
Integrated Model-Based Software Development,

Data Access, and Data Migration

Behzad Bordbar1, Dirk Draheim2,
Matthias Horn3, Ina Schulz3, and Gerald Weber4

1 School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

B.Bordbar@cs.bham.ac.uk
2 Institute of Computer Science, Freie Universität Berlin

Takustr. 9, 14195 Berlin, Germany
draheim@acm.org

3 IMIS Projekt, Condat AG
Alt-Moabit 91d, 10559 Berlin, Germany

{horn,schulz}@condat.de
4 Department of Computer Science, The University of Auckland

38 Princes Street, Auckland 1020, NZ
g.weber@cs.auckland.ac.nz

Abstract. In this paper we describe a framework for robust system
maintenance that addresses specific challenges of data-centric applica-
tions. We show that for data-centric applications, classical simultaneous
roundtrip engineering approaches are not sufficient. Instead we propose
an architecture that is an integrated model-based approach for software
development, database access and data migration. We explain the canon-
ical development process to exploit its features. We explain how the
approach fits into the model-driven architecture vision. We report on ex-
periences with the approach in the IMIS environmental mass database
project.

1 Introduction

It is well-known that maintenance cost regularly is the largest share of software
expenditure [4]. Software development does not end after deployment of the ini-
tial system version at the customer site. On the contrary, changing functional
and non-functional requirements enforce changes in the system and its structure.
Software development process models tended to underemphasize the importance
of maintenance [28], and are only recently targeting easy maintenance. More se-
riously and often overlooked, data migration is an issue in software maintenance.

In a model-based approach, simultaneous roundtrip engineering can add
value to software development and assist in system maintenance. For data-centric
applications however, classical simultaneous roundtrip engineering approaches
are not sufficient: during a system’s lifetime data have been gathered that must
be transported from the old system version to the new system version. This
means that you have to deal with database reorganization [24].

L. Briand and C. Williams (Eds.): MoDELS 2005, LNCS 3713, pp. 382–396, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Integrated Model-Based Software Development 383

In practice [26], vendors have started to integrate database mapping facilities
into CASE tools and integrated development environments that are capable of
model-based development, but this does not solve the data migration problem.
As a matter of fact, data migration is still mostly done by hand-coded SQL
scripts. This is not a legacy problem of relational databases. Please note that
the advanced features of object-relational database management systems [27] for
altering database schemas do not help with data migration problems. In prac-
tice, relational database technology is here to stay [5]. Therefore a well-defined
object-relational mapping mechanism is needed. Hand-coding SQL scripts for
data migration is tedious and error-prone in a model-based scenario with object-
relational mapping: the abstraction level achieved by model-orientation is broken
and the developer has to understand all details of the object-relational mapping.

In this paper we describe a comprehensive framework that provides a solution
for the problem posed. We present an integrated model-based approach to (i)
object-oriented software development and simultaneous roundtrip engineering,
(ii) transparent database access and (iii) data migration. It employs object-
relational mapping and novel features like automatic model change detection,
and data migration API generation. The paper describes the design rationales
of the framework.

The framework incorporates technology that tightly integrates from scratch
model evolution, programming language type evolution, database schema evolu-
tion and customer data migration [7, 9].

The described framework basically consists of a generator for data migration
APIs. For each combination of a current model and an intended new model a
specialized data migration API is generated. On the one hand the generated
data migration API is intended to be as complete as possible with respect to
automatically inferring a schema mapping from the two models under consider-
ation, on the other hand it provides as many hooks as needed to fully customize
the data migration. With this approach guidance for the implementation of the
data migration is provided. Furthermore, the customizations can be done on the
level of transparent database access.

Our framework realizes a persistent object-oriented programming environ-
ment. Although relational database technology is employed in the back end, our
framework enables us to discuss problems of schema evolution and migration of
customer data solely on the level of the object-oriented system model: changes in
the object model have a defined footprint in the database schema, and existing
data are transformed into the new system accordingly.

In Sect.2 we discuss an introductory example of model evolution with respect
to persistent data. We describe how we achieved our goals in Sect. 3. In this paper
we take for granted the advantages of transparent database access and do not
delve into a discussion under which circumstances transparent database access
may infringe the best practice of data independency as provided by mature
modern database technology, with, for example, respect to performance tuning.
Actually, our approach of lifting data migration to the transparent database
access level has proven in the IMIS project to stabilize the development and speed


