
Leveraging Transparent Data Distribution in

OpenMP via User-Level Dynamic Page
Migration�

Dimitrios S. Nikolopoulos1, Theodore S. Papatheodorou1,
Constantine D. Polychronopoulos2, Jesús Labarta3, and Eduard Ayguadé3

1 Department of Computer Engineering and Informatics
University of Patras, Greece

{dsn,tsp}@hpclab.ceid.upatras.gr
2 Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
cdp@csrd.uiuc.edu

3 Department of Computer Architecture
Technical University of Catalonia, Spain

{jesus,eduard}@ac.upc.es

Abstract. This paper describes transparent mechanisms for emulating
some of the data distribution facilities offered by traditional data-parallel
programming models, such as High Performance Fortran, in OpenMP.
The vehicle for implementing these facilities in OpenMP without mod-
ifying the programming model or exporting data distribution details to
the programmer is user-level dynamic page migration [9,10]. We have im-
plemented a runtime system called UPMlib, which allows the compiler to
inject into the application a smart user-level page migration engine. The
page migration engine improves transparently the locality of memory ref-
erences at the page level on behalf of the application. This engine can ac-
curately and timely establish effective initial page placement schemes for
OpenMP programs. Furthermore, it incorporates mechanisms for tuning
page placement across phase changes in the application communication
pattern. The effectiveness of page migration in these cases depends heav-
ily on the overhead of page movements, the duration of phases in the
application code and architectural characteristics. In general, dynamic
page migration between phases is effective if the duration of a phase is
long enough to amortize the cost of page movements.

� This work was supported by the E.C. through the TMR Contract
No. ERBFMGECT-950062 and in part through the IV Framework (ESPRIT
Programme, Project No. 21907, NANOS), the Greek Secretariat of Research and
Technology (Contract No. E.D.-99-566) and the Spanish Ministry of Education
through projects No. TIC98-511 and TIC97-1445CE. The experiments were con-
ducted with resources provided by the European Center for Parallelism of Barcelona
(CEPBA).

M. Valero et al. (Eds.): ISHPC 2000, LNCS 1940, pp. 415–427, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



416 Dimitrios S. Nikolopoulos et al.

1 Introduction

One of the most important problems that programming models based on the
shared-memory communication abstraction are facing on distributed shared-
memory multiprocessors is poor data locality [3,4]. The non-uniform memory
access latency of scalable shared-memory multiprocessors necessitates the align-
ment of threads and data of a parallel program, so that the rate of remote
memory accesses is minimized. Plain shared-memory programming models hide
the details of data distribution from the programmer and rely on the operat-
ing system for laying out the data in a locality-aware manner. Although this
approach contributes to the simplicity of the programming model, it also jeop-
ardizes performance, if the page placement strategy employed by the operating
system does not match the memory reference pattern of the application. Increas-
ing the rate of remote memory accesses implies an increase of memory latency
by a factor of three to five and may easily become the main bottleneck towards
performance scaling.

OpenMP has become the de-facto standard for programming shared-memory
multiprocessors and is already widely adopted in the industry and the academia
as a simple and portable parallel programming interface [11]. Unfortunately, in
several case studies with industrial codes OpenMP has exhibited performance
inferior to that of message-passing and data parallel paradigms such as MPI and
HPF, primarily due to the inability of the programming model to control data
distribution [1,12]. OpenMP provides no means to the programmer for distribut-
ing data among processors. Although automatic page placement schemes at the
operating system level, such as first-touch and round-robin, are often sufficient
for achieving acceptable data locality, explicit placement of data is frequently
needed to sustain efficiency on large-scale systems [4].

The natural means to surmount the problem of data placement on distributed
shared-memory multiprocessors is data distribution directives [2]. Indeed, ven-
dors of scalable shared-memory systems are already providing the programmers
with platform-specific data distribution facilities and the introduction of such
facilities in the OpenMP programming interface is proposed by several ven-
dors. Offering data distribution directives similar to the ones offered by High-
performance Fortran (HPF) [7] in shared-memory programming models has
two fundamental shortcomings. First, data distribution directives are inherently
platform-dependent and thus hard to standardize and incorporate seamlessly in
shared-memory programming models like OpenMP. OpenMP seeks for portable
parallel programming across a wide range of architectures. Second, data distri-
bution is subtle for programmers and compromises the simplicity of OpenMP.
The OpenMP programming model is designed to enable straightforward par-
allelization of sequential codes, without exporting architectural details to the
programmer. Data distribution contradicts this design goal.

Dynamic page migration [14] is an operating system mechanism for tuning
page placement on distributed shared memory multiprocessors, based on the
observed memory reference traces of each program at runtime. The operating
system uses per-node, per-page hardware counters, to identify the node of the


