Correcta	100%	100%	94%	%06		Correcta	100%	100%	85%	80%	
	Incorrecta	%0	%0	1%	%0		Incorrecta	0%	%0	1%	0%	
0,5	Sin clasificar	0%	%0	6%	10%	1,5	Sin clasificar	0%	%0	13%	10%	
	Correcta	100%	100%	94%	%06		Correcta	100%	100%	82%	80%	
	Incorrecta	%0	%0	1%	0%		Incorrecta	0%	%0	1%	0%	
0,6	Sin clasificar	%0	%0	5%	10%	1,6	Sin clasificar	0%	%0	17%	10%	
	Correcta	100%	100%	95%	%06		Correcta	100%	100%	79%	80%	
	Incorrecta	%0	%0	1%	0%		Incorrecta	0%	%0	2%	0%	
0,7	Sin clasificar	%0	%0	5%	10%	1,7	Sin clasificar	%0	%0	19%	10%	
	Correcta	100%	100%	95%	%06		Correcta	100%	100%	74%	80%	
	Incorrecta	%0	%0	1%	0%		Incorrecta	0%	%0	2%	0%	
0,8	Sin clasificar	%0	%0	5%	10%	1,8	Sin clasificar	0%	%0	24%	10%	
	Correcta	100%	100%	94%	90%		Correcta	100%	100%	70%	90%	
	Incorrecta	%0	0%	1%	%0		Incorrecta	0%	%0	2%	0%	
0,9	Sin clasificar	%0	%0	6%	10%	1,9	Sin clasificar	0%	%0	28%	10%	
	Correcta	100%	100%	94%	%06		Correcta	100%	100%	67%	80%	
	Incorrecta	%0	0%	1%	%0		Incorrecta	%0	%0	3%	0%	
-	Sin clasificar	%0	0%	6%	10%	2	Sin clasificar	%0	%0	30%	10%	

FIG. 9B

ES 2 869 347 T3

É	Resultado de la clasificación	Euploide	721	Ĕ	Resultado de la clasificación	Euploide	T21
	Correcta	57%	88%		Correcta	100%	100%
	Incorrecta	3%	1%		Incorrecta	%0	%0
0.1	Sin clasificar	40%	11%	6,0	Sin clasificar	0%	%0
	Correcta	89%	98%		Correcta	100%	100%
	Incorrecta	1%	%0		Incorrecta	%0	%0
0.2	Sin clasificar	10%	2%	1	Sin clasificar	%0	%0
	Correcta	96%	%66		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0.3	Sin clasificar	4%	1%	1,1	Sin clasificar	%0	%0
6	Correcta	%66	100%		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0.4	Sin clasificar	1%	%0	1,2	Sin clasificar	%0	%0
	Correcta	100%	100%		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0.5	Sin clasificar	%0	%0	1,3	Sin clasificar	%0	%0
	Correcta	100%	100%		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0.6	Sin clasificar	%0	%0	1,4	Sin clasificar	%0	%0
	Correcta	100%	100%		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0.7	Sin clasificar	%0	%0	1,5	Sin clasificar	%0	%0
	Correcta	100%	100%		Correcta	100%	100%
	Incorrecta	%0	%0		Incorrecta	%0	%0
0,8	Sin clasificar	%0	%0	7	Sin clasificar	%0	%0

