
ASD: The Act ion Semantic  Descript ion Tools 

Arie van Deursen 1 and Peter D. Mosses 2 

1 CWI, P. O. Box 94079, 1090 GB Amsterdam, The Netherlands, arie~cwi.nl 
2 BRICS (Basic Research in Computer Science, Centre of the Danish National 
Research Foundation), Computer Science Department, Aarhus University, Ny 

Munkegade Bldg. 540, DK-8000 Aarhus C, Denmark, pdmosses@brics.dk 

I n t r o d u c t i o n  Action Semantics is a framework for describing the semantics of 
programming languages [6, 9]. One of the main advantages of Action Semantics 
over other frameworks is that it scales up smoothly to the description of larger 
practical languages, such as Standard Pascal [7]. An increasing number of re- 
searchers and practitioners are starting to use action semantics in preference to 
other frameworks, e.g., [8]. 

The ASD tools include facilities for parsing, syntax-directed (and textual) 
editing, checking, and interpretation of action semantic descriptions. Such facili- 
ties significantly enhance accuracy and productivity when writing large specifica- 
tions, and are also particularly useful for students learning about the framework. 
The notation supported by the ASD tools is a direct ASCII representation of 
the standard notation used for action semantic descriptions in the literature, as 
defined in [6, Appendices B-F]. 

Ac t ion  Seman t i c  Descr ip t ions  The notation used in action semantic descrip- 
tions can be divided into four kinds: 

M e t a - N o t a t i o n ,  used for introducing and specifying the other notations; 
Ac t ion  N o t a t i o n ,  a fixed notation used for expressing so-called actions, which 

represent the semantics of programming constructs; 
D a t a  N o t a t i o n ,  a fixed notation used for expressing the data processed by 

actions; and 
Specific N o t a t i o n ,  introduced in particular action semantic descriptions to 

specify the abstract syntax of the programming language, the semantic func- 
tions that map abstract syntax to semantic entities, and the semantic entities 
themselves (extending the fixed action and data notation with new sorts and 
operations). 

Compared with conventional frameworks for algebraic specification, the Meta- 
Notation is unusual in that it allows operations on sorts, not only on individual 
values. Its foundations are given by the framework of Unified Algebras [5]. More- 
over, so-called miz-fiz notation for operations is allowed, thus there is no fixed 
grammar for terms. This is a crucial feature, because action notation includes 
many infix combinators (e.g., A1 and then A2, which expresses sequencing of the 
actions A1, /12) and mix-fix primitive actions (e.g., bind I to D). The specific 
notation introduced by users tends to follow the same style. 



580 

The Meta-Notation's features include constructs for modu!arization , intro- 
duction of symbols, expressing functionalities, equations between sorts or indi- 
viduals, and the definition of abstract syntax. These constructs can be given in 
arbitrary order; one module can both introduce mix-fix symbols and use them 
in equations. 

The  P l a t f o r m  The ASD tools are implemented using the ASF+SDF system 
[1, 4, 3]. In the AsF+SDF approach to tool generation, the syntax of a language 
is described using the Syntax Definition Formalism SDF, which defines context- 
free syntax and signature at the same time. Functions operating on terms over 
such a signature are defined using (conditional) equations in the algebraic spec- 
ification formalism ASF. Typical functions describe type checking, interpreting, 
compiling, etc., of programs. These functions are executed by interpreting the al- 
gebraic specifications as term rewriting systems. Moreover, from SDF definitions, 
parsers can be generated, which in turn are used for the generation of syntax- 
directed editors. ASF+SDF modules allow hiding and mutual dependence. (The 
demonstration win start by explaining the basic features of ASF+SDF). 

The Asr+SDr system currently runs on, e.g., Spare (Solaris or SunOS) and 
Silicon Graphics workstations, and uses X-Windows. It is based on the Cen- 
taur system (developed by, amongst others, INRIA). Once one has installed the 
ASF+SDF system, all that is needed before using the ASD tools is to get a copy 
of the ASF+SDF modules implementing ASD and the user guide, together with 
a configuration file that specifies the effects of the various buttons in the ASD 
interface; these items are freely available by FTP. 

The  I m p l e m e n t a t i o n  ASD modules written in the Meta-Notation are trans- 
lated to ASFA-SDF modules, using the ASFA-SDF system itself. Concerning the 
unusual features of the Meta-Notation: The arbitrary mix-fix operations are 
catered for by a two-phase generation scheme. First, a very basic grammar (es- 
sentially recognizing key-words, lists of tokens, and well-balanced brackets) is 
used to parse Meta-Notation modules. Using this first parse, the Meta-Notation 
constructs introducing symbols, functionalities, and grammars are further pro- 
cessed and translated to ASFA-SDF modules. These generated ASFA-SDF modules 
are then used to analyse the complete ASD module again. Sort operations in the 
Meta-Notation are dealt  with by generating (in some cases) extra sorts in the 
ASF-lt-SDF module. 

Ma in  Fea tures  The main features of ASD are centered around a syntax- 
directed editor containing an ASD module. A user writing an ASD module can 
use the buttons in this editor to check this module or test the grammar and 
semantic functions contained in it. The features include: 

S Y M B O L  Checking:  By starting the SYMBOLS phase, it is checked whether 
all symbols used in the ASD module were indeed introduced, and whether 
their use conforms to the arity specified. In this SYMBOLS phase, an 


