
A Practical Approach to
Automatic Parameter-Tuning of Web Servers

Akiyoshi Sugiki1, Kenji Kono2, and Hideya Iwasaki1

1 Department of Computer Science,
The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, Tokyo, Japan
sugiki@zeus.cs.uec.ac.jp, iwasaki@cs.uec.ac.jp

2 Department of Information and Computer Science,
Keio University, 3-14-1 Hiyoshi,

Kohoku-ku, Yokohama, Japan
kono@ics.keio.ac.jp

Abstract. This paper presents a practical approach to automatically tuning the
parameters of the Apache Web server. In particular, two significant parameters,
KeepAliveTimeout and MaxClients, are dealt with. The notable features
of our approach are twofold. First, it is easy to deploy because no modifications to
Apache or the underlying operating system are required. Second, our approach is
based on the detailed analysis on how each parameter affects the server’s behav-
ior. Experimental results demonstrate that our prototype works well on different
workloads; it can discover almost optimal values and quickly adapt to workload
changes.

1 Introduction

Modern Internet servers are growing rapidly in size and complexity. To maintain good
performance and availability, an administrator is confronted with a huge amount of time
consuming tasks to tune the server’s ever-changing parameters. Performance parameters
are especially difficult to tune manually for three reasons. First, it is not obvious what
value is proper for each performance parameter. This is because the proper value largely
depends on the execution environment. Second, it is time-consuming to find the proper
values because tedious trials and errors must be repeated. Third, the proper value may
change over time because the execution environment changes.

In this paper, we present a practical approach to automatically tuning the parameters
of the famous Apache Web sever [1]. In particular, this paper deals with two major
performance parameters, KeepAliveTimeout and MaxClients, because much
of the literature [2, 3] has pointed out these greatly influence on Apache performance.
Although we present our methodology within the context of Apache, we believe it could
be applied to other Web servers.

The notable features of our methodology can be summarized as follows:

– Easy to deploy: Our mechanism does not require any modifications to Apache
and the underlying operating system. To incorporate our mechanism, it is sufficient

S. Grumbach, L. S iu , and V. Vianu (Eds.): ASIAN 2005, LNCS 3818, pp. 146–159, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Practical Approach to Automatic Parameter-Tuning of Web Servers 147

to restart Apache after defining a special environment variable. Since Apache is so
widely used, it would help many administrators to tune their Web servers and thus
have a practical impact.

– Based on parameter analysis: We exploit parameter-specific features to adjust
KeepAliveTimeout and MaxClients. We analyzed the effects each param-
eter had on the behavior of Web servers to develop the tuning algorithm, and de-
rived it to discover the proper value for each parameter. To derive both algorithms,
HTTP-request intervals were assessed for KeepAliveTimeout, and resource
contention was investigated for MaxClients.

Our approach based on parameter-specific analysis is effective for the performance-
influenced parameters of widely used servers such as Apache. Although some might
think our approach is not generic, our claim is that KeepAliveTimeout and Max
Clients deserve to special consideration.

Our prototype system was implemented on Linux 2.4.20 and ran with Apache Web
server 2.0.49. Experimental results demonstrated that our approach could successfully
tune both KeepAliveTimeout and MaxClients to nearly optimal and manu-
ally tuned values. By automatically tuning KeepAliveTimeout, the throughput was
improved by 27.5 – 368.5% compared to the default setting. Automatically tuning
MaxClients also resulted in throughput close to the nearly optimal, hand-tuned level
of Apache.

The rest of this paper is organized as follows. Section 2 analyzes the effects perfor-
mance parameters had on the Apache. Section 3 introduces our mechanism. Section 4
describes the implementation of our prototype system. Section 5 presents the experi-
mental results. Section 6 discusses related work. Finally, we conclude with a summary
in Sect. 7.

2 Performance Effects on Parameters

It is important to adjust bothKeepAliveTimeout and MaxClients properly, since
they significantly affect server performance. To confirm whether this was the case, we
measured the performance of the Apache Web server [1] using a standard Web bench-
mark (for details, refer to Sect. 5). Figure 1 plots the server throughput and average
response time for various MaxClients and KeepAliveTimeout values.

We can see that KeepAliveTimeout dramatically affects server performance.
When KeepAliveTimeout is set to 400 ms, the throughput improves up to 150.2%
and the response time improves up to 13.3%, compared to the default KeepAlive
Timeout value (i.e. 15 sec) of the Apache Web server. When this value is changed
to 200 ms or 600 ms, the server throughput and response time both degrade down to
20.3% and 23.0% respectively, compared to 400 ms. This implies that KeepAlive
Timeout is difficult to adjust manually; a slight difference in KeepAliveTimeout
affects server performance.

Figure 1(b) shows that MaxClients also affects server performance. With this
benchmark workload, the server yields the best throughput and moderate response time
if its MaxClients is set to 700. Compared to the default MaxClients (150), the
server throughput improves up to 297.9%. When the MaxClients is changed to 600