FIG. 10

iCorrecta38%44%Correcta95%95%0,1Incorrecta2%2%0,7Sin clasificar9%9%1Sin clasificar60%54%0,7Sin clasificar5%0%1Correcta64%69%0,7Sin clasificar5%1%1Locrrecta2%2%0,8Sin clasificar9%1%1Sin clasificar34%29%0,8Sin clasificar4%1%0,3Sin clasificar2%1%0,9Sin clasificar4%1%0,4Sin clasificar2%1%0,9Sin clasificar4%1%0,3Sin clasificar2%1%0,9Sin clasificar4%1%0,4Sin clasificar1%0,9Sin clasificar4%1%0,4Sin clasificar1%1%1%1%1%1%0,4Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%0,7Sin clasificar1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%	m.	Resultado de la clasificación	Euploide	Trisomía 21	, E	Resultado de la clasificación	Euploide	Trisomía 21
0.1Incorrecta2%2%0,7Incorrecta0%0%0,1Sin clasificar6%6%0,7Sin clasificar5%0%1Correcta6%6%0,8Sin clasificar5%1%1Incorrecta2%2%0,8Sin clasificar9%1%0,2Sin clasificar34%29%0,8Sin clasificar9%1%0,3Uncorrecta78%82%0,8Sin clasificar9%1%0,3Sin clasificar2%1%0,9Sin clasificar9%1%0,3Sin clasificar2%1%0,9Sin clasificar9%1%0,3Sin clasificar1%0,9Sin clasificar9%1%0,4Sin clasificar1%0,9Sin clasificar9%1%0,4Sin clasificar1%0,9Sin clasificar9%1%0,5Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%0,7Sin clasificar1%1%1%1%1%1%0,7Sin clasificar1%1%1%1%1%1%0,7Sin clasificar1%1%1%1%<		Correcta	38%	44%	·	Correcta	95%	94%
0.1Sin clasificar60%54%0.7Sin clasificar5%5%0.1Correcta64%69%69%78%95%1%1%1Locrrecta2%2%2%1%1%1%1%0.2Sin clasificar34%29%0,8Sin clasificar95%1%0.2Correcta2%1%0,9Sin clasificar96%1%1Locrecta2%1%0,9Sin clasificar96%1%0,3Sin clasificar2%1%0,9Sin clasificar96%1%1Locrecta2%1%0,9Sin clasificar96%1%0,4Sin clasificar2%1%0,9Sin clasificar96%1%1Locrecta1%1%0,9Sin clasificar97%1%0,4Sin clasificar1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%1Locrecta1%1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%1%1Locrecta1%1%1%1%1%1%1%1%1Locrecta1%1%1%1%1%1%1%1%1Locrecta1%1%1%1%1%1%1%1%1%<		Incorrecta	2%	2%		Incorrecta	0%	1%
	0,1	Sin clasificar	%09	54%	0,7	Sin clasificar	5%	5%
		Correcta	64%	69%		Correcta	95%	95%
0,2Sinclasificar34%29%0,8Sinclasificar4%4%1Correcta78%82%1%0.096%96%11Incorrecta2%1%0.9Noncerta0%110,3Sinclasificar20%17%0,9Sinclasificar0%10,4Uncorrecta20%17%0,9Sinclasificar0%11Uncorrecta1%1%1%0,90%10,4Sinclasificar1%1%1Sinclasificar0%11Uncorrecta1%1%1Sinclasificar0%11Uncorrecta1%1%1%1%1%10,5Sinclasificar1%1%1%1%1%1%1Uncorrecta1%1%1%1%1%1%1%0,6Sinclasificar1%1%1%1%1%1%1%0,6Sinclasificar1%1%1%1%1%1%1%1%0,6Sinclasificar1%1%1%1%1%1%1%1%1%1Uncorrecta1%1%1%1%1%1%1%1%1%1%1Uncorrecta1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1% <t< th=""><th></th><td>Incorrecta</td><td>2%</td><td>2%</td><th></th><td>Incorrecta</td><td>1%</td><td>0%</td></t<>		Incorrecta	2%	2%		Incorrecta	1%	0%
(1,1) $(2,1)$ <	0,2	Sin clasificar	34%	29%	0,8	Sin clasificar	4%	5%
0,3Incorrecta2%1%NoteNoteNote0,3Sin clasificar20%17%0,9Sin clasificar0%1%Correcta85%87%7%Correcta97%1%Incorrecta1%1%1%1%0%2%0,4Sin clasificar14%12%1Sin clasificar3%0,5Vorrecta89%90%1Sin clasificar3%0,5Sin clasificar1%1%1%1%2%0,5Sin clasificar1%1%1%3%2%0,5Sin clasificar1%1%1%3%2%0,6Sin clasificar1%1%1%2%3%0,6Sin clasificar1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%0,6Sin clasificar1%1%2%1%1%		Correcta	78%	82%		Correcta	96%	96%
0,3Sin clasificar20%17%0,9Sin clasificar4%4%0,4Correcta85%87%87%97%97%97%1Incorrecta1%1%1%10%97%10%0,4Sin clasificar14%12%1Sin clasificar3%10%0,5Uncorrecta1%1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%1%0,5Sin clasificar1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%0,6Sin clasificar1%1%1%1%1%1%1%1%1%<		Incorrecta	2%	1%		Incorrecta	0%0	0%0
(1,1) $(2,1)$ <	0,3	Sin clasificar	20%	17%	0,9	Sin clasificar	4%	4%
0.4Incorrecta1%1%1%Incorrecta0%0%0.4Sin clasificar14%12%1Sin clasificar3%10.4Uncorrecta89%90%1%1%1%1%1%1%0.5Uncorrecta1%1%1%1%1%1%1%1%0.5Uncorrecta10%9%1%1%1%1%1%1%0.6Uncorrecta1%1%1%1%1%1%1%1%0.6Sin clasificar1%1%1%1%1%1%1%1%0.6Sin clasificar1%1%1%1%1%1%1%1%1%0.6Sin clasificar1%1%1%2Sin clasificar1%1%0.6Sin clasificar1%1%1%1%1%1%1%1%		Correcta	85%	87%		Correcta	97%	96%
0,4Sin clasificar14%12%1Sin clasificar3%3%0,4Correcta89%90%7%7%7%7%7%7%1Incorrecta1%1%1%1%7%7%7%7%7%7%0,5Sin clasificar10%9%1,5Sin clasificar3%7%<		Incorrecta	1%	1%		Incorrecta	0%0	%0
(0,1) $(0,1)$ <	0,4	Sin clasificar	14%	12%	1	Sin clasificar	3%	4%
0,5Incorrecta $1%$ $1%$ Incorrecta $0%$ $0,5$ Sin clasificar $10%$ $9%$ $1,5$ Sin clasificar $3%$ $0,6$ $92%$ $93%$ $93%$ $1,5$ Correcta $96%$ $0,6$ $1%$ $1%$ $1%$ $1%$ $96%$ $1%$ $0,6$ Sin clasificar $7%$ 2 Sin clasificar $4%$		Correcta	89%	90%		Correcta	97%	96%
0,5 Sin clasificar 10% 9% 1,5 Sin clasificar 3% 0,6 Correcta 92% 93% Correcta 96% 96% 0,6 Incorrecta 1% 1% 1% 0% 96% 0,6 Sin clasificar 7% 7% 7% 2% 8%		Incorrecta	1%	1%		Incorrecta	0%0	0%0
0,6Correcta92%93%Correcta96%Incorrecta1%1%1%0%NoteNote1%7%7%2Sin clasificar7%7%2Sin clasificar4%	0,5	Sin clasificar	10%	9%	1,5	Sin clasificar	3%	4%
Incorrecta1%1%Incorrecta0%0,6Sin clasificar7%2Sin clasificar4%		Correcta	92%	93%		Correcta	96%	95%
0,6 Sin clasificar 7% 2 Sin clasificar 4%		Incorrecta	1%	1%		Incorrecta	0%0	0%0
	0,6	Sin clasificar	7%	7%	7	Sin clasificar	4%	5%

