
Efficient Combinator Parsers

Pieter Koopman? and Rinus Plasmeijer

Computer Science
Nijmegen University, The Netherlands
pieter@cs.kun.nl, rinus@cs.kun.nl

Abstract. Parser combinators enable the construction of recursive de-
scent parsers in a very clear and simple way. Unfortunately, the resulting
parsers have a polynomial complexity and are far too slow for realistic
inputs. We show how the speed of these parsers can be improved by one
order of magnitude using continuations. These continuations prevents the
creation of intermediate data structures. Furthermore, by using an exclu-
sive or-combinator instead of the ordinary or-combinator the complexity
for deterministic parsers can be reduced from polynomial to linear. The
combination of both improvements turn parser combinators from a beau-
tiful toy to a practically applicable tool which can be used for real world
applications. The improved parser combinators remain very easy to use
and are still able to handle ambiguous grammars.

1 Introduction

Parser combinators [3,6,5,8] are a beautiful illustration of the use of higher order
functions and currying. By using a small set of parser combinators it becomes
possible to construct parsers for ambiguous grammars in a very elegant and clear
way. The basis of parser combinators is the list of successes method introduced
by Wadler [13]. Each parser yields a list of results: all successful parsings of the
input. When the parser fails this list is empty. In this way it is very easy to
handle ambiguous parsers that define multiple ways to parse a given input.

Despite the elegant formulation and the ability to handle ambiguous gram-
mars, parser combinators are rarely used in practice. For small inputs these
parsers work nice and smoothly. For realistically sized inputs the parsers consume
extraordinary amounts of time and space due to their polynomial complexity.

In this paper we show that the amounts of time and memory required by the
combinators parsers can drastically be reduced by improving the implementation
of the parser combinators and providing a little more information about the
grammar in the parser that is written. This additional information can reduce the
complexity of the parser from polynomial to linear. Although the implementation
of the parser combinators becomes more complex, their use in combinator parsers
remains as simple as in the original setting.

This paper starts with a short review of classical parser combinators. The
proposed improvements are presented hereafter. We use a running parsing ex-
ample to measure the effect of the improvements.
? Sponsored by STW project NWI.4411

H. Hammond, T. Davie, and C. Clack (Eds.): IFL’98, LNCS 1595, pp. 120–136, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Efficient Combinator Parsers 121

2 Conventional Parser Combinators

There are basically two approaches to construct a parser for a given grammar[1].
The first approach is based upon the construction of a finite state automaton
determining the symbols that can be accepted. This approach is used in many
parser generators like yacc [7,1,10], Happy [4] and Ratatosk [9]. In general the
constructed parsers are efficient, but cumbersome to achieve and there might
be a serious distance between the automaton accepting input tokens and the
original grammar. If we use a generator there is a barrier between parsing and
using the parsed items in the rest of the program.

The second approach to achieve a parser is to create a recursive descent
parser. Such a parser follows the rules of the grammar directly. In order to ensure
termination the grammars should not be left-recursive. Parser combinators are a
set of higher order functions that are convenient in the construction of recursive
descent parsers. The parser combinators provide primitives to recognize symbols
and the sequential or alternative composition of parsers.

The advantages of parser combinators are that they are easy to use, elegant
and clear. Due to the fact that the obtained parsers directly correspond to the
grammar there is no separate parser generator needed. Since parser combinators
are ordinary functions they are easy to understand and use. It is easy to extend
the set of parser combinators with new handy combinators whenever this is
desired. The full power of the functional programming language is available to
construct parsers, this implies for instance that it is possible to use second order
grammars. Finally, there are no problems to transfer parsed items from the
parser to the manipulation functions.

Conventional parser combinators are described at many places in the litera-
ture e.g. [3,6,5,8]. Here we follow the approach outlined in [8], using the functional
programming language Clean [11]. We restrict ourselves to a small, but complete
set of parser combinators to illustrate our improvements.

A Parser is a function that takes a list of input symbols as argument and
produces a ParsResult. A ParsResult is the list of successes. Each success is a
tuple containing the rest of the list of input symbols and the item found. The
types Parser and ParsResult are parameterized by the type of symbols to be
recognized, s, and the type of the result, r.

:: Parser s r :== [s] -> ParsResult s r

:: ParsResult s r :== [([s],r)]

In the examples in this paper we will use characters, Char, as symbols in the
lists of elements to be parsed, but in general they can be of any datatype.

2.1 Basic Parser Combinators

The basic combinator to recognize a given symbol in the input is symbol. This
parser combinator takes the symbol to be recognized as its argument. When the
first token in the input is equal to this symbol there is a single success. In all


