
Lessons Learned w h e n Compar ing Shared
M e m o r y and Message Pass ing Codes on Three

M o d e r n Parallel Arch i tec tures

J. M. MacLaren and J. M. Bull

Centre for Novel Computing, Department of Computer Science,
University of Manchester, Oxford Road, Manchester M13 9PL, UK

email: {j on. m a c l a r e n , mark. b u l l } © c s , man. ac . uk

Abs t rac t . A serial Fortran 77 micromagnetics code, which simulates the
behaviour of thin-film media, was parMlelised using both shared memory
and message passing paradigms, and run on an SGI Challenge, a Cray
T3D and an SGI Origin 2000. We report the observed performance of
the code, noting some important effects due to cache behaviour. We
also demonstrate how certain commonly-used presentation methods can
disguise the true performance profile of a code.

1 I n t r o d u c t i o n

Micromagnetics is an area where simulation is of vital importance, enabling
electronic engineers to model and predict the behaviour of magnetic materials.
As in many other fields, accurate simulations are computat ionally demand ing - -
parallel computers offer a means of meeting these demands. A serial micromag-
netics code was parallelised in two ways, producing a Shared Memory code,
and a Message Passing code. This paper describes this procedure, and compares
the performance of the two codes on three different parallel architectures, and
a t tempts to explain these results as fully as possible .

In Section 2, the subject code and its problem domain are described briefly.
Details regarding relevant aspects of the target architectures are provided in Sec-
tion 3. Methods for writing parallel Fortran on these machines are then chosen.
Full details of how the parallel codes were implemented can be found in [7].

Results are presented for the codes in Section 4 -~these are found to be un-
usual for one platform in particular. The results are discussed in detail, with
explanations being given for seemingly anomalous behaviour, and the deficien-
cies of some common performance presentation practices are exposed. Finally,
in Section 5, we draw some conclusions.

2 Subject Code

The subject code simulates thin film media, such as hard-disk surfaces, which are
made up from layers of many magnetisable grains. The code models the shapes,

338

sizes and locations of the grains, and uses this information to predict how the
magnetic fields of the grains change in reaction to an applied, external magnetic
field. Each grain has its own magnetic field, and so influences every other grain,
making this an N-body problem. The interactions are solved by integrating N
Landau Lifshitz equations[8] of the form

dMi _ V (M~ x HT) -- a7 M~ x (M i x HT)
dt 1 + ~2 1 + ~2 IMil

for i = 1 , . . . , N , where N is the number of grains. Here M~ is the magnetic
moment of the ith grain, c~ and 7 are constants and the term HT contains the
contributions to the magnetic field from the externally applied field and from
the influence of the other grains.

To evaluate the term l i t precisely for every grain would have complexity
O(N2), so approximations are sought which yield acceptably accurate solutions
in a reasonable time. Extensive work in the field of N-body problems has gener-
ated methods for constructing approximations of N particle systems which are
of complexity O(NlogN) or better [2, 5]. These methods group particles into
a hierarchy of cells. An 'average' field is calculated for each cell, based on the
fields of the particles contained within it, and these are used when calculating
interactions with distant part icles-- the more distant the particle, the larger the
size of cell which is used.

The subject code uses an algorithm based upon the Barnes-Hut method [2],
but which is restricted to a 3-level (rather than n-level) hierarchy. The largest
cells are used to govern the problem size and shape, e.g. 4 x 4 denotes a square
problem area with 16 large cells (each of which are subdivided into 9 smaller cells,
which in turn contain a total of 48 magnetisable grains). At each iteration of the
code, the external field is incremented by a fixed amount and the system of ODEs
is integrated to convergence, so that the magnetic fields reach an equilibrium.
A variable order, variable step Adams method with error control is used for
the integration. The code uses 400 of these iterations to show how the overall
magnetic field of the particles follows a changing external field, giving a hysteresis
loop. Further details of the subject code can be found in [9].

3 T a r g e t M a c h i n e s a n d P r o g r a m m i n g M e t h o d s

There are many different kinds of parallel architecture in existence. Here, ma-
chines with different architectures are chosen in order to represent the currently
popular classes of parallel machines. The three chosen architectures, SGI Chal-
lenge, Cray T3D, and SGI Origin 2000 are each described briefly. Methods for
programming these machines are then selected.

The SGI Challenge is a true shared memory architecture, the main memory
being interleaved among the processors, which are connected using a simple
bus. Each processor has its own write-through level-one and level-two caches.
An invalidate protocol is used to achieve cache-coherency, providing sequential
consistency. The SGI Challenge machine which was made available had 512Mb