FIG. 11

1100

ES 2 869 347 T3

Número					Porcentaje de AD	N fetal en la m	nestra		
de	Resultados	10	%		25%	2	%0	10	0%
pocillos	de la clasificación	Euploide 1	risomía 21	l Euploide	Trisomía 21	Euploide	Trisomía 21	Euploide	Trisomía 21
	Correcta	%0	%0	6%	%L	47%	49%	89%	%06
	Incorrecta	%0	%0	%0	1%	2%	2%	1%	1%
384	Sin clasificar	100%	100%	93%	92%	51%	49%	10%	9%6
	Correcta	%0	%0	23%	24%	73%	76%	98%	%66
	Incorrecta	%0	%0	2%	2%	2%	1%	%0	%0
768	Sin clasificar	100%	100%	75%	74%	25%	23%	2%	1%
	Correcta	1%	1%	39%	40%	86%	87%	100%	100%
	Incorrecta	%0	%0	2%	2%	1%	1%	%0	%0
1152	Sin clasificar	%66	866	59%	58%	13%	12%	%0	%0
	Correcta	2%	2%	50%	51%	93%	93%	100%	100%
	Incorrecta	%0	%0	2%	2%	1%	1%	%0	%0
1536	Sin clasificar	98%	97%	48%	47%	7%	6%	%0	%0
	Correcta	4%	4%	60%	60%	%96	86%	100%	100%
	Incorrecta	%0	1%	2%	2%	%0	%0	%0	%0
1920	Sin clasificar	96%	95%	38%	37%	4%	3%	%0	%0
	Correcta	18%	19%	84%	83%	100%	100%	100%	100%
	. Incorrecta	1%	1%	1%	1%	%0	%0	%0	%0
3840	Sin clasificar	81%	80%	15%	15%	18%	22%	%0	%0
	Correcta	43%	45%	67%	67%	100%	100%	100%	100%
	Incorrecta	2%	2%	%0	%0	%0	%0	%0	%0
7680	Sin clasificar	55%	53%	3%	3%	%0	%0	%0	%0

FIG. 12

1200

ES 2 869 347 T3

			- 0 do 0						Bacultado do CDE	
	:	:	n. ^v de pocilik	Soviiivos	para aleic	s individuales	2	c		
estra	genotipo ^a	n.° de pocillos	solo A	solo G	AG	todos negativos	Ĕ	ہ ر م	región inclasificable ^d	clasificación ^e
<u>N pl</u> ä	<u>acentario</u>									
177	AG	384	85	83	126	06	0,79	0,51	0,63 - 0,65	euploide
10	AG	384	102	83	73	126	0.52	0.55	0,61 - 0,63	euploide
-35	AGG	384	49	157	130	48	0,63	0,76	0,62 - 0,64	T21
981	AAG	384	135	69	82	98	0,5	0,66	0,61 - 0,63	T21
N plá	acentario									
533	AG	384	103	93	71	117	0,56	0,53	0,61 - 0,63	euploide
943	AG	384	89	100	74	121	0,55	0,53	0,61 - 0,63	euploide
135	AGG	384	52	138	95	66	0.48	0,73	0,61 - 0,63	T21
215	AAG	384	146	58	138	42	0,71	0,72	0,62 - 0,64	T21
				L	<u>.</u>	3A				1350
			n.° de pocillo	os positivos	para alelc	s individuales			Resultado de S	PRT
estra	genotipo	n.° de pocillos	solo A	solo G	AG	todos negativos	E	proporción	región inclasificable	clasificación
390P	AG	384	60	100	97	97	0.67	0.526	0,62 - 0,64	euploide
391P	AG	384	97	105	65	117	0,55	0,52	0,61 - 0,63	euploide
173P	AG	384	66	92	34	192	0,3	0,582	0,59 - 0,62	euploide
524P	AG	384	29	28	3	324	0,08	0,509	0,54 - 0,64	euploide
528P	AG	384	112	85	44	143	0,41	0,569	0,60 - 0,62	euploide
301P	AG	384	90	101	72	121	0,55	0,529	0,61 - 0,63	euploide
307P	AG	384	73	91	57	163	0,41	0,555	0,60 - 0,63	euploide
338P	AG	384	66	90	52	176	0,37	0,577	0,59 - 0,62	euploide
339P	AG	384	71	56	17	240	0,21	0,559	0,58 - 0,62	euploide
525P	AAG	384	110	53	21	200	0,21	0,675	0,58 - 0,61	Т21
272P	AAG	768	246	127	112	283	0,37	0,66	0,60 - 0,61	Т21
718P	AGG	384	66	114	99	138	0,42	0,633	0,60 - 0,62	Т21
519P	AGG	384	58	130	54	142	0,34	0,691	0,59 - 0,62	T21
				LL	<u>0</u>	3B				

