
A Tool to Reengineer Legacy Systems to 
Object-Oriented Systems 

Hernan Cobo, Virginia Mauco, Maria Romero, and Carlota Rodriguez 

Institute de Sistemas de Tandil 
Depto. Computacion y Sistemas - Fax;. Cs. Exactas 

Universidad NacioneJ del Centre de la Pcia. de Bs. As. - Argentina 
{hcobo, vmauco}Qexa.unicen.edu.aa-

Abstract. Software evolution is an inevitable process for software sys­
tems. Repeated changes alter the structure of a system, rapidly degrad­
ing it and making the system "legacy". Reengineering seems to be a 
promising approach to upgrade these systems according to the latest 
technologies. This paper describes a tool to reengineer procedural sys­
tems written in Cobol, Fortran, C or Pascal, into object-oriented ones 
written in Smalltalk. The prototype developed identifies potential classes 
automatically, but allows user intervention to work up conflicts. 

1 Introduction 

A meaningful number of the systems used nowadays are often many years old and 
have become reliable over the years. These systems are called legacy and may be 
defined as large software systems people do not know how to cope with, but that 
are vital to organisations since they may be the only place where organisations 
business rules exist [3]. Usually, during the maintenance process, the structure 
and the documentation of systems deteriorate. Something has to be done to keep 
these systems up to date and the decision on what to do is critical because they 
may represent years of accumulated experience and knowledge. 

The object-oriented paradigm is the predominant software trend of the 
1990's. According to literature, it provides a unifying model for various phases 
of development, facilitates system integration, allows prototyping, encourages 
software reuse, eases system maintenance and provides support for extensibility 
[21]. An object-oriented system is best developed starting with object-oriented 
analysis. Nevertheless, this may be difficult sometimes because of the existence 
of many legacy systems. Then, a need to reverse engineer and reengineer exist­
ing legacy systems in order to keeping them up with the latest technologies has 
arisen. There has been a lot of work done to improve legacy code quality because 
it has a great impact on legacy systems comprehension, maintenance and evo­
lution. All these efforts may be referred to as software reengineering activities 

[1]-
Among the proposals aiming at improving software quality and understand­

ing code restructuring, program modularization and migration from imperative 



A Tool to Reengineer Legacy Systems 187 

programs to object-oriented ones can be mentioned. Restructuring is one of 
the oldest and most refined reengineering techniques [1]. The modification of a 
program control structure to make it follow the rules imposed by structured pro­
gramming, is one of its associated meanings. Many algorithms have been defined 
to restructure programs by introducing new variables in them but they always 
change program topology [5], [19]. In contrast, cliche-based methods can fail in 
unexpected situations [7], [16], [24]. 

Program modularization consists of decomposing a monolithic program or 
module and replacing it with a functionally equivalent collection of smaller mod­
ules. Modules should have high cohesion and low coupling. Several methods have 
been defined to elicit functions from programs and, according to each work goals, 
these functions are analysed as candidates for reuse or to rewrite the program 
in a modular way [6], [9], [18]. Many of these works employ program slicing, 
a program decomposition method well suited for isolating functionalities in a 
program [27]. 

The migration from imperative programs to object-oriented ones points to 
construct a hierarchy of classes that perform the same computations as the orig­
inal procedures. Each class encapsulates data methods for processing it. Several 
techniques have been proposed to identify object-like features in imperative pro­
grams [13], [17], [20]. The one defined in [20] introduces two methods, one based 
on global and persistent data, and the other, based on the types of formal pa­
rameters and return values. Other approaches pointed to programs written in 
a specific programming language, like Fortran [23], [26], Cobol [4], [25] or RPG 
[14]. All these works agree in that transforming an imperative program into an 
object-oriented one is a difficult task, which cannot be completely automated. 

This paper describes the last step of a project whose aim is to develop a tool 
to transform legacy systems in order to simplify and improve their maintenance 
and understanding, taking benefit from object-oriented technology. 

As part of this research, a prototype has been developed which implements 
the algorithms to restructure, modularise and extract objects automatically. Hu­
man intervention is allowed in order to improve the results. 

2 The Project 

This section presents a project that transforms legacy systems in order to en­
hance their architecture (Fig. 1). To achieve this, it is necessary to capture and 
recover all the knowledge extracted from procedural programs and store it in a 
higher level structure, which can be analysed and manipulated. Prom this struc­
ture, objects and classes are recognised and extracted to rewrite the program 
in an object-oriented language. Besides preserving the original functionality, the 
new code generated should be structured, legible, modular, reusable, and more 
easily maintainable. The only source of information is the procedural source 
code of the programs and its quality has a great influence on the quality of the 
recovered objects. To minimise this influence, programs are first syntactically 
restructured and modularised. 


