
T. Sobh, K. Elleithy (eds.), Innovations in Computing Sciences and Software Engineering,
DOI 10.1007/978-90-481-9112-3_20, © Springer Science+Business Media B.V. 2010

117

Abstract—This paper discusses architecture for creating systems
that need to express complex models of real world entities,
especially those that exist in hierarchical and composite
structures. These models need to be persisted, typically in a
database system. The models also have a strong orthogonal
requirement to support representation and reasoning over time.

Index Terms—Spatial-temporal processing, object-relational
mapping, entity-relationship modeling, design patterns, dynamic
composites

I. INTRODUCTION

INCE using relational databases and object oriented
programming (OOP) languages have become
commonplace for developers, it is only natural that

systems have evolved to facilitate using relational databases as
data persistence mechanisms for programs developed in object
oriented languages. For example, the Java Database
Connectivity (JDBC) API [1] provides database-independent
connectivity between the Java programming language and a
wide range of databases.

Object-based systems are founded on a set of fundamental
concepts [2]. Objects have state, so they can model memory.
They have behavior, so that they can model dynamic
processes. And they are encapsulated, so that they can hide
complexity. There are only two kinds of relationships in an
object model [3], a static relationship: inheritance (‘is-a”) and
a dynamic relationship: composition (‘has-a”).

As OOP has advanced, other structuring facilities have
emerged in designs and code based on idioms and best
practices that have evolved in OOP-based systems. Some of
these practices have been codified as “Design Patterns” [4].
One such object oriented design pattern is Composite. This
pattern composes objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

Evolution was also occurring in the database world.
Although initially discounted by the relational community at
large, the ER model [5] is based on strong mathematical
foundations, including: Set Theory, Mathematical Relations,
Algebra, Logic and Lattice Theory.

Manuscript received October 10, 2009.
J. Lori is a PhD candidate at the University of Bridgeport, Bridgeport, CT,

06066 USA (email: jlori@bridgeport.edu).
This work was partially funded by the Pratt and Whitney Corporation, 400

Main Street, East Hartford, CT 06453 USA.

At the beginning of this decade, Dr. Ralph Kimball, one of
the leading visionaries in the architecture of Data Warehouse
systems described his goals for the marriage of database
technology, ER models, and object oriented programming
systems. In his newsletter [6], Kimball proposes four kinds of
data warehouse business rules: “These rules included simple
data formats, relationships between the keys of connected
tables, declarations of entity relationships, and ‘complex
business logic’…” Kimball wanted direct support in the
programming system for the third rule, particularly in the
situation where many-to-many relationships were used.

Describing the fourth rule, Kimball states: “Complex
business logic will always remain a combination of static data
relationships and adherence to procedural sequences…”

Dr. Kimball sought an approach that uses OOP to manage
entity-relationship data models and implements the associated
processing logic to form an effective basis for data
warehouses. While both OOP and Data Warehouse design had
matured, a major stumbling block remained to be overcome.
The problem is known as “object-relational impedance
mismatch”. Ambler [7] supplies this definition, which focuses
on the orthogonal approaches to search and navigation in the
two models: “The object/relational impedance mismatch is the
difference resulting from the fact that relational theory is
based on relationships between tuples that are queried,
whereas the object paradigm is based on relationships between
objects that are traversed.”

As software technology moved forward through the first
decade of the twenty-first century, a new technology emerged
for integrating OOP and database systems. This technology is
known as Object-Relational Mapping (ORM). ORM is
defined as follows [8]: “Object-relational mapping (ORM,
O/RM, and O/R mapping) in computer software is a
programming technique for converting data between
incompatible type systems in relational databases and object-
oriented programming languages. This creates, in effect, a
‘virtual object database’ that can be used from within the
programming language.”

By the middle of the decade, ORM systems became highly
sophisticated and had achieved significant results. Some of the
best ORM implementations are open source Java-based
systems [9]. These systems brought back a lightweight,
object-oriented persistence model based on the concept of
POJOs (Plain Old Java Objects) [9].

II. PROBLEM SPACE

The architecture discussed here is realized in a system
called Phoenix [10]. The system is designed to implement a
management suite for jet engines. The heart of the suite is an

Towards a Spatial-Temporal Processing Model
Jonathan B. Lori

S

LORI 118

application known as On Wing Tracker (OWT). The purpose
of OWT is to track the configuration and utilization of
engines, engine components and parts. Essentially, this is a
classic Bill of Materials (BOM) problem. However, there are a
few other critical elements to the problem. Engines are
complex and expensive assemblies that last for decades.
Engines evolve. Components wear out. Modules and parts are
moved from one engine to another. Information on the state of
the engine may be “late arriving” and sometimes missing.