	_	n.º	n.º para	de poc a alelo	cillos s ind	positivos ividuales	_		Análisis de S	SPRT
muestra	genotipo	de pocillos	solo A	solo G	GA	todos negativos	m _r a	P _r ^b	Región inclasificable	Clasificación ^c
V943	AG	765	168	209	117	271	0,47	0,554	0,609 - 0,621	euploide
N435	AGG	765	92	281	105	287	0,30	0,753	0,597 - 0,610	T21
T21-5	AAG	765	267	126	141	231	0,43	0,679	0,607 - 0,618	T21

^a n.º de moléculas de referencia por pocillo ^b Los valores de P_r se calcularon mediante la ecuación:

n.º de pocillos positivos para el alelo sobrerrepresentado

n.º de pocillos positivos solo para A + n.º de pocillos positivos solo para G ^c "Euploide" se asignó cuando la Pr estuvo por debajo de la región inclasificable; "T21" se asignó cuando la Pr estuvo por encima de la región inclasificable. T21, trisomía 21 FIG. 15A

n ^o nanel	n º de nocillos	n.º de pocillo	os positivos	para ale	elos individuales
		solo A	solo G	GA	todos negativos
S1	765	14	15	0	736
S2	765	7	10	0	748
S3	765	13	9	1	744
S4	765	7	8	0	750
S5	765	12	8	0	745
S6	765	8	14	0	743
S7	765	13	9	0	743
S8	765	9	8	0	748
S9	765	14	15	0	736
S10	765	9	12	0	744
S11	765	8	17	0	740
S12	765	11	9	0	745

FIG. 15B

			n.º par	de po ra ale	ocillos los in	s pos divic	sitivos Iuales		Análisis de S	PRT
muestra	tipo	panelesª	n.º de pocillos	solo A	solo G	GA	todos negativos	P _r	Región inclasificable	Clasificación
M2879P	AG	5	3825	82	103	5	3635	0,557	0,570 - 0,602	Euploide
M2875P	AG	3	2295	35	40	0	2220	0,533	0,546 - 0,625	Euploide
M3078P	AG	3	2295	33	33	1	2228	0,500	0,541 - 0,631	Euploide
M2976P	AG	12	9180	56	46	0	9078	0,549	0,556 - 0,615	Euploide
M2831P	AAG	2	1530	42	13	0	1475	0,764	0,531 - 0,640	T21
^a n.º de	pane	les nece	sarios							

para la clasificación

FIG. 15C

		N.° de pc para e	ocillos positiv I alelo A o G	SO			Análisis de SP	RT
Muestra	Genotipo ^a	solo A	solo G	Ambos	m ^b	Pr ^c	Región inclasificable ^d	Clasificación ^e
N3505	AG	157	131	48	0,27	0,545	0,59- 0,61	Euploide
N3530	AG	174	132	52	0,28	0,569	0,59- 0,61	Euploide
N3531	AG	146	129	28	0,23	0,531	0,58- 0,60	Euploide
N3533	AG	149	135	46	0,27	0,525	0,59- 0,61	Euploide
N2772	AG	159	149	79	0,35	0,516	0,60- 0,61	Euploide
N3506	AG	154	145	66	0,32	0,515	0,60- 0,61	Euploide
N3555	AG	94	73	7	0,11	0,563	0,58- 0,61	Euploide
N3560	AG	101	109	28	0,18	0,519	0,58- 0,61	Euploide
N3561	AG	91	70	17	0,12	0,565	0,58- 0,61	Euploide
N828	AAG	153	89	22	0,16	0,632	0,58- 0,60	T18
CA2	AGG	12	28	0	0,016	0,700	0,51- 0,66	T18
CA7	AGG	97	171	56	0,22	0,638	0,59- 0,61	T18
a Los genoti	ipos se determin	laron median	te espectron	netría de ma	asas.			

^b El valor m_r indica el número promedio de moléculas molde de referencia por pocillo.

^c El valor P_r indica la proporción de pocillos informativos positivos para el alelo sobrerrepresentado.

^d La región inclasificable varía con el valor de m_r .

e "Euploide" se asignó cuando *P*_r estuvo por debajo de la región inclasificable; "T18" se asignó cuando *P*_r estuvo por encima de la región inclasificable.

