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Abstract. Modular exponentiation in a finite field is the basic compu-
tation involved in most public key crypto systems, such as Diffie-Hellman
key exchange, ElGamal, etc. The current paper presents a new parallel
architecture whereby the modular multiplication and squaring can be
processed simultaneously in GF(2™) in m clock cycles using a cellular
automata. Since the proposed cellular automata architecture is simple,
regular, modular, cascadable, it can also be utilized efficiently for the
implementation of VLSI.

1 Introduction

With the recent rapid expansion of the internet it is now possible to readily
obtain various forms of information and information services. However, unfor-
tunately, potentially dangerous and destructive malfunctions also accompany
such convenience and profitability. Accordingly, this has increased the need for
information protection, resulting in the development of many types of security
technologies and an increased public interest in crypto systems. For the past
30 years, studies on finite fields have been conducted in many areas, including
crypto systems [I], and most public key crypto systems, such as Diffie-Hellman
key exchange and ElGamal, are based on modular exponentiation computations
in a finite field [2], [3]. Such modular exponentiation uses a modular multiplier
as the basic structure for its implementation. The Elliptic Curve Cryptosys-
tem is also based on constant multiplication [4]. Examples of the algorithms
used to implement multipliers include the LSB-first multiplication algorithm [5],
MSB-first multiplication algorithm [6], and Montgomery algorithm [7]. Previous
research and development on modular multiplication is as follows: First, for a
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one-dimensional systolic array, in the case of an LSB-first algorithm, the modu-
lar multiplication is performed within 3m clock cycles using m cells [5]. While in
the case of an MSB-first algorithm, the modular multiplication can be performed
within 3m clock cycles using m cells [6]. With an LFSR structure, the modular
multiplication can be performed within 2m clock cycles using m cells [10], the
modular multiplication can be performed within m clock cycles using m cells and
the modular squaring can be performed within m clock cycles using m cells [11].
The structures proposed in [5], [6], [T0], [T2] are simple modular multipliers. How-
ever, when computing exponentiation, such structures must be repeated twice
for modular multiplication and squaring. In case of [11], the structures of mul-
tiplication and squaring must be used together to simultaneously perform the
modular multiplication and squaring.

The purpose of the current paper is to reduce the time and the space, and to
investigate and develop a simple, regular, modular, and cascadable architecture
for the VLSI implementation of exponentiation in GF(2™) based on cellular
automata, which is the basic computation in any public key crypto system.
A cellular automata, particularly a 3-neighbor additive cellular automata, can
satisfy such requirements very well and has already been applied in many areas,
such as the encryption, decryption, etc. of a crypto-system [8], [9].

Accordingly, this paper proposes a new parallel architecture in which a 3-
neighbor cellular automata is used to simultaneously process modular multi-
plication and squaring for effective exponentiation in GF(2™). The proposed
architecture can simultaneously perform multiplication and squaring in m clock
cycles using m cells, 3m AND gates, 3m —1 XOR gates, and 5m registers. Based
on the properties of LSB-first multiplication, the parts of modular multiplication
and squaring that can be performed in common are identified, then the remain-
der is processed in parallel. As a result, exponentiation can be performed much
more efficiently as regards time and space compared to repeating the structure
as proposed in [9], [6], [10] and can be performed much more efficiently as regards
space compared to repeating the structure as proposed in [11] [12].

The remainder of the paper is as follows: Chapter 2 gives an overview of
the concept of cellular automata, while Chapter 3 reviews the structure of ex-
ponentiation in GF(2™). Chapter 4 introduces the structure of the proposed
multiplier /squarer for efficient exponentiation using a cellular automata. Chap-
ter 5 gives an analysis. Finally, Chapter 6 offers some conclusions.

2 Cellular Automata(CA)

Cellular automata consist of numbers of interconnected cells arranged spatially
in a regular manner [8], [9]. The next state of a cell depends on the present states
of ’k’ of its neighbors, for a k-neighborhood CA. Example of one rule of a 2-state
3-neighbor 1-dimensional CA is shown below.

State of neighbor: 111 110 101 100 011 010 001 000
Next state: 0 1 0 1 1 0 1 0 (Rule90)



