
Randomized and Parameterized Algorithms

for the Closest String Problem

Zhi-Zhong Chen1, Bin Ma2, and Lusheng Wang3

1 Division of Information System Design, Tokyo Denki University, Hatoyama,
Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 School of Computer Science, University of Waterloo, 200 University Ave. W,

Waterloo, ON, Canada N2L3G1
binma@uwaterloo.ca

3 Department of Computer Science, City University of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong SAR

cswangl@cityu.edu.hk

Abstract. Given a set S = {s1, s2, . . . , sn} of strings of equal length L
and an integer d, the closest string problem (CSP) requires the compu-
tation of a string s of length L such that d(s, si) ≤ d for each si ∈ S,
where d(s, si) is the Hamming distance between s and si. The problem
is NP-hard and has been extensively studied in the context of approx-
imation algorithms and parameterized algorithms. Parameterized algo-
rithms provide the most practical solutions to its real-life applications
in bioinformatics. In this paper we develop the first randomized param-
eterized algorithms for CSP. Not only are the randomized algorithms
much simpler than their deterministic counterparts, their expected-time
complexities are also significantly better than the previously best known
(deterministic) algorithms.

1 Introduction

Given a set S = {s1, s2, . . . , sn} of strings of equal length L and an integer d
(called radius), the closest string problem (CSP) requires the computation of a
string s of length L such that d(s, si) ≤ d for each si ∈ S, where d(s, si) is the
Hamming distance between s and si. Such a string s is referred to as a center
string of S with radius d.

CSP has attracted great attention in recently years due to its important appli-
cations in bioinformatics [18]. For example, one needs to solve numerous CSP in-
stances over a binary alphabet in order to find the approximate gene clusters using
theCenterGeneClustermodel [1,15].DegeneratedPrimerDesign [30] also involves
to solve CSP instances over the DNA alphabet. Other applications include univer-
sal PCR primer design [19,17,8,26,13,30], genetic probe design [17], antisense drug
design [17,7], finding unbiased consensus of a protein family [3], and gene regulatory
motif finding [17,13,28,6,10], etc. Consequently, CSP has been extensively studied
in computational biology [17,18,21,14,24,13,23,16,9,12,27,7,25,28]. In particular,
CSP has been proved to be NP-hard [11,17].

A.S. Kulikov, S.O. Kuznetsov, and P. Pevzner (Eds.): CPM 2014, LNCS 8486, pp. 100–109, 2014.
c© Springer International Publishing Switzerland 2014

Randomized and Parameterized Algorithms for the CSP 101

One approach to CSP is to design approximation algorithms. Along this line,
Lancto et al. [17] presented the first non-trivial approximation algorithm for
CSP, which achieves a ratio of 4

3 . Li et al. [18] designed the first polynomial-time
approximation scheme (PTAS) for CSP. Subsequently, the time complexity of
the PTAS was improved in [21,20]. However, the best-known PTAS in [20] has

time complexity O(mnO(ε−2)) which is prohibitive for even a moderately small
ε > 0.

A more practical approach to CSP is via parameterized algorithms. Param-
eterized algorithms for CSP are based on the observation that the radius d in
a practical instance of CSP is usually reasonably small and hence an algorithm
with time complexity O(f(d) × poly(n)) for a polynomial function poly(n) and
exponential function f(d) may still be acceptable. Along this line, Stojanovic
et al. [27] designed a linear-time algorithm for the special case of CSP where d
is fixed to 1. Gramm et al. [14] proposed the first parameterized algorithm for
CSP, which runs in O(nL + nd · (d + 1)d) time. Ma and Sun [20] designed an
algorithm that runs in O(nL+nd·(16(|Σ|−1))d) time. This algorithm is the first
polynomial-time algorithm for the special case of CSP where d is logarithmic in
the input size and the alphabet size |Σ| is a constant. Improved algorithms for
CSP along this line were given in [29,5,31,4]. Among them, the algorithm with
the best theoretical time complexity for general alphabets is given in [5]. For
small alphabets, the best time complexity is achieved by the algorithm in [4]. In
particular, this algorithm runs in O(nL + nd3 · 6.731d) time for binary strings,
while runs in O(nL + nd · 13.183d) time for DNA strings. Noticeably, in order
to achieve better time complexity, these best-performing algorithms combined
multiple techniques, which made the algorithms rather complicated.

Randomization has been widely employed to design parameterized algorithms
for many NP-hard problems [22]. However, randomization has not been used to
design parameterized algorithms for CSP, and it is unclear if randomization will
be of any benefit at all to solving CSP exactly. The only randomized algorithm
that we are aware of is a randomized heuristic algorithm for the binary case of
CSP proposed by Boucher and Brown [2]. With large synthetic as well as real-
genomic data, they demonstrated the heuristic algorithm could detect motifs
efficiently. However, no theoretical bounds on the running time or the success
probability were provided.

In this paper, we demonstrate that randomization indeed helps design much
simpler and more efficient parameterized algorithms for CSP. Several randomized
algorithms are proposed. The first algorithm is presented in Section 3 and is for
the binary case of CSP. The algorithm is as simple as the following: It starts with
a string t that is initialized to s1. At each iteration it selects an si with d(t, si) > d
and randomly flips one bit of t where si disagrees with t. If a center string is
not found within d iterations, the algorithm starts over again. This algorithm
for binary case uses very similar heuristic as in [2]. However, the procedure
to apply the heuristic, as well as the start and end conditions are changed in
order to achieve the theoretical bounds proved in this paper. Through rigorous
analysis, we show that for any given binary CSP instance, this surprisingly simple