FIG. 16A

ES 2 869 347 T3

				N.º de rec	suento d	e pocillo	S		Análisis de SP	RT
Tipo	Casos	de paneles utilizados	N.º total de pocillos informativos	Ambos positivos	Solo Cr 21	Solo Cr 1	mr ^a	$\mathbf{P}_{\mathrm{r}}^{\mathrm{a}}$	Región inclasificable C	lasificación ⁶
T21	N0234	-	303	68	172	131	0,30	0,568	0,507 - 0,559	T21
	N0274	2	558	118	307	251	0,28	0,550	0,518 - 0,547	T21
	N0332	~~	293	73	168	125	0,30	0,573	0,506 - 0,560	T21
	N0349	2	574	107	322	252	0,27	0,561	0.518 - 0.546	T21
	N0435		299	67	176	123	0,29	0,589	0,506 - 0,559	T21
	N0456		318	68	189	129	0,30	0,594	0,508 - 0,558	T21
	N0667	2	602	134	345	257	0,30	0,573	0,519 - 0,556	T21
	N0764	4	289	62	167	122	0,28	0,578	0,505 - 0,560	T21
	N0890	4	1206	272	657	549	0,31	0,545	0,526 - 0,539	T21
	N0891	~~	317	103	180	137	0,38	0,568	0,510 - 0,558	Т21
Normal	N0196	-	262	69	111	151	0,34	0,424	0,504 - 0,563	Euploide
	N0198	~	285	68	132	153	0,34	0,463	0,506 - 0,561	Euploide
	N0230	2	527	109	272	255	0,27	0,516	0,517 - 0,548	Euploide
	N0231	2	542	98	275	267	0,27	0,507	0,517 - 0,547	Euploide
	N0262	~~	295	57	144	151	0,32	0,488	0,506 - 0,560	Euploide
	N0463	*	263	70	120	143	0,33	0,456	0,504 - 0,563	Euploide
	N0527		292	56	137	155	0,32	0,469	0,506 - 0,560	Euploide
	N0619	****	281	60	138	143	0,31	0,491	0,505 - 0,561	Euploide
	N0625	4	291	60	134	157	0,33	0,460	0,507 - 0,560	Euploide
	N0651	2	566	118	287	279	0,30	0,507	0,519 - 0,547	Euploide
a n.º de	molécul	as de referen	cia por pocillo							
D Los V	alores de	e P _r se calcula	iron mediante la ecua	ción:						

por encima de la región inclasificable.

^c "Euploide" se asignó cuando la Pr estuvo por debajo de la región inclasificable; "T21" se asignó cuando la Pr estuvo

n.º de pocillos positivos para el alelo sobrerrepresentado (cr21) n.º de pocillos positivos solo para cr21 + n.º de pocillos positivos solo para Ref

		N.º total		N.º de rec	uento d	e pocillo	S		Análisis	de SF	'RT
Tipo	Casos	de paneles utilizados	N.º de pocillos informativos	Ambos positivos	Solo Cr 21	Solo Cr 1	ra T	P. ^a	Regió inclasific	n able (Clasificación⁰
T21	A0274 A2006		380 348	269 373	249 233	131	0,74	0,655	0,567 - 0,	,585 506	T21 121
	A2178		384	288	239	145	0.83	0,622	0.571 - 0	280	T21
	AS363A	 ,	364	109	244	120	0,30	0,670	0,551 - 0	573	T21
	AS9/9A	((-	256	492 83	188 756	89 200	27.00	0,734	0,590 - 0,	610 770	121
Normal	A0226		2010	000 075	105	102		0,00		104	Eucloide
	A0230		307	272	184	208 208	20,00	1000	0,279 - 0,0		Fundide
	A0255	m dima	378	222	195	183	0,01	0,100	0.568 - 0,	585	Euploide
	A0263	n dennen	254	43	127	127	0,25	0,500	0.541 - 0	576	Euploide
	AS365A	quum	372	135	192	178	0,53	0,519	0,558 - 0	578	Euploide
	AS463A	-from ,	413	64	186	168	0,36	0,525	0,550 - 0,	574	Euploide
	AS484A		316	271	194	178	0.00	0,522	0,573 - 0,	590	Euploide
	AS/60A		190	100	200	213	0,74	0,484	0,560 - 0,	584	Euploide
	AS780A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	152	29	159	121	10,730	0,503	0,548 - 0,	575	Euploide
	AJ004/A		004 201	٥٩	200			0,400	0,532 - 0,	2/2	Euploide
	AL200A		100	137	101	202		0,404	0,564 - 0,		Fundoide
	AS2282A		379	342	177	157	1.06	0.530	0,580 - 0,	200	Euploide
	AS2425A	-	354	9	64	64	0,10	0,500	0.516 - 0	591	Euploide
	AS2434A	 .	369	62	203	176	0,44	0,536	0,555 - 0,	575	Euploide
	A1119	farme d	256	123	185	100	0,48	0,523	0,555 - 0,	577	Euploide
	A1122		240	36	200	100	0,44 44,00	0,520	0,004 - 0,	0/0	Euploide
	A1132 A1180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	270	499	130	1130	2 7 2 7 2 7 0 7 0 7 0	0,200	0,004 - 0,00	200	Euploide
	A1275	a dama	359	95	201	172	0,43	0.539	0.554 - 0.	575	Fuploide
	A1375	- 4	359	55	190	169	0,35	0.529	0,550 - 0	573	Euploide
	A1390	 .	357	26	165	192	0,47	0,462	0,555 - 0,	577	Euploide
	A1399	-	371	114	197	174	0,47	0,531	0,556 - 0,	,577	Euploide
a n.º de	molécul	as de referenci	ia por pocillo								
D Los V	alores de	P _r se calcular	on mediante la ecu	ación:							

e pocillos positivos para el alelo sobrerrepresentado (cr21)	illos positivos solo para cr21 + n.º de pocillos positivos solo para Ref	isignó cuando la Pr estuvo por debajo de la región inclasificable; "T21" se asignó cuando la Pr estuvo	la región inclasificable. FIG. 19
n.° de pocillos po	n.° de pocillos positivos	^c "Euploide" se asignó cuand	por encima de la región incl

