
The Role of Agreements in IT
Management Software

Carlos Molina-Jimenez1, Jim Pruyne2, and Aad van Moorsel1

1 University of Newcastle Upon Tyne, School of Computing Science,
Newcastle upon Tyne, NE1 7RU, United Kingdom
{carlos.molina, aad.vanmoorsel}@ncl.ac.uk

2 Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
jim.pruyne@hp.com

Abstract. Various forms of agreements naturally arise in the service
provider model as well as in multi-party computing models such as
business-to-business, utility and grid computing. The role of these agree-
ments is twofold: they stipulate obligations and expectations of the in-
volved parties, and they represent the goals to be met by the infrastruc-
ture. As a consequence of this latter point, in order to automate run-time
adaptation and management of systems and services, agreements should
be encoded and integrated in management software platforms. In this pa-
per, we review the state of the art in software support for various forms
of agreements, for all stages of their life-cycle. We also review emerging
platforms and technologies in standard bodies, industries and academia.

1 Introduction

We will argue and illustrate in this paper that distributed computing infras-
tructures must incorporate agreements as first-class software building blocks to
support automated adaptation and management in the presence of multiple (pos-
sibly competing) interests. These agreements represent expectations and obliga-
tions of various partners about the functionality and performance of systems and
services. Additionally, these agreements are means to set the objectives for auto-
mated decision-making in system adaptation and management. It can therefore
be useful for an IT operator to formulate objectives in the form of agreements
even if no other parties are exposed to this information.

Modern-day and emerging computing infrastructures are increasingly flexible
in their support of computational and business models, as witnessed by the
developments of adaptive and on-demand computing solutions advocated by
HP, IBM, Oracle, SUN and others. These solutions typically envision a service
provider model for various aspects of computing, such as CPU use, network use,
application hosting, etc. As software platform, such solutions are often tied to
the grid [20], which supports resource sharing across multiple parties using open
software. This software virtualises resources and applications, thus shielding the
customer from the complexities of the underlying infrastructure and providing
the operator with tools to adapt the system gracefully at run-time.

R. de Lemos et al. (Eds.): Architecting Dependable Systems III, LNCS 3549, pp. 36–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Role of Agreements in IT Management Software 37

To enable the mentioned multi-party computing models the supporting soft-
ware infrastructure should make use and keep track of the agreements established
between parties. Therefore, it should embody these agreements in software. Such
run-time agreements can come in various shapes or forms (at times we will use
the adjective ‘run-time’ to stress that we discuss software embodiments of agree-
ments, used at run-time to manage the execution of services). For instance, a
run-time agreement can be defined by an operator to represent aspects of a
hard-copy contract signed between provider and customers. Alternatively, the
run-time agreement represents agreed-upon service levels automatically negoti-
ated by software agents of the provider and customer. Irrespective, the infor-
mation in the agreement can be used throughout the platform as needed, e.g.,
to adapt the system to meet service levels while optimising profits. Agreements
thus naturally fit the service provider model, but also provide the necessary in-
formation to allow for automated decision-making by management software and
self-managing components and services.

Since this article has been prepared for the series of books on architectures
for dependable systems, it is opportune to address the relation of agreements
with both dependability and architectures. The notion of architecture used in
this paper relates to the structure of software platforms (middleware). These
architectures will be heavily influenced by the emergence of the service provider
computing model (including utility or on-demand computing), and by an in-
creased pressure to automate system operation and hence save operational cost.
We foresee a prominent role for agreements, which will be integrated in such
architectures and will be represented as objects, services or other software com-
ponents. Once these are in place, they define the objectives to be used in the
algorithms that adapt systems and services.

With respect to dependability, run-time agreements play a double role, as
indicated above. On the one hand, agreements must be available in system op-
erations software to determine how to adapt the system, also in response to
failures. This entails further automation of the processes traditionally involved
in fault management. On the other hand, agreements are a way of providing
trust in the system, by allowing customers to express their interests, and by pro-
viding them with information about whether the agreements are met (possibly
through a trusted third party).

There are many open issues in the technologies required to support run-time
agreements. The emphasis in this paper is on a survey of existing and ongoing
work related to software architectures, with pointers to remaining research issues.
The survey is extensive, but arguably not exhaustive because of the vastness of
the area we want to cover. In Section 3 we discuss technologies in (1) specifi-
cation, (2) provision, (3) monitoring, (4) adaptation and (5) resolution, roughly
following the life cycle of typical agreements. Table 1 summarizes our findings. In
Section 4 we then discuss representative solutions proposed by standards bodies
(WS-Agreement in the Global Grid Forum), industries (Hewlett Packard and
IBM enterprise IT) and academia (TAPAS, an EU research project). To set the
stage, we first discuss terminology used in this paper and in the literature.


