
ON ATTRIBUTE

V.N.Agafonov

Institute of mathematics,

Novosibirsk 90, USSR

A c o m m o n mechanism for specifying a programming language L can

be viewed as consisting of two components. The first one is a context

free (CF) grammar G which generates a broader language L(G)~ L. The

second one contains more or less formal rules which take into account

so called context conditions and select from language L(G) strings of

language L. In the recent literature on formal languages much atten-

tion is paid to the following way of specifying languages which are

not context free. A CF grammar G is supplied with some type of device

which controls applications of production rules in the course of deri-

vations. This control device C picks out, from the set of all deriva-

tions, a subset called control set. A control device grammar G'=(G,C)

defines language L(G')~ L(G) in such a way that a string ~ L(G)

belongs to L(G') iff its derivation is contained in the control set.

Such &~ammars include, among others, matrix, programmed and condition-

al grammars (see the survey [9]). Restrictions which are imposed on

derivations in these grammars are but poorly related to semantics of

programming languages and corresponding context conditions. In this

paper a method for specifying languages which are not CF is suggested

and investigated in which restrictions are computed in such a way that

was previously used for defining semantics of programming languages

[5, 6]. This method is based on the notion of attribute CF grammar

introduced by Kmuth [6] for specifying semantics of CF languages. In

[7] F~uuth's notion was transformed into the concept of attributed tran-

slation (AT) grammar adapted for specifying translations of CF langua-

ges whose terminal strings are supplied with attributes.

I. An attribute generative (AG) grammar G is a pair (G' ,C) where

G' is a CF grammar (called the base of the grammar G) and C is a cont-

rol device. The grammar G'= (N,T,R,S) is supposed to be reduced, the

170

start nonterminal SEN does not appear on the right-hand side of any

production rule r ~ R, and for any nonterminal A~ N there does not

exist a nontrivial derivation A~A. The control device C = (A,V,F,~)

is defined as follows. I) A is a function which associates a finite

set A(X) of attributes to each nonterminal X~N. Each A(X) is parti-

tioned into two disjoint sets, the synthesized attributes Asyn(X) and

the inherited attributes Ainh(X). It is supposed that Ainh~S)=t ~.

A set A' = • A(X) will be called attribute alphabet 2) V is a func- XEN
tion which associates a set of values to each attribute ~EA. Let the

set~A,V(~) be set of strings in a finite alphabet. 3) F is a finite

set of control functions which is defined in the following way. Let

the r-th production of the set R (I~r~m) be X 0 -~oXi~X2...Xmr~mr

where ~/ET , Xi~ ~o Then a control function set F r = ~frj~l I~j~m r

and ~6Asyn(X j) if ~ = O, ~Ainh(Xj) if j > O~ corresponds to this

and F = I ~ m Fr" The function f is a recursive production map- rj~
ping of V(d~x,..xV(~ into V(~), for some t = t(r,j,~)~O, where each

~=~r,j,~) is an attribute of some X~ , for O~k i = ki(r,j,~)~mr,

I~ i~t. a)~As_(S) is a special attribute for which V(~) = ~O,I~

and O~X ~V S A(X)" A language L(G) ~ L(G') generated by the AG grammar

G is defined as follows. Let ~L(G') and t be a derivation tree of

in the CF grammar G'. If each node of the tree labeled by a nontermi-

nal X is labeled also by attributes of the set A(X) then we obtain the

corresponding attributed tree. Now, by means of control functions frj~

the computation of the value of each attribute in the tree should be

attempted. If this can be done and the value of the attribute ~ is I

then the tree t is accepted. The string ~ belongs to L(G) iff ~ has

an accepted tree.

In the sequel AG grammars are supposed to be well defined (G is

well defined [6] if for any attributed tree values of all atributes

at all nodes can be defined).

The difference between AG grammars and Knuth grammars is that

in an AG grammar I) terminals have no attributes (or if you like the

terminal itself is its only own attribute) and 2) there is a special

attribute whose value at the root of a given tree tells us whether

this tree is accepted or not. These differences reflect different view-

points. An AG grammar is intended for generating a language which is

not CF and so satisfies some context conditions whereas a Knuth gram-

mar is intended for assigning values (meanings) to strings of a CF

language. It should also to be noted that in the definition of AG gram-

mar values of attributes are only strings in a finite alphabet.