		N.º total	N.º total	N.º de reci	uento de p	ocillos			Análisis de SPR ⁻	L
Tipo	Casos	de paneles utilizados	de pocillos informativos	Ambos positivos	Solo Cr18	Solo Cr21	mr ^a	d,r	Región inclasificable	Clasificación^c
Euploide	N0230	,	380	243	181	199	0.86	0.476	0 .573 - 0.589	ш
	N0625	- -	370	225	179	191	0,78	0,484	0 ,569 - 0,586	ш
	N0651	~	358	206	192	166	0,67	0,536	0,564 - 0,583	ш
T18	N0828	~	543	256	329	214	0,95	0,606	0,579 - 0,590	T18
	N0830	~	346	353	240	106	0,92	0,694	0,574 - 0,592	T18
	N0936	~~	372	285	209	163	0,88	0,562	0,573 - 0,590	ш
	N1678	~	343	115	221	122	0,37	0,644	0,551 - 0,574	T18
	N1701	-	303	94	191	112	0,31	0,630	0,546 - 0,575	T18
- 0 10	-		:							
		de referencia no								

n.º de moléculas de referencia por pocillo
^b Los valores de P_r se calcularon mediante la ecuación:
n.º de pocillos positivos para el alelo sobrerrepresentado (cr18)
n.º de pocillos positivos solo para cr21 + n.º de pocillos positivos solo para cr18

υ

"Euploide" se asignó cuando la Pr estuvo por debajo de la región inclasificable; "T18" se asignó cuando la Pr estuvo por encima de la región inclasificable.

				N 0 1-1-1	N.° de I	recuento o	le pocillos			Análisis de	SPRT
Tipo	Casos	N.° de plac	a Ensayo	de pocillos informativos	Ambos positivos	Solo Cr 21	Solo Ref	mr ^a	Pa	Región inclasificable	Clasificación⁰
Normal	N0196		cr21/cr1	148	78 28	71	<u>17</u>	0,52	0,480	0,489 - 0,584	ш
			SUMA	300	141	150	150	0,44	0,500	0.512 - 0.560	⊃ш
	N0198	<u></u>	cr21/cr1	162	73	202	92	0.56	0.432	0.490 - 0.581	ш
		~ -	cr21/cr18 SUMA	183 345	68 141	93 163	90 182	0,53	0,508	0,498 - 0,575 0,517 - 0,557	⊃ц
	N0230	.	cr21/cr1	162	58	<u>8</u>	81	0.45	0.500	0.490 - 0.581	
		~ -	cr21/cr18	165	45	101 101	81 165	0,41	0,491	0,489 - 0,580	⊃ц
	N0231	~	cr21/cr1	173	53	<u>}</u>	60	0.47	0 468	0.494 - 0.578	1 LL
			cr21/cr18	166	51	85	81	0,42	0,512	0,490 - 0,580	
			SUMA	339	104	166	173	0,45	0,490	0,514 - 0,557	ш
	N0262		cr21/cr1	186	67	101	85	0,64	0,543	0,503 - 0,575	⊃:
			CrZ1/cr18	1/6 362	111 208	91 101	85 170	0,71	0,517	0,504 - 0,557	⊃=
		2	cr21/cr1	174	103	85	89	0,69	0,489	0,503 - 0,577	эш
			SUMA	536	311	277	259	0,68	0,517	0 ,523 - 0,552	ш
T21	N0234	~	cr21/cr1	193	68	108	85	0,51	0,560	0,500 - 0,573	
			cr21/cr18	178 371	65 133	92 200	86 171	0,50	0,517	0,496 - 0,576)=
		7	cr21/cr1	178	73	92	86	0,53	0,517	0,498 - 0,576	
			SUMA	549	206	292	257	0,51	0,532	0,524 - 0,549	
		5	cr21/cr18	178	62 268	95 287	83 340	0,47	0,534	0,495 - 0,576	⊃=
		с	cr21/cr1	184	108	103	81	0,68	0,560	0,504 - 0,575	
			SUMA	911	376	490	421	0,54	0,538	0,529 - 0,545	
		က	cr21/cr18 SUMA	198 1109	102 478	120 610	78 499	0,63 0,55	0,606 0,550	0,505 - 0,572 0,531 - 0,544	T21 T21

NORWEINTENDICA

Ð
σ
mediante
calcularon
se
os valores de P.
٥

	a ecuación:
	<u>.</u>
-	ediante
	F
	-
	calcularon
	Se
	∩്
	de l
	valores
	Los

ъ
ta
eD
es
ď
e
ē
ą
S
0
ale
5
а С
ar
ã
os
Ę
, SC
a
SC
ij
8
a
qe
۰.

o (cr21)

n.º de pocillos positivos solo para cr21 + n.º de pocillos positivos solo para Ref

c"Euploide" se asignó cuando la Pr estuvo por debajo de la región inclasificable; "T21" se asignó cuando la Pr estuvo por encima de la región inclasificable.

FIG. 21 (Cont.)

