
Taking Advantage of the SHECS-Based Critical
Sections in the Shared Memory Parallel

Architectures

Tomasz Madajczak1,2

1 Gdansk University of Technology, Faculty of Electronic, Telecommunication and
Informatics, Dep. of Computer Systems Architectures, ul. Narutowicza 11/12,

80-233 Gdansk, Poland
2 Intel Technology Poland Sp. z o.o. ul. Slowackiego 173, 80-298 Gdansk, Poland

Tomasz.Madajczak@intel.com

Abstract. This document presents a new method for implementing crit-
ical sections in the shared memory parallel architectures such as mul-
tithreaded multiprocessors integrated on a die. The method bases on
Shared Explicit Cache System (SHECS) implemented in the multiproces-
sor. The document presents the concept of system architecture equipped
with SHECS, the algorithm to implement operating system or appli-
cation level locking service, and the results obtained with the method
simulation on the network processor Intel1 IXP2800.

1 Introduction

The Multicore Shared Memory Parallel Architectures are becoming very popular
thanks to mass availability of the multicore SMP (symmetric multi-processors)
systems such as multicore IA (Intel Architecture) processors and multicore spe-
cialized RISC systems such as the IXA (Intel Exchange Architecture) network
processors. The level of parallelism in such systems is enhanced by the hardware
threading technologies such as simultaneous multithreading (SMT) and switch-
on-event multithreading (SoEMT), respectively. Efficient use of shared resources
is always connected with the need of a critical section implementation. Multicore
and multiprocessors systems have the ability to rely on specific hardware support
and capabilities to synchronize the particular processor cores within the die or
the integrated platform. Hardware techniques for critical sections are available
in the network processors and they are very efficient, but not always universal
[1]. Software techniques are still available for the SMP systems and for cases
when the hardware support isn’t flexible.

Thus, there is a need for a flexible hardware method that would address the
perspectives of multithreaded multiprocessors systems. This document presents
such a new method based on the use of SHECS being an additional, manageable,
explicit cache system. It is derived from the Folding method [2].
1 Intel is a registered trademark of Intel Corporation in the United States and other

countries.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 26–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Taking Advantage of the SHECS-Based Critical Sections 27

1.1 Folding Method in Network Processors

The Folding method was introduced in the network processors Intel IXP2000 [3]
as a universal method for programming software critical section for the threads
of a single microengine (that is a RISC processor). The method uses the micro-
engine’s internal local memory and CAM (content addressable memory) lookup
engine that comprises an internal explicit cache system managed with software.

Folding caches the read data to be modified. It manages with the following
critical section scenario that firstly reads a resource, then modifies it, and finally
writes back the modified data. The read resource is stored within this system and
considered locked if its use counter is greater than 0. Folding may occasionally
lost the order of threads entering the critical section, because in case of finding
locked entry the algorithm repeats the entering. This order lost means that the
critical section may be starving for some threads, as they have no luck and
they always repeat entering. Extending the Folding method onto a number of
processors is not an easy task and also starving critical sections aren’t useful in
the general purpose parallel systems.

All these issues are solved in the SHECS-based method. It bases on the new
explicit cache memory system architecture that eliminates the Folding’s limi-
tations and disadvantages. Thus, the SHECS-based method is more universal,
flexible, and may have more applications.

1.2 Cache Coherency

The Parallel Shared Memory Architectures built with using general purpose
processors with internal caches may have implemented a mechanism for enforc-
ing the coherence of internal caches. Hardware solutions for this problem are
presented in [4][5], while software algorithms are discussed in [6][7]. Generally
there are two approaches: implicit methods that hide the problem for the system
user or software, and explicit methods assuming that the system user or software
is aware of the problem, treats cache as a normal shared resource and solves it
with cache-locking [8][9] or other locking method. The introduced method ad-
dresses the problem in the similar way as explicit methods. It assumes explicit
locking with integrated data transfers of the most recent cached data value and
additionally it copes with hardware threading.

2 The Concept of SHECS-Based Critical Sections

2.1 SHECS Architecture

SHECS consists of CAM banks controller, a number of CAM banks and some
shared fast SRAM memory for caching2. Fig. 1 shows that SHECS should
be connected in a similar way as shared memory to the parallel processors
P1-PN. The key assumption is providing a number of CAM banks that can
2 The concept of Shared Explicit Cache System is patent pending in the U.S. patent

office.


