
Boosting Dependable Ubiquitous Computing:
A Case Study

Christian Fernández-Campusano, Roberto Cortiñas, and Mikel Larrea

University of the Basque Country UPV/EHU, Spain
{christianrobert.fernandez,roberto.cortinas,mikel.larrea}@ehu.es

Abstract. Ubiquitous computing has inherent features, e.g., a number
of elements in the system with restricted communication and compu-
tation capabilities, which make harder to achieve dependability. In this
work we explore this research line through the study of TrustedPals, a
smartcard-based framework which allows implementing security policies
in ubiquitous systems and applications in a decentralized way. The cur-
rent architecture of TrustedPals uses a consensus algorithm adapted to
the omission failure model. In this work, we propose to alternatively use
the Paxos algorithm, in order to address more ubiquitous environments.

1 Introduction

Dependability is composed of several aspects, such as availability and reliability,
which imply fault-tolerance. In this regard, reaching agreement is a key topic
to achieve dependability. Consensus [1] is one of the most important problems
in fault-tolerant distributed computing, and constitutes a paradigm that repre-
sents a family of agreement problems. Roughly speaking, in consensus processes
propose an initial value and have to decide on one of the proposed values.

Although many solutions have been proposed to solve consensus in synchronous
systems, Fischer et al. [2] showed that it is impossible to solve consensus determin-
istically in asynchronous systems where at least one process may crash. In order to
circumvent this impossibility, Chandra and Toueg [3] proposed the failure detector
abstraction. Roughly speaking, a failure detector is an abstract module located at
each process of the system that provides information about (the operational state
of) other processes in the system. Failure detectors offer a modular approach that
allows other applications such as consensus to use them as a building block. Ad-
ditionally, the failure detector abstraction allows to encapsulate the synchrony
assumptions of the system, so applications that make use of failure detectors can
be designed as if they run in an asynchronous system.

Recently, Cortiñas et al. [4] proposed a modular architecture which combines
failure detectors with a tamper-proof smartcard-based secure platform named
TrustedPals [5] in order to solve consensus in a partially synchronous system
prone to Byzantine failures. They also showed how to solve a security problem
called Secure Multiparty Computation [6] through consensus. Secure Multiparty
Computation is a general security problem that can be used to solve various real-
life problems such as distributed voting, private bidding and online auctions.

G. Urzaiz et al. (Eds.): UCAmI 2013, LNCS 8276, pp. 42–45, 2013.
c© Springer International Publishing Switzerland 2013



Boosting Dependable Ubiquitous Computing: A Case Study 43

2 Current and Proposed Architecture

Figure 1 (left) presents the current architecture of TrustedPals [4], which is
composed of the following elements:

– The TrustedPals platform allows to transform every failure into a process
crash or a message omission, which implies that the initial Byzantine failure
model is turned into a more benign one, namely the omission failure model.

– An Eventually Perfect (�P) failure detector adapted to the omission failure
model (�Pom) allows to detect well connected processes, i.e., processes that
can actively participate in the consensus.

– Finally, a consensus algorithm adapted from [3] allows to reach agreement
by using the previous �Pom failure detector.

Secure Multi-Party Computation (SMC)

TrustedPals
(Current Desing)

Distributed System

Consensus Algorithm

(Adaptation)

Chandra-Toueg

Failure Detector

TrustedPals
(Proposed Desing)

Consensus Algorithm

(Adaptation)

Paxos

Failure Detector
�Pom Ωom

Fig. 1. Current architecture (left) vs proposed one (right)

Although the proposed solution is suitable in the security context presented
of [4], it presents some drawbacks that could be improved in order to be applied
in other scenarios. For example, it does not consider processes which crash and
later recover. Also, the consensus algorithm requires a high degree of reliability
on communication, i.e., non-omissive processes and quasi-reliable channels.

Figure 1 (right) presents the architecture we propose in this work. Note that it
keeps the modular approach of the previous one, but with two main differences:

– The previous consensus algorithm is replaced by the Paxos algorithm [7].
– The failure detector class considered now is Ω [8].

The combination of those two new elements in the architecture provides the
system with several interesting features. On the one side, Paxos allows to reach
consensus tolerating a high degree of omissive behaviour (loss of messages at
processes or channels). Also, Paxos allows to cope with processes which crash
and later recover. On the other hand, the Omega failure detector, Ω, provides
Paxos with the eventually stable leader required to guarantee termination.