T21 T21 T21	2222254	121 U 121	T21 121
0,595 0,500 - 0,577 0,576 0,501 - 0,574 0,585 0,519 - 0,557	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,582 0,498 - 0,575 0,545 0,498 - 0,576 0,564 0,518 - 0,556	0,600 0,501 - 0,576 0,553 0,499 - 0,574 0,576 0,518 - 0,556
0,55 0,55 0,59	0,39 0,341 0,341 0,34 0,34 0,34	0,53 0,56 0,54	0,61 0,50 0,55
70 81 151	75 79 63 63 217 285	76 81 157	72 84 156
1103 213 213	83 87 86 170 356 356 356	106 97 203	108 104 212
109 82 191	46 46 108 66 43 217	82 83 165	103 68 171
173 191 364	158 324 149 641 641	182 178 360	180 188 368
cr21/cr1 cr21/cr18 SUMA	cr21/cr1 cr21/cr18 SUMA cr21/cr1 SUMA cr21/cr18 SUMA	cr21/cr1 cr21/cr18 SUMA	cr21/cr1 cr21/cr18 SUMA
~ ~	0 0 7 7	~~	
N0232	N0349	N0764	N0890

		N.º total corre	gido por Poisson	_	-
		Cromosoma 21	Cr de referencia	Pr	Clasificación
Euploide Caso 1	Ensayo 1	37	33	0,52345751	Sin clase
	Ensayo 2	31	42	0,42506276	Sin clase
	Ensayo 3	29	37	0,44198785	Sin clase
	Ensayo 4	39	26	0,6008691	Sin clase
	Placa 1 subtotal	136	138	0,495821	Sin clase
	Ensayo 1	32	25	0,56605316	Sin clase
	Ensayo 2	27	24	0,53165424	Sin clase
	Ensayo 3	10	17	0,3681535	Sin clase
	Ensayo 4	24	18	0,5626764	Sin clase
	Placa 2 subtotal	93	84	0,52474	Sin clase
	Total	229	223	0,507182	Euploide
Caso 2	Ensayo 1	45	35	0,56321585	Sin clase
	Ensayo 2	31	45	0,41245525	Sin clase
	Ensayo 3	32	22	0,59954763	Sin clase
	Ensayo 4	38	35	0,5228175	Sin clase
	Placa 1 subtotal	146	135	0,519153	Sin clase
	Ensayo 1	28	23	0,55272135	Sin clase
	Ensayo 2	23	22	0,51196923	Sin clase
	Ensayo 3	23	15	0,59688187	Sin clase
	Ensayo 4	29	26	0,5293349	Sin clase
	Placa 2 subtotal	102	85	0,545204	Sin clase
F	Placa 1+2 subtotal	248	221	0,529583	Sin clase
	Ensayo 1	17	25	0,4122149	Sin clase
	Ensayo 2	25	16	0,6027299	Sin clase
	Ensayo 3	13	26	0,3382802	Sin clase
	Ensayo 4	27	24	0,5316872	Sin clase
	Placa 3 subtotal	82	91	0,475775	Sin clase
Р	laca 1-3 subtotal	331	311	0,515069	Sin clase
	Ensayo 1	15	9	0,6269193	Sin clase
	Ensayo 2	14	15	0,4824155	Sin clase
	Ensayo 3	18	17	0,5146313	Sin clase
	Ensayo 4	21	18	0,5270080	Sin clase
	Placa 4 subtotal	69	60	0,532264	Sin clase
Р	laca 1-4 subtotal	399	372	0,517942	Sin clase

FIG. 22A

E	Ensayo 1	10	13	0,4337957	Sin clase
E	Ensayo 2	11	14	0,4390082	Sin clase
E	Ensayo 3	7	16	0,3018022	Sin clase
E	Ensayo 4	19	10	0,6579085	Sin clase
Pla	ca 5 subtotal	48	54	0,469951	Sin clase
	Total	447	426	0,5123444	Euploide
T21					
Caso 3	Ensayo 1	50	33	0,60012253	Sin clase
	Ensayo 2	56	47	0,54458055	Sin clase
	Ensayo 3	46	28	0,6196626	Sin clase
	Ensayo 4	56	36	0,6108731	Sin clase
	Total	208	144	0,59079	T21
Caso 4	Ensayo 1	56	36	0,61085513	Sin clase
	Ensayo 2	38	32	0,53906912	Sin clase
	Ensayo 3	40	24	0,62788068	Sin clase
	Ensayo 4	47	27	0,634511	Sin clase
	Total	180	119	0,603476	T21

