
Rapid Distribution of Tasks on a
Commodity Grid

Ladislau Bölöni1, Damla Turgut1, Taskin Kocak1, Yongchang Ji2,
and Dan C. Marinescu2

1 Department of Electrical and Computer Engineering
2 School of Computer Science,
University of Central Florida,

Orlando, FL 32816
{lboloni, turgut, tkocak}@cpe.ucf.edu,{yji,dcm}@cs.ucf.edu

Abstract. The global internet is rich in commodity resources but scarce
in specialized resources. We argue that a grid framework can achieve bet-
ter performance if it separates the management of commodity tasks from
the tasks requiring specialized resources. We show that the performance
of task execution on a commodity grid is the delay of entering into exe-
cution. This effectively transforms the resource allocation problem into
a routing problem.

We present an approach in which commodity tasks are distributed to
the computation service providers by the use of a forwarding mesh based
on randomized Hamilton cycles. We provide stochastically weighted algo-
rithms for forwarding. Mathematical analysis and extensive simulations
demonstrate that the approach is scalable and provides efficient task
allocation on networks loaded up to 95% of their capacity.

1 Introduction

The computational grid (and the internet at large) is rich in commodity resources
but scarce in specialized resources. There is a large number of PC class hardware
(Windows and Apple desktops, Unix and Linux workstations) with typically very
low resource utilization. On the other hand, there is a scarcity of specialized re-
sources, such as supercomputers, vector processors, specialized input and output
devices and so on. Typically, the need for specialized resources is dictated by the
nature of the application and, less often, by the chosen implementation.

If we look at the state of the art for distributed high performance computing,
we see two different approaches:

– The computational grid community develops software which manages scarce
specialized resources. Although the vision of grid computing was refined sev-
eral times ([4] → [6] → [5] → [2]) the main deployment of grid applications
are for projects with expensive specialized hardware. Examples of testbeds
are the grid projects of the National Partnership for Advanced Computa-
tional Infrastructure (NPACI) and National Computational Science Alliance

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 721–730, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



722 L. Bölöni et al.

(NCSA) in the US or the European DataGrid project. The grid computing
projects developed at IBM, Sun and Hewlett Packard are also largely fall in
this category.

– A number of distributed computing initiatives are exploiting the abundance
of commodity resources for solving highly parallelizable applications. Exam-
ples are SETI@Home [16], Folding@Home [13], the cryptographic challenges
sponsored by RSA laboratories [15] or the Mersenne prime search [14]. The
Berkeley Open Infrastructure for Network Computing (BOINC, [1, 12]) pro-
poses to provide a framework more general than the SETI@Home project,
which can be shared by a number of projects following this pattern of inter-
action. These projects, which rely on donated processor time are sometimes
referred as “public computing”.

Both approaches target grand challenge applications. The applications tar-
geted by the grid computing community however, are more general than the
typical public computing approaches. On the other hand, SETI@Home and the
related applications are highly successful in harnessing large amount of cheap
computing resources.

We note that many high performance computing workflows contain both
specialized and commodity tasks. For the specialized tasks, the best thing the
workflow engine can do is to queue them at the appropriate specialized providers,
for instance through a system such as Condor [11]. For commodity subtasks
however, this approach is not appropriate. There are a very large number of
community service providers (on the order of millions), which makes it difficult
to deploy any kind of centralized distribution system.

We note that if a task is executed on a commodity hardware, the main de-
termining factor of the termination time is the time at which the task is taken
into execution. Furthermore, given the abundance of the commodity resources,
it is likely that if a task needs to be queued at a certain host, it is almost sure
that somewhere on the internet there is a task which can take it into execution
immediately. Under this assumption, the task allocation problem is reduced to
a specialized routing problem. A similar idea is proposed in [7, 3]. The Wire
Speed Grid Project at the University of Chalmers [17], proposes an architec-
ture in which the task allocation is performed in a hardware accelerated manner
on the network routers. As our tasks have a relatively long execution time, an
application layer implementation would provide the same benefits.

2 Commodity Components in Grand Challenge
Applications

Grand challenge applications range from the application of relatively simple al-
gorithms on massive amounts of data (such as the SETI@Home project), to
exhaustive search of a complex combinatorial problems with small amounts of
input and output data (e.g. cryptographic analysis). Many of the high perfor-
mance applications however, are what we call grid workflows. Problems with


