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Abstract. In this work, we studied the dynamics of modified FitzHugh-
Nagumo (MFHN) neuron model. This model shows how the potential
difference between spine head and its surrounding medium vacillates be-
tween a relatively constant period called the silent phase and large scale
oscillation reffered to as the active phase or bursting. We investigated
bifurcation in the dynamics of two MFHN neurons coupled to each other
through an electrical coupling. It is found that the variation in coupling
strength between the neurons leads to different types of bifurcations and
the system exhibits the existence of fixed point, periodic and chaotic
attractor.

1 Introduction

Determining the dynamical behavior of an ensemble of coupled neurons is an
important problem in computational neuroscience. The primary step for un-
derstanding this complex problem is to understand the dynamical behavior of
individual neurons. Commonly used models for the study of individual neurons
which display spiking/bursting behavior include (a) Integrate-and-fire models
and their variants [1, 2] (b) FitzHugh-Nagumo model [3], (c) Hindmarsh-Rose
model [13], (d) Hodgkin-Huxley model [4, 7] and (e) Morris-Lecar model [5].
A short review of models in neurobiology is provided by Rinzel in [6, 9, 12].
The study of Type I neuronal models is more important as pyramidal cells in
the brain [11] exhibits this type of behavior. Biophysical models such as the
Hodgkin-Huxley(HH) model and Morris-Lecar(ML) model have been observed
to display Type I neural excitability [2]. Mathematical techniques to study Type
I neurons were developed by Ermentrout and Kopell [1] and the individual be-
havior of Type I neurons was fairly well understood. Bifurcation phenomena
in individual neuron models including the Hodgkin-Huxley, Morris-Lecar and
FitzHugh-Nagumo have been investigated in the literature [9–11, 13, 14]. Rinzel
and Ermentrout [9] studied bifurcations in the Morris-Lecar (ML) model by
treating the externally applied direct current as a bifurcation parameter. It is
also important to note that the choice of system parameters in these neuron mod-
els can influence the type of excitability [9]. Rinzel, proposed a neuron model
which produces a Type III burst is studied here [12]. The study of coupled neuron
models is one of the fundamental problem in computational neuroscience that
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helps in understanding the behavior of neurons in a network. From dynamical
point of view it is of crucial importance to investigate the effect of variation in
coupling strength to its dynamical behavior. In this work, we presented general
conditions under which a system of two coupled neurons shows different types
of dynamical behavior like converging, oscillatory and chaotic. For our analysis
we considered coupling strength as a parameter. Our studies are based on mod-
ified FitzHugh-Nagumo system [12] which is an extension of FitzHugh-Nagumo
system.

In section 2, we discuss the three dimensional mathematical model of modi-
fied FitzHugh-Nagumo type neurons. Nonlinear dynamical analysis of this model
is presented in section 2. In section 3, we study a mathematical model of coupled
neural oscillators and its bifurcation diagram. Finaly, in section 4, we concluded
our work.

2 The Modified FitzHugh-Nagumo Neuron Model

The modified FitzHugh-Nagumo equations are a set of three simple ordinary
differential equations which exhibit the qualitative behavior observed in neu-
rons, viz quiescence, excitability and periodic behavior [12]. The system can be
represented as

v̇ = −v − v3

3
− w + y + F (t) (1)

ẇ = φ(v + a − bw) (2)

ẏ = ε(−v + c − dy) (3)

The function F (t) represents the external stimulus. From biological point of
view, variable v represents the potential difference between the dendritic spine
head and its surrounding medium, w is recovery variable and y represents the
slowly moving current in the dendrite. In this model, v and w together make up
a fast subsystem relative to y. The equilibrium point (v∗, w∗, y∗) is calculated
by substituting v̇ = ẇ = ẏ = 0 in equations (1), (2) & (3). The jacobian matrix
at this point is found to be

J =



−1 − v∗2 −1 1

φ −bφ 0
−ε 0 −εd


 (4)

The three eigenvalues λ1, λ2 and λ3 are the roots of equation det(J−λI) = 0.
If at a neighborhood of a particular value µ0 of the parameter µ, there exists a
pair of eigenvalues of J(µ) of the form α(µ)±iβ(µ) such that α(µ) = 0, β(µ) �= 0,
then no other eigenvalue of A(µ0) will be an integral multiple of iβ(µ0). Thus
A(µ0) has a pair of pure imaginary eigenvalues. This provides the information
about the bifurcation in the system.