FIG. 22B

FIG. 24B

82

Casos	N.º de paneles	Genotipo materno ^a	Genotipo fetalª	% Fetal esperado	A	G	odos Pos	A NETO	G NETO	% Fetal real ^b	Alelo Ref	m _r	SPRT ^d
1	1	AG	GG	15%	264 3	18	116	148	202	9,6	А	0,42	GG
2	1	AG	GG	15%	208 2	76	81	127	195	14,3	А	0,32	GG
3	1	AG	AG	15%	248 2	51	87	161	164	15,4	А	0 , 39	AG
4	1	AG	GG	15%	158 24	40	51	107	189	13,7	А	0,23	GG
5	1	AG	AG	15%	226 24	45	70	156	175	16,8	А	0,35	AG
6	1	AG	AG	15%	3193	19	130	189	189	18,1	А	0,54	AG
7	1	AG	AG	15%	254 2	79	94	160	185	19,8	А	0,40	AG
8	1	AG	GG	15%	296 3	63	144	152	219	15,7	А	0 , 49	GG
9	1	AG	AG	15%	2792	85	100	179	185	13,0	А	0,45	AG
10	1	AG	AA	15%	337 2	78	120	217	158	NAC	G	0,45	AA
1	1	AG	GG	20%	248 2	95	96	152	199	13,0	А	0,39	GG
2	1	AG	GG	20%	1912	89	79	112	210	19,5	А	0,29	GG
3	1	AG	AG	20%	2482	18	75	173	143	18,2	G	0,34	U
4	1	AG	GG	20%	158 2	57	59	99	198	25,9	A	0,23	GG
5	1	AG	AG	20%	2312	15	71	160	144	20,3	Ģ	0,33	AG
6	1	AG	AG	20%	281 2	83	98	183	185	26,3	A	0,46	AG
/	1	AG	AG	20%	256 2	31	88	108	143	22,7	G	0,36	AG
0	1	AG		20%	240 3	10	02	14Z 107	207	23,0	A	0,39	
9	1	AG	AG	2070	201 2	49 02	03 77	104	100	21,9 NAC	G	0,08	AG
10	1	AG	AA	20%	3032	03	11	220	120		G	0,01	AA
0	1	AG	GG	25%	244 3	04 1 A	99	140	205	15,7	A	0,38	GG
2	1	AG	GG	20%	2093	14	00 55	140	457	24,9	A	0,32	GG
3	1	AG	AG	20%	204 Z	12	20	149	107	20,0	A	0,31	AG
4	1	AG	GG	20%	100 2	90	/0	109	214	20,9	A	0,28	GG
5	1	AG	AG	25%	233 24	43	11	150	100	24,5	A	0,30	AG
6	1	AG	AG	25%	292.3	05	110	182	195	27,3	A	0,48	AG
(1	AG	AG	25%	2612	/5	95	166	180	22,5	A	0,42	AG
8	1	AG	GG	25%	236 3	27	96	140	231	26,7	A	0,37	GG
9	1	AG	AG	25%	2/12	80	104	167	1/6	25,2	A	0,44	AG
10	1	AG	AA	25%	243 1	54	46	197	108	NA	G	0,22	AA
1	1	AG	GG	50%	136 2	93	57	79	236	33,6	А	0,20	GG
2	1	AG	GG	50%	1633	58	78	85	280	45,8	А	0,24	GG
3	1	AG	AG	50%	200 2	08	53	147	155	55,7	А	0,30	AG
4	1	AG	GG	50%	137 3	56	66	71	290	53,0	А	0,18	GG
5	1	AG	AG	50%	247 24	46	91	156	155	57,7	G	0,39	AG
6	1	AG	AG	50%	21824	45	68	150	177	53,8	А	0,34	AG
7	1	AG	AG	50%	255 2	82	103	152	179	51,3	А	0,41	AG
8	1	AG	GG	50%	158 3	98	83	75	315	57,6	А	0,23	GG
9	1	AG	AG	50%	235 2	25	74	161	151	55,7	G	0,35	AG
10	1	AG	AA	50%	<u>317 1</u>	06	35	282	71	NAC	G	0,15	AA

^a A = Alelo mutado, G = Alelo silvestre.

^b El % de ADN fetal real se determina mediante el ensayo ZFY/X digital.

^c El feto es femenino y el ensayo ZFY/X no se puede aplicar.
^d La SPRT se realizó con el % fetal determinado mediante el ensayo ZFY/X excepto en el caso 10; U, sin clasificar.

	NO MARKANINA NA MARKANI					NAME AND DESCRIPTION OF A			1b	20			
Caso	Genotipo materno ^a	Genotipo fetal ^a	N.° de paneles	Σ	ZODC POS	S M S NETO	N NETO	% Fetal esperado	SPRT	% fetal mediante ZFY/X digita	SPRT	Alelo Ref	r B
-	ZZZZ ZZZZ		∽ <i>−−</i>	846 7 863 7 323 2 418 1	63 27% 48 28% 19 79 60 92	573 573 574 244 326	490 459 140 68	5% 25% 50%	ZZZZ	7,8% 9,6% 24,1%		zzzz	0,39 0,39 0,39 0,39
7	ZZZZ		- on on 	2559 2 ⁴ 895 9 277 29 273 29	176 887 07 36(63 97 95 101	7 1672 535 180 172	1589 547 166 194	5% 50% 50%		3,4% 9,7% 58,0%		zzz	00000 442 420 450 450 450
^a M = c b La SF c La SF	on deleció PRT se rea PRT se rea	n de CTTT, alizó con el 9 alizó con el 9 <u>Conotino</u>	N = sin d % esperad % fetal de	eleció do. termir	in de C iado mé	TTT. ∋diante el	ensayo Z	ZFYX; U,	sin clasif	icar. FI % fetal	G. 26	ŞA	
Caso	N. [°] de paneles	Genotipo materno ^a	Genotipo fetal ^a	se	retal perado	Z Z	POS	NETO	NETO	% retal real ^b	Aleio Ref	m _r S	PRT ^c
−0∞4∿∞∿∞©220	~~~~~~~~~~~~	ZZZZZZZZZZ SSSSSSSSSSSSSSSSSSSSSSSSSSS	XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	203 200 149 204 173 196 173 196 173 230 167 230 173 241 173 241 173 241 213 199 213 199	4400 4400 4402 402 402 402 402 402 402 4	145 97 97 1128 1128 1122 166 1122	142 1655 1533 1533 1538 1538 1538 1538 1538 15	290 290 2106 2128 2128 2128 2128 20 20 20 20 20 20 20 20 20 20 20 20 20	zzzzzzzzzz	00000000000000000000000000000000000000	
a M = c b El % (c La SF	on deleció de ADN fe 'RT se rea	tal real se d uizó con el 9	N = sin d eterminó % fetal de	eleció media termin	n de C inte el ∈ iado me	TTT. ∌nsayo <i>ZF</i> ∋diante el	XY digita ensayo z	al. ZFYX; U,	sin clasi	icar. FI(G. 26	В	