Utilization may be expressed in multiple ways, from simply
accumulating run time hours to more sophisticated event-
based modes such as throttle operations per flight. What is
required to solve such a set of problems is not simply a system
structured around a spatial dimension i.e. a BOM model, but
one which can also reason over temporal dimensions as well.

III. DESIGN PATTERNS

As stated earlier, object models contain two types of
relationships: composition and inheritance. As Wirfs-Brock
[3] points out: “Both (models) have analogs in a family tree. A
composite relationship is like a marriage between objects. It is
dynamic, it happens during the participating objects’ lifetimes,
and it can change. Objects can discard partners and get new
partners to collaborate with. Inheritance relations are more
like births into the family. Once it happens, it is forever… We
can extend an object’s capabilities by composing it from
others. When it lacks the features that it needs to fulfill one of
its responsibilities, we simply delegate the responsibility for
the required information or action to one of the objects that
the object holds onto. This is a very flexible scenario for
extension.”

When first considering a BOM model, which is essentially
a tree structure, an architect may be tempted to begin
modeling based on inheritance. However, an architecture
organized around composition is a dynamic and flexible
approach, and more extensible. There is a long-recognized
design axiom [11] that states: “Prefer composition to
inheritance.”

The interesting point in the Phoenix architecture is that if
there is one major organizing principle it is this: the system is
organized around the notion of Dynamic Composites [10]. By
this it is meant that BOM hierarchies are built as Composites,
where a Composite, while already a dynamic OO relationship,
is also assembled from a dynamic search. The search is
through information stored in a generic ER model that is in
turn stored in a relational database.

Phoenix is logically composed as a generic Entity-
Relationship model that is persisted in a relational DBMS
system. (Fig. 1) The generic ER model is then mirrored by a
generic object model. (Fig. 2) The two models are mapped
together through an object-relational mapping system. In the
Phoenix architecture, Hibernate is the ORM [9]. The ER
model is decimated enough to produce the desired flexibility,
including the capability of “decorating” entities with any
required attributes. Thus, the ER model provides a unified

data model for the system. The object model is closely
matched to the ER model. Therefore it is easy to fulfill all of
Kimball’s goals for using OOP to drive an ER model-based
data warehouse.

Note also that there are no entities or classes called
“Composite”. This is because the dynamic composites exist
only as sets of instances in memory. Finally, note that the
entities (tables) and their mirrored classes contain strategically
embedded timestamp fields. The object model contains both
Java code (procedural logic) and embedded queries and
parameters (SQL/HQL). (SQL is the Structured Query
Language. HQL is the Hibernate Query Language [9]).

IV. TEMPORAL PROCESSING

Temporal reasoning [12] is handled as follows. A
Bitemporal Database is implemented using the foundation
provided by the Phoenix Architecture. Facts are stored in a
database at a point in time. After the fact is stored, it can be
retrieved. The time when a fact is stored in a database is the
transaction time of the fact. Transaction times are consistent
with the serial order of the transactions. The past cannot be
changed; therefore transaction times cannot be changed. A
transaction time also cannot be later than the current time.
Typically, the commit time of a database transaction is used as
the transaction time.

Conversely, the valid time of a fact is the time when such a
fact is true in the modeled reality. A fact can be associated
with any number of events and intervals. The system uses
transactional storage mechanisms to persist data. Such a
storage event corresponds to a transaction time for that event.
Meanwhile, the data being stored also contains representations
of a valid time event: “Something was done to an entity or a
characteristic of an entity at some (valid) time”. A transaction-
time database supports transaction time and such a transaction
can be rolled back to a previous state. A valid-time database
contains the entire history of the entities it contains. Phoenix
maintains and uses both the transaction time and the valid time
information to provide temporal reasoning in Domain Models
built using the Phoenix Architecture. Hence, the Bitemporal
Database is a built from the combination of the Domain
Model, the structuring of entities within the Dynamic
Composites that comprise the model and the ability to track
the history of each entity and its characteristics in an arbitrary
fashion.

V. SYSTEM ARCHITECTURE

The Phoenix Architecture has implemented a novel
approach for processing, tracking and calculating information
when the representative structure, characteristics of the
structure, and the temporal history of both the structure and
the characteristics of its components may be easily tracked
and modified over time. This includes the capability to re-
materialize the representative state at some arbitrary point in
time. The innovations are in three primary areas:

