Dynamically Adaptable User Interface Generation
for Heterogeneous Computing Devices

Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio

Dipartimento di Ingegneria Informatica e delle Telecomunicazioni,
Universita di Catania, Viale A. Doria 6, 95125 Catania, Italy
{Mario.Bisignano, Giuseppe.DiModica,
Orazio.Tomarchio}@diit.unict.it

Abstract. The increasing number of personal computing devices today avail-
able for accessing online services and information is making more difficult and
time-consuming to develop and maintain several versions of user interfaces for a
single application. Moreover, users want to access services they have subscribed,
no matter the device they are using, always maintaining their preferences. These
issues demand for new software development models, able to easily adapt the
application to the client’s execution context, while keeping the application logic
separated from its presentation. In this work we present a framework that allows
to specify the user’s interaction with the application, in an independent manner
with respect to the specific execution’s context, by using an XML-based lan-
guage. Starting from such a specification, the system will subsequently “render”
the actual user’s application interface on a specific execution environment, adapt-
ing it to the end user’s device characteristics.

1 Introduction

Many different personal computing devices are available today to users: they range
from full powered notebooks, to portable devices such as PDAs, and to smartphones.
All of these devices allow users to access and execute different kind of applications
and services, even when they are outside of their office. Moreover, the heterogene-
ity of the available wireless access technologies gives rise to new network scenarios,
characterized by frequent and dynamic topology changes and by joining/leaving of net-
work nodes. Due to the continuous mobility of users’ devices and, as a consequence,
to network dynamics, applications cannot rely on reliable and stable users’ execution
contexts. Context-aware mechanisms are needed in order to build adaptive applica-
tions, location-based services, able to dynamically react to changes in the surrounding
environment[/13/3]]. Current approaches, both as traditional models for distributed com-
puting and related middleware [4], do not fully satisfy all the requirements imposed by
these environments.

One of the main requirements to be able to build ubiquitous and pervasive com-
puting scenarios is the possibility for the user to access the same service from hetero-
geneous terminals, through different network technologies using different access tech-
niques [12]. In order to accomplish this, while avoiding at the same time the burden
of reimplementing from scratch the same application for a different device and/or for

L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 1000-I0101 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Dynamically Adaptable User Interface Generation 1001

a different network technology, new programming paradigms along with the related
middleware are needed, providing the adequate level of transparency to the applica-
tion developer. In particular, from the developer’s perspective, developing a new user
interface and new content types each time a new device penetrates the market is not a
feasible solution.

In this paper we present the architecture of a framework whose goal is to make
the presentation layer of the application, i.e. the user’s interaction level, adaptive and
(as much as possible) independent from the specific execution context. The actual user
interface will be dynamically generated at runtime according to context information.
The presentation level (user interface), together with the user’s interaction model and
the associated task model is described at an high and abstract level, in a device in-
dependent way. Moreover, the system is supported by a set of adaptation components
(and/or renderer), each one specific for the current execution context at the client side
(user terminal characteristics, current network features, user preferences, etc). A given
render is in charge of adapting the application’s user interface for a specific execution
environment, according to the actual end user device’s features, which will be repre-
sented using the CC/PP standard for profile information representation. Depending on
the user’s needs (user preferences) and the application characteristics, this step can be
done either off-line [1]], thus distributing the result to the client later on, or dynamically
on-line [16]. As further described in this paper, from an architectural point of view,
the system has been structured in such a way to promote the dynamic insertion of new
adaptation modules (even at runtime), specific for some functionality not foreseen in
advance. A prototype of the framework has already been implemented, together with
two “renderers”: one for standard PCs, equipped with a complete J2SE environment
(Java Standard Edition) and the other one for mobile phones equipped with the Java
Micro Edition (J2ME) environment.

The rest of the paper is organized in the following way. Section 2 presents a review
of related work in this area, trying to outline merits and limits of existing approaches.
Then, in Section 3, the system architecture is presented, together with the description
of its components and their behavior. Finally we draw the conclusions in Section 4.

2 Related Work

The development of services that all kind of end user’s devices should be able to ac-
cess, despite their different features, had given rise to several different approaches to the
problem, both in academic and in commercial environment. Nevertheless, today many
of existing approaches often address Web content fruition [1446/7]], having as target de-
vices well defined categories of terminals (typically PDAs like Pocket-PC and cellular
phones WAP-enabled). All of these approaches can be generally classified into some
categories: scaling, manual authoring, transducing [1416] and transforming [7]. Among
these approaches, the one based on the description of the user interface by means of
an XML-based vocabulary seems the most promising. Some of the system/languages
aiming at this purpose, adopting an intent oriented” scheme are: UIML [1l], AUIML
[2], XForms [17], Dygimes [9], Teresa [10]]. In these systems only the interaction
of the application with the user is described, but not its graphic components, whose



